gen_fun: store terms in a set rather than in a vector
[barvinok.git] / genfun.cc
blob864904e1d0dbba70f2eeec8d7990849c272e326a
1 #include <iostream>
2 #include <vector>
3 #include <assert.h>
4 #include "config.h"
5 #include <barvinok/genfun.h>
6 #include <barvinok/barvinok.h>
7 #include "conversion.h"
8 #include "genfun_constructor.h"
9 #include "mat_util.h"
11 using std::cout;
12 using std::cerr;
13 using std::endl;
14 using std::pair;
15 using std::vector;
17 bool short_rat_lex_smaller_denominator::operator()(const short_rat* r1,
18 const short_rat* r2) const
20 return lex_cmp(r1->d.power, r2->d.power) < 0;
23 static void lex_order_terms(struct short_rat* rat)
25 for (int i = 0; i < rat->n.power.NumRows(); ++i) {
26 int m = i;
27 for (int j = i+1; j < rat->n.power.NumRows(); ++j)
28 if (lex_cmp(rat->n.power[j], rat->n.power[m]) < 0)
29 m = j;
30 if (m != i) {
31 vec_ZZ tmp = rat->n.power[m];
32 rat->n.power[m] = rat->n.power[i];
33 rat->n.power[i] = tmp;
34 QQ tmp_coeff = rat->n.coeff[m];
35 rat->n.coeff[m] = rat->n.coeff[i];
36 rat->n.coeff[i] = tmp_coeff;
41 short_rat::short_rat(Value c)
43 n.coeff.SetLength(1);
44 value2zz(c, n.coeff[0].n);
45 n.coeff[0].d = 1;
46 n.power.SetDims(1, 0);
47 d.power.SetDims(0, 0);
50 short_rat::short_rat(const QQ& c, const vec_ZZ& num, const mat_ZZ& den)
52 n.coeff.SetLength(1);
53 ZZ g = GCD(c.n, c.d);
54 n.coeff[0].n = c.n/g;
55 n.coeff[0].d = c.d/g;
56 n.power.SetDims(1, num.length());
57 n.power[0] = num;
58 d.power = den;
59 normalize();
62 void short_rat::normalize()
64 /* Make all powers in denominator lexico-positive */
65 for (int i = 0; i < d.power.NumRows(); ++i) {
66 int j;
67 for (j = 0; j < d.power.NumCols(); ++j)
68 if (d.power[i][j] != 0)
69 break;
70 assert(j < d.power.NumCols());
71 if (d.power[i][j] < 0) {
72 d.power[i] = -d.power[i];
73 for (int k = 0; k < n.coeff.length(); ++k) {
74 n.coeff[k].n = -n.coeff[k].n;
75 n.power[k] += d.power[i];
80 /* Order powers in denominator */
81 lex_order_rows(d.power);
84 void short_rat::add(short_rat *r)
86 for (int i = 0; i < r->n.power.NumRows(); ++i) {
87 int len = n.coeff.length();
88 int j;
89 for (j = 0; j < len; ++j)
90 if (r->n.power[i] == n.power[j])
91 break;
92 if (j < len) {
93 n.coeff[j] += r->n.coeff[i];
94 if (n.coeff[j].n == 0) {
95 if (j < len-1) {
96 n.power[j] = n.power[len-1];
97 n.coeff[j] = n.coeff[len-1];
99 int dim = n.power.NumCols();
100 n.coeff.SetLength(len-1);
101 n.power.SetDims(len-1, dim);
103 } else {
104 int dim = n.power.NumCols();
105 n.coeff.SetLength(len+1);
106 n.power.SetDims(len+1, dim);
107 n.coeff[len] = r->n.coeff[i];
108 n.power[len] = r->n.power[i];
113 bool short_rat::reduced()
115 int dim = n.power.NumCols();
116 lex_order_terms(this);
117 if (n.power.NumRows() % 2 == 0) {
118 if (n.coeff[0].n == -n.coeff[1].n &&
119 n.coeff[0].d == n.coeff[1].d) {
120 vec_ZZ step = n.power[1] - n.power[0];
121 int k;
122 for (k = 1; k < n.power.NumRows()/2; ++k) {
123 if (n.coeff[2*k].n != -n.coeff[2*k+1].n ||
124 n.coeff[2*k].d != n.coeff[2*k+1].d)
125 break;
126 if (step != n.power[2*k+1] - n.power[2*k])
127 break;
129 if (k == n.power.NumRows()/2) {
130 for (k = 0; k < d.power.NumRows(); ++k)
131 if (d.power[k] == step)
132 break;
133 if (k < d.power.NumRows()) {
134 for (++k; k < d.power.NumRows(); ++k)
135 d.power[k-1] = d.power[k];
136 d.power.SetDims(k-1, dim);
137 for (k = 1; k < n.power.NumRows()/2; ++k) {
138 n.coeff[k] = n.coeff[2*k];
139 n.power[k] = n.power[2*k];
141 n.coeff.SetLength(k);
142 n.power.SetDims(k, dim);
143 return true;
148 return false;
151 gen_fun::gen_fun(Value c)
153 short_rat *r = new short_rat(c);
154 context = Universe_Polyhedron(0);
155 term.insert(r);
158 void gen_fun::add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den)
160 if (c.n == 0)
161 return;
163 short_rat * r = new short_rat(c, num, den);
165 short_rat_list::iterator i = term.find(r);
166 while (i != term.end()) {
167 (*i)->add(r);
168 if ((*i)->n.coeff.length() == 0) {
169 delete *i;
170 term.erase(i);
171 } else if ((*i)->reduced()) {
172 delete r;
173 /* we've modified term[i], so remove it
174 * and add it back again
176 r = *i;
177 term.erase(i);
178 i = term.find(r);
179 continue;
181 delete r;
182 return;
185 term.insert(r);
188 void gen_fun::add(const QQ& c, const gen_fun *gf)
190 QQ p;
191 for (short_rat_list::iterator i = gf->term.begin(); i != gf->term.end(); ++i) {
192 for (int j = 0; j < (*i)->n.power.NumRows(); ++j) {
193 p = c;
194 p *= (*i)->n.coeff[j];
195 add(p, (*i)->n.power[j], (*i)->d.power);
200 static void split_param_compression(Matrix *CP, mat_ZZ& map, vec_ZZ& offset)
202 Matrix *T = Transpose(CP);
203 matrix2zz(T, map, T->NbRows-1, T->NbColumns-1);
204 values2zz(T->p[T->NbRows-1], offset, T->NbColumns-1);
205 Matrix_Free(T);
209 * Perform the substitution specified by CP
211 * CP is a homogeneous matrix that maps a set of "compressed parameters"
212 * to the original set of parameters.
214 * This function is applied to a gen_fun computed with the compressed parameters
215 * and adapts it to refer to the original parameters.
217 * That is, if y are the compressed parameters and x = A y + b are the original
218 * parameters, then we want the coefficient of the monomial t^y in the original
219 * generating function to be the coefficient of the monomial u^x in the resulting
220 * generating function.
221 * The original generating function has the form
223 * a t^m/(1-t^n) = a t^m + a t^{m+n} + a t^{m+2n} + ...
225 * Since each term t^y should correspond to a term u^x, with x = A y + b, we want
227 * a u^{A m + b} + a u^{A (m+n) + b} + a u^{A (m+2n) +b} + ... =
229 * = a u^{A m + b}/(1-u^{A n})
231 * Therefore, we multiply the powers m and n in both numerator and denominator by A
232 * and add b to the power in the numerator.
233 * Since the above powers are stored as row vectors m^T and n^T,
234 * we compute, say, m'^T = m^T A^T to obtain m' = A m.
236 * The pair (map, offset) contains the same information as CP.
237 * map is the transpose of the linear part of CP, while offset is the constant part.
239 void gen_fun::substitute(Matrix *CP)
241 mat_ZZ map;
242 vec_ZZ offset;
243 split_param_compression(CP, map, offset);
244 Polyhedron *C = Polyhedron_Image(context, CP, 0);
245 Polyhedron_Free(context);
246 context = C;
247 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
248 (*i)->d.power *= map;
249 (*i)->n.power *= map;
250 for (int j = 0; j < (*i)->n.power.NumRows(); ++j)
251 (*i)->n.power[j] += offset;
255 struct cone {
256 int *pos;
257 vector<pair<Vector *, QQ> > vertices;
258 cone(int *pos) : pos(pos) {}
261 #ifndef HAVE_COMPRESS_PARMS
262 static Matrix *compress_parms(Matrix *M, unsigned nparam)
264 assert(0);
266 #endif
268 struct parallel_polytopes {
269 gf_base *red;
270 Polyhedron *context;
271 Matrix *Constraints;
272 Matrix *CP, *T;
273 int dim;
274 int nparam;
275 vector<cone> cones;
276 barvinok_options *options;
278 parallel_polytopes(int n, Polyhedron *context, int nparam,
279 barvinok_options *options) :
280 context(context), dim(-1), nparam(nparam),
281 options(options) {
282 red = NULL;
283 Constraints = NULL;
284 CP = NULL;
285 T = NULL;
287 bool add(const QQ& c, Polyhedron *P) {
288 int i;
290 for (i = 0; i < P->NbEq; ++i)
291 if (First_Non_Zero(P->Constraint[i]+1,
292 P->Dimension-nparam) == -1)
293 break;
294 if (i < P->NbEq)
295 return false;
297 Polyhedron *Q = remove_equalities_p(Polyhedron_Copy(P), P->Dimension-nparam,
298 NULL);
299 POL_ENSURE_VERTICES(Q);
300 if (emptyQ(Q)) {
301 Polyhedron_Free(Q);
302 return true;
305 if (Q->NbEq != 0) {
306 Polyhedron *R;
307 if (!CP) {
308 Matrix *M;
309 M = Matrix_Alloc(Q->NbEq, Q->Dimension+2);
310 Vector_Copy(Q->Constraint[0], M->p[0], Q->NbEq * (Q->Dimension+2));
311 CP = compress_parms(M, nparam);
312 T = align_matrix(CP, Q->Dimension+1);
313 Matrix_Free(M);
315 R = Polyhedron_Preimage(Q, T, options->MaxRays);
316 Polyhedron_Free(Q);
317 Q = remove_equalities_p(R, R->Dimension-nparam, NULL);
319 assert(Q->NbEq == 0);
321 if (First_Non_Zero(Q->Constraint[Q->NbConstraints-1]+1, Q->Dimension) == -1)
322 Q->NbConstraints--;
324 if (!Constraints) {
325 dim = Q->Dimension;
326 red = gf_base::create(Polyhedron_Copy(context), dim, nparam, options);
327 red->base->init(Q);
328 Constraints = Matrix_Alloc(Q->NbConstraints, Q->Dimension);
329 for (int i = 0; i < Q->NbConstraints; ++i) {
330 Vector_Copy(Q->Constraint[i]+1, Constraints->p[i], Q->Dimension);
332 } else {
333 assert(Q->Dimension == dim);
334 for (int i = 0; i < Q->NbConstraints; ++i) {
335 int j;
336 for (j = 0; j < Constraints->NbRows; ++j)
337 if (Vector_Equal(Q->Constraint[i]+1, Constraints->p[j],
338 Q->Dimension))
339 break;
340 assert(j < Constraints->NbRows);
344 for (int i = 0; i < Q->NbRays; ++i) {
345 if (!value_pos_p(Q->Ray[i][dim+1]))
346 continue;
348 Polyhedron *C = supporting_cone(Q, i);
350 if (First_Non_Zero(C->Constraint[C->NbConstraints-1]+1,
351 C->Dimension) == -1)
352 C->NbConstraints--;
354 int *pos = new int[1+C->NbConstraints];
355 pos[0] = C->NbConstraints;
356 int l = 0;
357 for (int k = 0; k < Constraints->NbRows; ++k) {
358 for (int j = 0; j < C->NbConstraints; ++j) {
359 if (Vector_Equal(C->Constraint[j]+1, Constraints->p[k],
360 C->Dimension)) {
361 pos[1+l++] = k;
362 break;
366 assert(l == C->NbConstraints);
368 int j;
369 for (j = 0; j < cones.size(); ++j)
370 if (!memcmp(pos, cones[j].pos, (1+C->NbConstraints)*sizeof(int)))
371 break;
372 if (j == cones.size())
373 cones.push_back(cone(pos));
374 else
375 delete [] pos;
377 Polyhedron_Free(C);
379 int k;
380 for (k = 0; k < cones[j].vertices.size(); ++k)
381 if (Vector_Equal(Q->Ray[i]+1, cones[j].vertices[k].first->p,
382 Q->Dimension+1))
383 break;
385 if (k == cones[j].vertices.size()) {
386 Vector *vertex = Vector_Alloc(Q->Dimension+1);
387 Vector_Copy(Q->Ray[i]+1, vertex->p, Q->Dimension+1);
388 cones[j].vertices.push_back(pair<Vector*,QQ>(vertex, c));
389 } else {
390 cones[j].vertices[k].second += c;
391 if (cones[j].vertices[k].second.n == 0) {
392 int size = cones[j].vertices.size();
393 Vector_Free(cones[j].vertices[k].first);
394 if (k < size-1)
395 cones[j].vertices[k] = cones[j].vertices[size-1];
396 cones[j].vertices.pop_back();
401 Polyhedron_Free(Q);
402 return true;
404 gen_fun *compute() {
405 if (!red)
406 return NULL;
407 for (int i = 0; i < cones.size(); ++i) {
408 Matrix *M = Matrix_Alloc(cones[i].pos[0], 1+Constraints->NbColumns+1);
409 Polyhedron *Cone;
410 for (int j = 0; j <cones[i].pos[0]; ++j) {
411 value_set_si(M->p[j][0], 1);
412 Vector_Copy(Constraints->p[cones[i].pos[1+j]], M->p[j]+1,
413 Constraints->NbColumns);
415 Cone = Constraints2Polyhedron(M, options->MaxRays);
416 Matrix_Free(M);
417 for (int j = 0; j < cones[i].vertices.size(); ++j) {
418 red->base->do_vertex_cone(cones[i].vertices[j].second,
419 Polyhedron_Copy(Cone),
420 cones[i].vertices[j].first->p, options);
422 Polyhedron_Free(Cone);
424 if (CP)
425 red->gf->substitute(CP);
426 return red->gf;
428 void print(std::ostream& os) const {
429 for (int i = 0; i < cones.size(); ++i) {
430 os << "[";
431 for (int j = 0; j < cones[i].pos[0]; ++j) {
432 if (j)
433 os << ", ";
434 os << cones[i].pos[1+j];
436 os << "]" << endl;
437 for (int j = 0; j < cones[i].vertices.size(); ++j) {
438 Vector_Print(stderr, P_VALUE_FMT, cones[i].vertices[j].first);
439 os << cones[i].vertices[j].second << endl;
443 ~parallel_polytopes() {
444 for (int i = 0; i < cones.size(); ++i) {
445 delete [] cones[i].pos;
446 for (int j = 0; j < cones[i].vertices.size(); ++j)
447 Vector_Free(cones[i].vertices[j].first);
449 if (Constraints)
450 Matrix_Free(Constraints);
451 if (CP)
452 Matrix_Free(CP);
453 if (T)
454 Matrix_Free(T);
455 delete red;
459 gen_fun *gen_fun::Hadamard_product(const gen_fun *gf, barvinok_options *options)
461 QQ one(1, 1);
462 Polyhedron *C = DomainIntersection(context, gf->context, options->MaxRays);
463 Polyhedron *U = Universe_Polyhedron(C->Dimension);
464 gen_fun *sum = new gen_fun(C);
465 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
466 for (short_rat_list::iterator i2 = gf->term.begin(); i2 != gf->term.end();
467 ++i2) {
468 int d = (*i)->d.power.NumCols();
469 int k1 = (*i)->d.power.NumRows();
470 int k2 = (*i2)->d.power.NumRows();
471 assert((*i)->d.power.NumCols() == (*i2)->d.power.NumCols());
473 parallel_polytopes pp((*i)->n.power.NumRows() *
474 (*i2)->n.power.NumRows(),
475 sum->context, d, options);
477 for (int j = 0; j < (*i)->n.power.NumRows(); ++j) {
478 for (int j2 = 0; j2 < (*i2)->n.power.NumRows(); ++j2) {
479 Matrix *M = Matrix_Alloc(k1+k2+d+d, 1+k1+k2+d+1);
480 for (int k = 0; k < k1+k2; ++k) {
481 value_set_si(M->p[k][0], 1);
482 value_set_si(M->p[k][1+k], 1);
484 for (int k = 0; k < d; ++k) {
485 value_set_si(M->p[k1+k2+k][1+k1+k2+k], -1);
486 zz2value((*i)->n.power[j][k], M->p[k1+k2+k][1+k1+k2+d]);
487 for (int l = 0; l < k1; ++l)
488 zz2value((*i)->d.power[l][k], M->p[k1+k2+k][1+l]);
490 for (int k = 0; k < d; ++k) {
491 value_set_si(M->p[k1+k2+d+k][1+k1+k2+k], -1);
492 zz2value((*i2)->n.power[j2][k],
493 M->p[k1+k2+d+k][1+k1+k2+d]);
494 for (int l = 0; l < k2; ++l)
495 zz2value((*i2)->d.power[l][k],
496 M->p[k1+k2+d+k][1+k1+l]);
498 Polyhedron *P = Constraints2Polyhedron(M, options->MaxRays);
499 Matrix_Free(M);
501 QQ c = (*i)->n.coeff[j];
502 c *= (*i2)->n.coeff[j2];
503 if (!pp.add(c, P)) {
504 gen_fun *t = barvinok_series(P, U, options->MaxRays);
505 sum->add(c, t);
506 delete t;
509 Polyhedron_Free(P);
513 gen_fun *t = pp.compute();
514 if (t) {
515 sum->add(one, t);
516 delete t;
520 Polyhedron_Free(U);
521 return sum;
524 void gen_fun::add_union(gen_fun *gf, barvinok_options *options)
526 QQ one(1, 1), mone(-1, 1);
528 gen_fun *hp = Hadamard_product(gf, options);
529 add(one, gf);
530 add(mone, hp);
531 delete hp;
534 static void Polyhedron_Shift(Polyhedron *P, Vector *offset)
536 Value tmp;
537 value_init(tmp);
538 for (int i = 0; i < P->NbConstraints; ++i) {
539 Inner_Product(P->Constraint[i]+1, offset->p, P->Dimension, &tmp);
540 value_subtract(P->Constraint[i][1+P->Dimension],
541 P->Constraint[i][1+P->Dimension], tmp);
543 for (int i = 0; i < P->NbRays; ++i) {
544 if (value_notone_p(P->Ray[i][0]))
545 continue;
546 if (value_zero_p(P->Ray[i][1+P->Dimension]))
547 continue;
548 Vector_Combine(P->Ray[i]+1, offset->p, P->Ray[i]+1,
549 P->Ray[i][0], P->Ray[i][1+P->Dimension], P->Dimension);
551 value_clear(tmp);
554 void gen_fun::shift(const vec_ZZ& offset)
556 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
557 for (int j = 0; j < (*i)->n.power.NumRows(); ++j)
558 (*i)->n.power[j] += offset;
560 Vector *v = Vector_Alloc(offset.length());
561 zz2values(offset, v->p);
562 Polyhedron_Shift(context, v);
563 Vector_Free(v);
566 /* Divide the generating functin by 1/(1-z^power).
567 * The effect on the corresponding explicit function f(x) is
568 * f'(x) = \sum_{i=0}^\infty f(x - i * power)
570 void gen_fun::divide(const vec_ZZ& power)
572 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
573 int r = (*i)->d.power.NumRows();
574 int c = (*i)->d.power.NumCols();
575 (*i)->d.power.SetDims(r+1, c);
576 (*i)->d.power[r] = power;
579 Vector *v = Vector_Alloc(1+power.length()+1);
580 value_set_si(v->p[0], 1);
581 zz2values(power, v->p+1);
582 Polyhedron *C = AddRays(v->p, 1, context, context->NbConstraints+1);
583 Vector_Free(v);
584 Polyhedron_Free(context);
585 context = C;
588 static void print_power(std::ostream& os, QQ& c, vec_ZZ& p,
589 unsigned int nparam, char **param_name)
591 bool first = true;
593 for (int i = 0; i < p.length(); ++i) {
594 if (p[i] == 0)
595 continue;
596 if (first) {
597 if (c.n == -1 && c.d == 1)
598 os << "-";
599 else if (c.n != 1 || c.d != 1) {
600 os << c.n;
601 if (c.d != 1)
602 os << " / " << c.d;
603 os << "*";
605 first = false;
606 } else
607 os << "*";
608 if (i < nparam)
609 os << param_name[i];
610 else
611 os << "x" << i;
612 if (p[i] == 1)
613 continue;
614 if (p[i] < 0)
615 os << "^(" << p[i] << ")";
616 else
617 os << "^" << p[i];
619 if (first) {
620 os << c.n;
621 if (c.d != 1)
622 os << " / " << c.d;
626 void gen_fun::print(std::ostream& os, unsigned int nparam, char **param_name) const
628 QQ mone(-1, 1);
629 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
630 if (i != term.begin())
631 os << " + ";
632 os << "(";
633 for (int j = 0; j < (*i)->n.coeff.length(); ++j) {
634 if (j != 0 && (*i)->n.coeff[j].n > 0)
635 os << "+";
636 print_power(os, (*i)->n.coeff[j], (*i)->n.power[j],
637 nparam, param_name);
639 os << ")/(";
640 for (int j = 0; j < (*i)->d.power.NumRows(); ++j) {
641 if (j != 0)
642 os << " * ";
643 os << "(1";
644 print_power(os, mone, (*i)->d.power[j], nparam, param_name);
645 os << ")";
647 os << ")";
651 gen_fun::operator evalue *() const
653 evalue *EP = NULL;
654 evalue factor;
655 value_init(factor.d);
656 value_init(factor.x.n);
657 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
658 unsigned nvar = (*i)->d.power.NumRows();
659 unsigned nparam = (*i)->d.power.NumCols();
660 Matrix *C = Matrix_Alloc(nparam + nvar, 1 + nvar + nparam + 1);
661 mat_ZZ& d = (*i)->d.power;
662 Polyhedron *U = context ? context : Universe_Polyhedron(nparam);
664 for (int j = 0; j < (*i)->n.coeff.length(); ++j) {
665 for (int r = 0; r < nparam; ++r) {
666 value_set_si(C->p[r][0], 0);
667 for (int c = 0; c < nvar; ++c) {
668 zz2value(d[c][r], C->p[r][1+c]);
670 Vector_Set(&C->p[r][1+nvar], 0, nparam);
671 value_set_si(C->p[r][1+nvar+r], -1);
672 zz2value((*i)->n.power[j][r], C->p[r][1+nvar+nparam]);
674 for (int r = 0; r < nvar; ++r) {
675 value_set_si(C->p[nparam+r][0], 1);
676 Vector_Set(&C->p[nparam+r][1], 0, nvar + nparam + 1);
677 value_set_si(C->p[nparam+r][1+r], 1);
679 Polyhedron *P = Constraints2Polyhedron(C, 0);
680 evalue *E = barvinok_enumerate_ev(P, U, 0);
681 Polyhedron_Free(P);
682 if (EVALUE_IS_ZERO(*E)) {
683 free_evalue_refs(E);
684 free(E);
685 continue;
687 zz2value((*i)->n.coeff[j].n, factor.x.n);
688 zz2value((*i)->n.coeff[j].d, factor.d);
689 emul(&factor, E);
691 Matrix_Print(stdout, P_VALUE_FMT, C);
692 char *test[] = { "A", "B", "C", "D", "E", "F", "G" };
693 print_evalue(stdout, E, test);
695 if (!EP)
696 EP = E;
697 else {
698 eadd(E, EP);
699 free_evalue_refs(E);
700 free(E);
703 Matrix_Free(C);
704 if (!context)
705 Polyhedron_Free(U);
707 value_clear(factor.d);
708 value_clear(factor.x.n);
709 return EP;
712 void gen_fun::coefficient(Value* params, Value* c) const
714 if (context && !in_domain(context, params)) {
715 value_set_si(*c, 0);
716 return;
719 evalue part;
720 value_init(part.d);
721 value_init(part.x.n);
722 evalue sum;
723 value_init(sum.d);
724 evalue_set_si(&sum, 0, 1);
725 Value tmp;
726 value_init(tmp);
728 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
729 unsigned nvar = (*i)->d.power.NumRows();
730 unsigned nparam = (*i)->d.power.NumCols();
731 Matrix *C = Matrix_Alloc(nparam + nvar, 1 + nvar + 1);
732 mat_ZZ& d = (*i)->d.power;
734 for (int j = 0; j < (*i)->n.coeff.length(); ++j) {
735 C->NbRows = nparam+nvar;
736 for (int r = 0; r < nparam; ++r) {
737 value_set_si(C->p[r][0], 0);
738 for (int c = 0; c < nvar; ++c) {
739 zz2value(d[c][r], C->p[r][1+c]);
741 zz2value((*i)->n.power[j][r], C->p[r][1+nvar]);
742 value_subtract(C->p[r][1+nvar], C->p[r][1+nvar], params[r]);
744 for (int r = 0; r < nvar; ++r) {
745 value_set_si(C->p[nparam+r][0], 1);
746 Vector_Set(&C->p[nparam+r][1], 0, nvar + 1);
747 value_set_si(C->p[nparam+r][1+r], 1);
749 Polyhedron *P = Constraints2Polyhedron(C, 0);
750 if (emptyQ(P)) {
751 Polyhedron_Free(P);
752 continue;
754 barvinok_count(P, &tmp, 0);
755 Polyhedron_Free(P);
756 if (value_zero_p(tmp))
757 continue;
758 zz2value((*i)->n.coeff[j].n, part.x.n);
759 zz2value((*i)->n.coeff[j].d, part.d);
760 value_multiply(part.x.n, part.x.n, tmp);
761 eadd(&part, &sum);
763 Matrix_Free(C);
766 assert(value_one_p(sum.d));
767 value_assign(*c, sum.x.n);
769 value_clear(tmp);
770 value_clear(part.d);
771 value_clear(part.x.n);
772 value_clear(sum.d);
773 value_clear(sum.x.n);
776 gen_fun *gen_fun::summate(int nvar, barvinok_options *options) const
778 int dim = context->Dimension;
779 int nparam = dim - nvar;
780 reducer *red;
781 gen_fun *gf;
783 if (options->incremental_specialization == 1) {
784 red = new partial_ireducer(Polyhedron_Project(context, nparam), dim, nparam);
785 } else
786 red = new partial_reducer(Polyhedron_Project(context, nparam), dim, nparam);
787 red->init(context);
788 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
789 for (int j = 0; j < (*i)->n.power.NumRows(); ++j)
790 red->reduce((*i)->n.coeff[j], (*i)->n.power[j], (*i)->d.power);
791 gf = red->get_gf();
792 delete red;
793 return gf;
796 /* returns true if the set was finite and false otherwise */
797 bool gen_fun::summate(Value *sum) const
799 if (term.size() == 0) {
800 value_set_si(*sum, 0);
801 return true;
804 int maxlen = 0;
805 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
806 if ((*i)->d.power.NumRows() > maxlen)
807 maxlen = (*i)->d.power.NumRows();
809 infinite_icounter cnt((*term.begin())->d.power.NumCols(), maxlen);
810 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
811 for (int j = 0; j < (*i)->n.power.NumRows(); ++j)
812 cnt.reduce((*i)->n.coeff[j], (*i)->n.power[j], (*i)->d.power);
814 for (int i = 1; i <= maxlen; ++i)
815 if (value_notzero_p(mpq_numref(cnt.count[i]))) {
816 value_set_si(*sum, -1);
817 return false;
820 assert(value_one_p(mpq_denref(cnt.count[0])));
821 value_assign(*sum, mpq_numref(cnt.count[0]));
822 return true;