evalue_read.c: correct constness of name in parameter_new
[barvinok.git] / bernstein.cc
blob19df1519f8723a89a128142eff82484e6256cba7
1 #include <vector>
2 #include <bernstein/bernstein.h>
3 #include <bernstein/piecewise_lst.h>
4 #include <barvinok/barvinok.h>
5 #include <barvinok/util.h>
6 #include <barvinok/bernstein.h>
7 #include <barvinok/options.h>
9 using namespace GiNaC;
10 using namespace bernstein;
12 using std::pair;
13 using std::vector;
14 using std::cerr;
15 using std::endl;
17 namespace barvinok {
19 ex evalue2ex(evalue *e, const exvector& vars)
21 if (value_notzero_p(e->d))
22 return value2numeric(e->x.n)/value2numeric(e->d);
23 if (e->x.p->type != polynomial)
24 return fail();
25 ex poly = 0;
26 for (int i = e->x.p->size-1; i >= 0; --i) {
27 poly *= vars[e->x.p->pos-1];
28 ex t = evalue2ex(&e->x.p->arr[i], vars);
29 if (is_exactly_a<fail>(t))
30 return t;
31 poly += t;
33 return poly;
36 static int type_offset(enode *p)
38 return p->type == fractional ? 1 :
39 p->type == flooring ? 1 : 0;
42 typedef pair<bool, const evalue *> typed_evalue;
44 static ex evalue2ex_add_var(evalue *e, exvector& extravar,
45 vector<typed_evalue>& expr, bool is_fract)
47 ex base_var = 0;
49 for (int i = 0; i < expr.size(); ++i) {
50 if (is_fract == expr[i].first && eequal(e, expr[i].second)) {
51 base_var = extravar[i];
52 break;
55 if (base_var != 0)
56 return base_var;
58 char name[20];
59 snprintf(name, sizeof(name), "f%c%d", is_fract ? 'r' : 'l', expr.size());
60 extravar.push_back(base_var = symbol(name));
61 expr.push_back(typed_evalue(is_fract, e));
63 return base_var;
66 /* For the argument e=(f/d) of a fractional, return (d-1)/d times
67 * a variable in [0,1] (see setup_constraints).
69 static ex evalue2ex_get_fract(evalue *e, exvector& extravar,
70 vector<typed_evalue>& expr)
72 ex f;
73 Value d;
74 ex den;
75 value_init(d);
76 value_set_si(d, 1);
77 evalue_denom(e, &d);
78 den = value2numeric(d);
79 value_clear(d);
80 f = (den-1)/den;
82 ex base_var = evalue2ex_add_var(e, extravar, expr, true);
83 base_var *= f;
84 return base_var;
87 static ex evalue2ex_r(const evalue *e, const exvector& vars,
88 exvector& extravar, vector<typed_evalue>& expr,
89 Vector *coset)
91 if (value_notzero_p(e->d))
92 return value2numeric(e->x.n)/value2numeric(e->d);
93 ex base_var = 0;
94 ex poly = 0;
96 switch (e->x.p->type) {
97 case polynomial:
98 base_var = vars[e->x.p->pos-1];
99 break;
100 case flooring:
101 base_var = evalue2ex_add_var(&e->x.p->arr[0], extravar, expr, false);
102 break;
103 case fractional:
104 base_var = evalue2ex_get_fract(&e->x.p->arr[0], extravar, expr);
105 break;
106 case periodic:
107 assert(coset);
108 return evalue2ex_r(&e->x.p->arr[VALUE_TO_INT(coset->p[e->x.p->pos-1])],
109 vars, extravar, expr, coset);
110 default:
111 return fail();
114 int offset = type_offset(e->x.p);
115 for (int i = e->x.p->size-1; i >= offset; --i) {
116 poly *= base_var;
117 ex t = evalue2ex_r(&e->x.p->arr[i], vars, extravar, expr, coset);
118 if (is_exactly_a<fail>(t))
119 return t;
120 poly += t;
122 return poly;
125 /* For each t = floor(e/d), set up two constraints
127 * e - d t >= 0
128 * -e + d t + d-1 >= 0
130 * e is assumed to be an affine expression.
132 * For each t = fract(e/d), set up two constraints
134 * -d t + d-1 >= 0
135 * t >= 0
137 static Matrix *setup_constraints(const vector<typed_evalue> expr, int nvar)
139 int extra = expr.size();
140 if (!extra)
141 return NULL;
142 Matrix *M = Matrix_Alloc(2*extra, 1+extra+nvar+1);
143 for (int i = 0; i < extra; ++i) {
144 if (expr[i].first) {
145 value_set_si(M->p[2*i][0], 1);
146 value_set_si(M->p[2*i][1+i], -1);
147 value_set_si(M->p[2*i][1+extra+nvar], 1);
148 value_set_si(M->p[2*i+1][0], 1);
149 value_set_si(M->p[2*i+1][1+i], 1);
150 } else {
151 Value *d = &M->p[2*i][1+i];
152 evalue_extract_affine(expr[i].second, M->p[2*i]+1+extra,
153 M->p[2*i]+1+extra+nvar, d);
154 value_oppose(*d, *d);
155 value_set_si(M->p[2*i][0], -1);
156 Vector_Scale(M->p[2*i], M->p[2*i+1], M->p[2*i][0], 1+extra+nvar+1);
157 value_set_si(M->p[2*i][0], 1);
158 value_subtract(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar], *d);
159 value_decrement(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar]);
162 return M;
165 static bool evalue_is_periodic(const evalue *e, Vector *periods)
167 int i, offset;
168 bool is_periodic = false;
170 if (value_notzero_p(e->d))
171 return false;
173 assert(e->x.p->type != partition);
174 if (e->x.p->type == periodic) {
175 Value size;
176 value_init(size);
177 value_set_si(size, e->x.p->size);
178 value_lcm(periods->p[e->x.p->pos-1], size, &periods->p[e->x.p->pos-1]);
179 value_clear(size);
180 is_periodic = true;
182 offset = type_offset(e->x.p);
183 for (i = e->x.p->size-1; i >= offset; --i)
184 is_periodic = evalue_is_periodic(&e->x.p->arr[i], periods) || is_periodic;
185 return is_periodic;
188 static ex evalue2lst(const evalue *e, const exvector& vars,
189 exvector& extravar, vector<typed_evalue>& expr,
190 Vector *periods)
192 Vector *coset = Vector_Alloc(periods->Size);
193 lst list;
194 for (;;) {
195 int i;
196 list.append(evalue2ex_r(e, vars, extravar, expr, coset));
197 for (i = coset->Size-1; i >= 0; --i) {
198 value_increment(coset->p[i], coset->p[i]);
199 if (value_lt(coset->p[i], periods->p[i]))
200 break;
201 value_set_si(coset->p[i], 0);
203 if (i < 0)
204 break;
206 Vector_Free(coset);
207 return list;
210 ex evalue2ex(const evalue *e, const exvector& vars, exvector& floorvar,
211 Matrix **C, Vector **p)
213 vector<typed_evalue> expr;
214 Vector *periods = Vector_Alloc(vars.size());
215 assert(p);
216 assert(C);
217 for (int i = 0; i < periods->Size; ++i)
218 value_set_si(periods->p[i], 1);
219 if (evalue_is_periodic(e, periods)) {
220 *p = periods;
221 *C = NULL;
222 lst list;
223 return list;
224 } else {
225 Vector_Free(periods);
226 *p = NULL;
227 ex poly = evalue2ex_r(e, vars, floorvar, expr, NULL);
228 Matrix *M = setup_constraints(expr, vars.size());
229 *C = M;
230 return poly;
234 /* if the evalue is a relation, we use the relation to cut off the
235 * the edges of the domain
237 static Polyhedron *relation_domain(Polyhedron *D, evalue *fr, unsigned MaxRays)
239 assert(value_zero_p(fr->d));
240 assert(fr->x.p->type == fractional);
241 assert(fr->x.p->size == 3);
242 Matrix *T = Matrix_Alloc(2, D->Dimension+1);
243 value_set_si(T->p[1][D->Dimension], 1);
245 /* convert argument of fractional to polylib */
246 /* the argument is assumed to be linear */
247 evalue *p = &fr->x.p->arr[0];
248 evalue_denom(p, &T->p[1][D->Dimension]);
249 for (;value_zero_p(p->d); p = &p->x.p->arr[0]) {
250 assert(p->x.p->type == polynomial);
251 assert(p->x.p->size == 2);
252 assert(value_notzero_p(p->x.p->arr[1].d));
253 int pos = p->x.p->pos - 1;
254 value_assign(T->p[0][pos], p->x.p->arr[1].x.n);
255 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
256 value_division(T->p[0][pos], T->p[0][pos], p->x.p->arr[1].d);
258 int pos = D->Dimension;
259 value_assign(T->p[0][pos], p->x.n);
260 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
261 value_division(T->p[0][pos], T->p[0][pos], p->d);
263 Polyhedron *E = NULL;
264 for (Polyhedron *P = D; P; P = P->next) {
265 Polyhedron *I = Polyhedron_Image(P, T, MaxRays);
266 I = DomainConstraintSimplify(I, MaxRays);
267 Polyhedron *R = Polyhedron_Preimage(I, T, MaxRays);
268 Polyhedron_Free(I);
269 Polyhedron *next = P->next;
270 P->next = NULL;
271 Polyhedron *S = DomainIntersection(P, R, MaxRays);
272 Polyhedron_Free(R);
273 P->next = next;
274 if (emptyQ2(S))
275 Polyhedron_Free(S);
276 else
277 E = DomainConcat(S, E);
279 Matrix_Free(T);
281 return E;
284 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
285 Polyhedron *ctx, const exvector& params)
287 piecewise_lst *pl;
288 barvinok_options *options = barvinok_options_new_with_defaults();
289 pl = evalue_bernstein_coefficients(pl_all, e, ctx, params, options);
290 barvinok_options_free(options);
291 return pl;
294 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
295 Polyhedron *D, const ex& poly,
296 Polyhedron *ctx,
297 const exvector& params, const exvector& floorvar,
298 barvinok_options *options);
300 /* Recursively apply Bernstein expansion on P, optimizing over dims[i]
301 * variables in each level. The context ctx is assumed to have been adapted
302 * to the first level in the recursion.
304 static piecewise_lst *bernstein_coefficients_recursive(piecewise_lst *pl_all,
305 Polyhedron *P, const vector<int>& dims, const ex& poly,
306 Polyhedron *ctx,
307 const exvector& params, const exvector& vars,
308 barvinok_options *options)
310 assert(dims.size() > 0);
311 assert(ctx->Dimension == P->Dimension - dims[0]);
312 piecewise_lst *pl;
313 unsigned done = 0;
314 for (int j = 0; j < dims.size(); ++j) {
315 exvector pl_vars;
316 pl_vars.insert(pl_vars.end(), vars.begin()+done, vars.begin()+done+dims[j]);
317 exvector pl_params;
318 pl_params.insert(pl_params.end(), vars.begin()+done+dims[j], vars.end());
319 pl_params.insert(pl_params.end(), params.begin(), params.end());
321 if (!j)
322 pl = bernstein_coefficients(NULL, P, poly, ctx,
323 pl_params, pl_vars, options);
324 else {
325 piecewise_lst *new_pl = NULL;
326 Polyhedron *U = Universe_Polyhedron(pl_params.size());
328 for (int i = 0; i < pl->list.size(); ++i) {
329 Polyhedron *D = pl->list[i].first;
330 lst polys = pl->list[i].second;
331 new_pl = bernstein_coefficients(new_pl, D, polys, U, pl_params,
332 pl_vars, options);
335 Polyhedron_Free(U);
337 delete pl;
338 pl = new_pl;
341 done += dims[j];
344 if (!pl_all)
345 pl_all = pl;
346 else {
347 pl_all->combine(*pl);
348 delete pl;
351 return pl_all;
354 static piecewise_lst *bernstein_coefficients_full_recurse(piecewise_lst *pl_all,
355 Polyhedron *P, const ex& poly,
356 Polyhedron *ctx,
357 const exvector& params, const exvector& vars,
358 barvinok_options *options)
360 Polyhedron *CR = align_context(ctx, P->Dimension-1, options->MaxRays);
361 vector<int> dims(vars.size());
362 for (int i = 0; i < dims.size(); ++i)
363 dims[i] = 1;
364 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, poly, CR,
365 params, vars, options);
366 Polyhedron_Free(CR);
368 return pl_all;
371 static piecewise_lst *bernstein_coefficients_product(piecewise_lst *pl_all,
372 Polyhedron *F, Matrix *T, const ex& poly,
373 Polyhedron *ctx,
374 const exvector& params, const exvector& vars,
375 barvinok_options *options)
377 if (emptyQ2(ctx))
378 return pl_all;
379 for (Polyhedron *G = F; G; G = G->next)
380 if (emptyQ2(G))
381 return pl_all;
383 unsigned nparam = params.size();
384 unsigned nvar = vars.size();
385 unsigned constraints;
386 unsigned factors;
387 Polyhedron *C = NULL;
389 /* More context constraints */
390 if (F->Dimension == ctx->Dimension) {
391 C = F;
392 F = F->next;
394 assert(F);
395 assert(F->next);
397 Matrix *M;
398 Polyhedron *P;
399 Polyhedron *PC;
400 M = Matrix_Alloc(F->NbConstraints, 1+nvar+nparam+1);
401 for (int i = 0; i < F->NbConstraints; ++i) {
402 Vector_Copy(F->Constraint[i], M->p[i], 1+F->Dimension-nparam);
403 Vector_Copy(F->Constraint[i]+1+F->Dimension-nparam,
404 M->p[i]+1+nvar, nparam+1);
406 P = Constraints2Polyhedron(M, options->MaxRays);
407 Matrix_Free(M);
409 factors = 1;
410 constraints = C ? C->NbConstraints : 0;
411 constraints += ctx->NbConstraints;
412 for (Polyhedron *G = F->next; G; G = G->next) {
413 constraints += G->NbConstraints;
414 ++factors;
417 unsigned total_var = nvar-(F->Dimension-nparam);
418 unsigned skip = 0;
419 unsigned c = 0;
420 M = Matrix_Alloc(constraints, 1+total_var+nparam+1);
421 for (Polyhedron *G = F->next; G; G = G->next) {
422 unsigned this_var = G->Dimension - nparam;
423 for (int i = 0; i < G->NbConstraints; ++i) {
424 value_assign(M->p[c+i][0], G->Constraint[i][0]);
425 Vector_Copy(G->Constraint[i]+1, M->p[c+i]+1+skip, this_var);
426 Vector_Copy(G->Constraint[i]+1+this_var, M->p[c+i]+1+total_var,
427 nparam+1);
429 c += G->NbConstraints;
430 skip += this_var;
432 assert(skip == total_var);
433 if (C) {
434 for (int i = 0; i < C->NbConstraints; ++i) {
435 value_assign(M->p[c+i][0], C->Constraint[i][0]);
436 Vector_Copy(C->Constraint[i]+1, M->p[c+i]+1+total_var,
437 nparam+1);
439 c += C->NbConstraints;
441 for (int i = 0; i < ctx->NbConstraints; ++i) {
442 value_assign(M->p[c+i][0], ctx->Constraint[i][0]);
443 Vector_Copy(ctx->Constraint[i]+1, M->p[c+i]+1+total_var, nparam+1);
445 PC = Constraints2Polyhedron(M, options->MaxRays);
446 Matrix_Free(M);
448 exvector newvars = constructVariableVector(nvar, "t");
449 matrix subs(1, nvar);
450 for (int i = 0; i < nvar; ++i)
451 for (int j = 0; j < nvar; ++j)
452 subs(0,i) += value2numeric(T->p[i][j]) * newvars[j];
454 ex newpoly = replaceVariablesInPolynomial(poly, vars, subs);
456 vector<int> dims(factors);
457 for (int i = 0; F; ++i, F = F->next)
458 dims[i] = F->Dimension-nparam;
460 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, newpoly, PC,
461 params, newvars, options);
463 Polyhedron_Free(P);
464 Polyhedron_Free(PC);
466 return pl_all;
469 static piecewise_lst *bernstein_coefficients_polyhedron(piecewise_lst *pl_all,
470 Polyhedron *P, const ex& poly,
471 Polyhedron *ctx,
472 const exvector& params, const exvector& floorvar,
473 barvinok_options *options)
475 if (Polyhedron_is_unbounded(P, ctx->Dimension, options->MaxRays)) {
476 fprintf(stderr, "warning: unbounded domain skipped\n");
477 Polyhedron_Print(stderr, P_VALUE_FMT, P);
478 return pl_all;
481 if (options->bernstein_recurse & BV_BERNSTEIN_FACTORS) {
482 Matrix *T = NULL;
483 Polyhedron *F = Polyhedron_Factor(P, ctx->Dimension, &T, options->MaxRays);
484 if (F) {
485 pl_all = bernstein_coefficients_product(pl_all, F, T, poly, ctx, params,
486 floorvar, options);
487 Domain_Free(F);
488 Matrix_Free(T);
489 return pl_all;
492 if (floorvar.size() > 1 &&
493 options->bernstein_recurse & BV_BERNSTEIN_INTERVALS)
494 return bernstein_coefficients_full_recurse(pl_all, P, poly, ctx,
495 params, floorvar, options);
497 unsigned PP_MaxRays = options->MaxRays;
498 if (PP_MaxRays & POL_NO_DUAL)
499 PP_MaxRays = 0;
501 Param_Polyhedron *PP = Polyhedron2Param_Domain(P, ctx, PP_MaxRays);
502 assert(PP);
503 piecewise_lst *pl = new piecewise_lst(params, options->bernstein_optimize);
504 for (Param_Domain *Q = PP->D; Q; Q = Q->next) {
505 matrix VM = domainVertices(PP, Q, params);
506 lst coeffs = bernsteinExpansion(VM, poly, floorvar, params);
507 pl->add_guarded_lst(Polyhedron_Copy(Q->Domain), coeffs);
509 Param_Polyhedron_Free(PP);
510 if (!pl_all)
511 pl_all = pl;
512 else {
513 pl_all->combine(*pl);
514 delete pl;
517 return pl_all;
520 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
521 Polyhedron *D, const ex& poly,
522 Polyhedron *ctx,
523 const exvector& params, const exvector& floorvar,
524 barvinok_options *options)
526 if (!D->next && emptyQ2(D))
527 return pl_all;
529 for (Polyhedron *P = D; P; P = P->next) {
530 /* This shouldn't happen */
531 if (emptyQ2(P))
532 continue;
533 Polyhedron *next = P->next;
534 P->next = NULL;
535 pl_all = bernstein_coefficients_polyhedron(pl_all, P, poly, ctx,
536 params, floorvar, options);
537 P->next = next;
539 return pl_all;
542 /* Compute the coefficients of the polynomial corresponding to each coset
543 * on its own domain. This allows us to cut the domain on multiples of
544 * the period.
545 * To perform the cutting for a coset "i mod n = c" we map the domain
546 * to the quotient space trough "i = i' n + c", simplify the constraints
547 * (implicitly) and then map back to the original space.
549 static piecewise_lst *bernstein_coefficients_periodic(piecewise_lst *pl_all,
550 Polyhedron *D, const evalue *e,
551 Polyhedron *ctx, const exvector& vars,
552 const exvector& params, Vector *periods,
553 barvinok_options *options)
555 assert(D->Dimension == periods->Size);
556 Matrix *T = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
557 Matrix *T2 = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
558 Vector *coset = Vector_Alloc(periods->Size);
559 exvector extravar;
560 vector<typed_evalue> expr;
561 exvector allvars = vars;
562 allvars.insert(allvars.end(), params.begin(), params.end());
564 value_set_si(T2->p[D->Dimension][D->Dimension], 1);
565 for (int i = 0; i < D->Dimension; ++i) {
566 value_assign(T->p[i][i], periods->p[i]);
567 value_lcm(T2->p[D->Dimension][D->Dimension], periods->p[i],
568 &T2->p[D->Dimension][D->Dimension]);
570 value_set_si(T->p[D->Dimension][D->Dimension], 1);
571 for (int i = 0; i < D->Dimension; ++i)
572 value_division(T2->p[i][i], T2->p[D->Dimension][D->Dimension],
573 periods->p[i]);
574 for (;;) {
575 int i;
576 ex poly = evalue2ex_r(e, allvars, extravar, expr, coset);
577 assert(extravar.size() == 0);
578 assert(expr.size() == 0);
579 Polyhedron *E = DomainPreimage(D, T, options->MaxRays);
580 Polyhedron *F = DomainPreimage(E, T2, options->MaxRays);
581 Polyhedron_Free(E);
582 if (!emptyQ2(F))
583 pl_all = bernstein_coefficients(pl_all, F, poly, ctx, params,
584 vars, options);
585 Polyhedron_Free(F);
586 for (i = D->Dimension-1; i >= 0; --i) {
587 value_increment(coset->p[i], coset->p[i]);
588 value_increment(T->p[i][D->Dimension], T->p[i][D->Dimension]);
589 value_subtract(T2->p[i][D->Dimension], T2->p[i][D->Dimension],
590 T2->p[i][i]);
591 if (value_lt(coset->p[i], periods->p[i]))
592 break;
593 value_set_si(coset->p[i], 0);
594 value_set_si(T->p[i][D->Dimension], 0);
595 value_set_si(T2->p[i][D->Dimension], 0);
597 if (i < 0)
598 break;
600 Vector_Free(coset);
601 Matrix_Free(T);
602 Matrix_Free(T2);
603 return pl_all;
606 piecewise_lst *bernstein_coefficients_relation(piecewise_lst *pl_all,
607 Polyhedron *D, evalue *EP, Polyhedron *ctx,
608 const exvector& allvars, const exvector& vars,
609 const exvector& params, barvinok_options *options)
611 if (value_zero_p(EP->d) && EP->x.p->type == relation) {
612 Polyhedron *E = relation_domain(D, &EP->x.p->arr[0], options->MaxRays);
613 pl_all = bernstein_coefficients_relation(pl_all, E, &EP->x.p->arr[1],
614 ctx, allvars, vars, params,
615 options);
616 Domain_Free(E);
617 /* In principle, we could cut off the edges of this domain too */
618 if (EP->x.p->size > 2)
619 pl_all = bernstein_coefficients_relation(pl_all, D, &EP->x.p->arr[2],
620 ctx, allvars, vars, params,
621 options);
622 return pl_all;
625 Matrix *M;
626 exvector floorvar;
627 Vector *periods;
628 ex poly = evalue2ex(EP, allvars, floorvar, &M, &periods);
629 floorvar.insert(floorvar.end(), vars.begin(), vars.end());
630 Polyhedron *E = D;
631 if (M) {
632 Polyhedron *AE = align_context(D, M->NbColumns-2, options->MaxRays);
633 E = DomainAddConstraints(AE, M, options->MaxRays);
634 Matrix_Free(M);
635 Domain_Free(AE);
637 if (is_exactly_a<fail>(poly)) {
638 delete pl_all;
639 return NULL;
641 if (periods)
642 pl_all = bernstein_coefficients_periodic(pl_all, E, EP, ctx, vars,
643 params, periods, options);
644 else
645 pl_all = bernstein_coefficients(pl_all, E, poly, ctx, params,
646 floorvar, options);
647 if (periods)
648 Vector_Free(periods);
649 if (D != E)
650 Domain_Free(E);
652 return pl_all;
655 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
656 Polyhedron *ctx, const exvector& params,
657 barvinok_options *options)
659 unsigned nparam = ctx->Dimension;
660 if (EVALUE_IS_ZERO(*e))
661 return pl_all;
662 assert(value_zero_p(e->d));
663 assert(e->x.p->type == partition);
664 assert(e->x.p->size >= 2);
665 unsigned nvars = EVALUE_DOMAIN(e->x.p->arr[0])->Dimension - nparam;
667 exvector vars = constructVariableVector(nvars, "v");
668 exvector allvars = vars;
669 allvars.insert(allvars.end(), params.begin(), params.end());
671 for (int i = 0; i < e->x.p->size/2; ++i) {
672 pl_all = bernstein_coefficients_relation(pl_all,
673 EVALUE_DOMAIN(e->x.p->arr[2*i]), &e->x.p->arr[2*i+1],
674 ctx, allvars, vars, params, options);
676 return pl_all;