3 #include <barvinok/barvinok.h>
4 #include <barvinok/util.h>
9 static Matrix
*extract_matrix(Polyhedron
*P
, unsigned dim
)
15 for (int i
= 0; i
< P
->NbConstraints
; ++i
)
16 if (value_notzero_p(P
->Constraint
[i
][1+dim
]) ||
17 value_notzero_p(P
->Constraint
[i
][1+dim
+1]))
20 A
= Matrix_Alloc(2, n_col
+2);
22 for (int i
= 0; i
< P
->NbConstraints
; ++i
) {
23 if (value_zero_p(P
->Constraint
[i
][1+dim
]) &&
24 value_zero_p(P
->Constraint
[i
][1+dim
+1]))
26 value_assign(A
->p
[0][n_col
], P
->Constraint
[i
][1+dim
]);
27 value_assign(A
->p
[1][n_col
], P
->Constraint
[i
][1+dim
+1]);
30 value_set_si(A
->p
[0][n_col
], 1);
31 value_set_si(A
->p
[1][n_col
+1], 1);
36 static int lex_sign(Value
*v
, int len
)
40 first
= First_Non_Zero(v
, len
);
41 return first
== -1 ? 0 : value_sign(v
[first
]);
44 static void set_pos(int pos
[4], int actual
, int wanted
)
49 pos
[actual
] = pos
[wanted
];
53 static Matrix
*normalize_matrix(Matrix
*A
, int pos
[4], int *n
)
56 Value tmp
, tmp2
, factor
;
63 T
= Matrix_Alloc(2, 2);
64 Extended_Euclid(A
->p
[0][pos
[0]], A
->p
[1][pos
[0]],
65 &T
->p
[0][0], &T
->p
[0][1], &tmp
);
66 value_division(T
->p
[1][0], A
->p
[1][pos
[0]], tmp
);
67 value_division(T
->p
[1][1], A
->p
[0][pos
[0]], tmp
);
68 value_oppose(T
->p
[0][0], T
->p
[0][0]);
69 value_oppose(T
->p
[0][1], T
->p
[0][1]);
70 value_oppose(T
->p
[1][0], T
->p
[1][0]);
72 B
= Matrix_Alloc(2, A
->NbColumns
);
73 Matrix_Product(T
, A
, B
);
76 /* Make zero in first position negative */
77 if (lex_sign(B
->p
[1], B
->NbColumns
) > 0) {
78 value_set_si(tmp
, -1);
79 Vector_Scale(B
->p
[1], B
->p
[1], tmp
, B
->NbColumns
);
82 /* First determine whether the matrix is of sign pattern I or II
86 assert(value_neg_p(B
->p
[1][pos
[1]]));
87 assert(value_pos_p(B
->p
[1][pos
[2]]));
89 value_set_si(factor
, 0);
90 for (int i
= 1; i
<= 2; ++i
) {
91 value_pdivision(tmp
, B
->p
[0][pos
[i
]], B
->p
[1][pos
[i
]]);
92 value_increment(tmp
, tmp
);
93 if (value_gt(tmp
, factor
))
94 value_assign(factor
, tmp
);
96 value_oppose(factor
, factor
);
98 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[0],
99 tmp
, factor
, B
->NbColumns
);
100 Vector_Exchange(B
->p
[0], B
->p
[1], B
->NbColumns
);
101 /* problems with three constraints are considered
102 * to be of sign pattern II
107 for (i
= 1; i
<= 3; ++i
)
108 if (value_zero_p(B
->p
[1][pos
[i
]]))
111 /* put zero in position 3 */
114 /* put positive one in position 1 */
115 for (i
= 1; i
<= 3; ++i
)
116 if (value_pos_p(B
->p
[1][pos
[i
]]))
120 value_set_si(factor
, 0);
121 for (int i
= 1; i
<= 2; ++i
) {
122 value_pdivision(tmp
, B
->p
[0][pos
[i
]], B
->p
[1][pos
[i
]]);
123 value_increment(tmp
, tmp
);
124 if (value_gt(tmp
, factor
))
125 value_assign(factor
, tmp
);
127 value_oppose(factor
, factor
);
128 value_set_si(tmp
, 1);
129 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[0], tmp
, factor
, B
->NbColumns
);
131 assert(value_notzero_p(B
->p
[0][pos
[3]]));
132 type
= value_pos_p(B
->p
[0][pos
[3]]) ? 1 : 2;
135 int sign
= lex_sign(B
->p
[1], B
->NbColumns
);
137 for (int i
= 1; i
<= 3; ++i
)
138 if (value_neg_p(B
->p
[1][pos
[i
]]))
140 assert(neg
== 1 || neg
== 2);
143 /* put negative one in position 1 */
144 for (i
= 1; i
<= 3; ++i
)
145 if (value_neg_p(B
->p
[1][pos
[i
]]))
149 value_set_si(factor
, 0);
150 for (int i
= 1; i
<= 3; ++i
) {
151 value_pdivision(tmp
, B
->p
[0][pos
[i
]], B
->p
[1][pos
[i
]]);
152 value_increment(tmp
, tmp
);
153 if (value_gt(tmp
, factor
))
154 value_assign(factor
, tmp
);
156 value_oppose(factor
, factor
);
157 value_set_si(tmp
, 1);
158 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[0],
159 tmp
, factor
, B
->NbColumns
);
160 Vector_Exchange(B
->p
[0], B
->p
[1], B
->NbColumns
);
164 /* put positive one in position 1 */
165 for (i
= 1; i
<= 3; ++i
)
166 if (value_pos_p(B
->p
[1][pos
[i
]]))
170 value_set_si(factor
, 0);
171 for (int i
= 1; i
<= 3; ++i
) {
172 value_pdivision(tmp
, B
->p
[0][pos
[i
]], B
->p
[1][pos
[i
]]);
173 value_increment(tmp
, tmp
);
174 if (value_gt(tmp
, factor
))
175 value_assign(factor
, tmp
);
177 value_oppose(factor
, factor
);
178 value_set_si(tmp
, 1);
179 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[0],
180 tmp
, factor
, B
->NbColumns
);
190 value_oppose(tmp
, B
->p
[0][pos
[1]]);
191 value_pdivision(factor
, tmp
, B
->p
[1][pos
[1]]);
192 value_oppose(tmp
, B
->p
[1][pos
[2]]);
193 value_pdivision(tmp
, tmp
, B
->p
[0][pos
[2]]);
194 if (value_zero_p(factor
) && value_zero_p(tmp
))
196 assert(value_zero_p(factor
) || value_zero_p(tmp
));
197 if (value_pos_p(factor
)) {
198 value_set_si(tmp
, 1);
199 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[0], tmp
, factor
, B
->NbColumns
);
200 if (value_zero_p(B
->p
[0][pos
[1]])) {
201 /* We will deal with this later */
202 assert(lex_sign(B
->p
[0], B
->NbColumns
) < 0);
205 value_set_si(factor
, 1);
206 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[1], tmp
, factor
, B
->NbColumns
);
207 if (value_zero_p(B
->p
[1][pos
[2]])) {
208 /* We will deal with this later */
209 assert(lex_sign(B
->p
[1], B
->NbColumns
) < 0);
216 bool progress
= true;
219 for (int i
= 0; i
<= 1; ++i
) {
220 value_set_si(factor
, -1);
221 for (int j
= 1; j
<= 3; ++j
) {
222 if (value_zero_p(B
->p
[1-i
][pos
[j
]]))
224 value_oppose(tmp
, B
->p
[i
][pos
[j
]]);
225 value_pdivision(tmp
, tmp
, B
->p
[1-i
][pos
[j
]]);
226 if (value_neg_p(factor
) || value_lt(tmp
, factor
))
227 value_assign(factor
, tmp
);
229 if (value_pos_p(factor
)) {
230 value_set_si(tmp
, 1);
231 Vector_Combine(B
->p
[i
], B
->p
[1-i
], B
->p
[i
], tmp
, factor
,
233 sign
= lex_sign(B
->p
[i
], B
->NbColumns
);
234 for (int j
= 1; j
<= 3; ++j
) {
235 if (value_notzero_p(B
->p
[i
][pos
[j
]]))
237 /* a zero is interpreted to be of sign sign */
238 if ((sign
> 0 && value_pos_p(B
->p
[1-i
][pos
[j
]])) ||
239 (sign
< 0 && value_neg_p(B
->p
[1-i
][pos
[j
]]))) {
240 /* the zero is of the wrong sign => back-off one */
241 value_set_si(tmp2
, -1);
242 Vector_Combine(B
->p
[i
], B
->p
[1-i
], B
->p
[i
], tmp
, tmp2
,
244 value_decrement(factor
, factor
);
247 /* We may have backed-off, so we need to check again. */
248 if (value_pos_p(factor
))
254 for (int i
= 0; i
< B
->NbColumns
; ++i
) {
255 value_addto(tmp
, B
->p
[0][i
], B
->p
[1][i
]);
256 if (value_zero_p(tmp
))
258 sign
= value_neg_p(tmp
) ? -1 : 1;
262 for (int i
= 1; i
<= 3; ++i
) {
263 value_addto(tmp
, B
->p
[0][pos
[i
]], B
->p
[1][pos
[i
]]);
264 if (value_neg_p(tmp
) || (sign
< 0 && value_zero_p(tmp
)))
271 /* cases 4 and 5 in Theorem 11.1 */
272 value_set_si(tmp
, 1);
273 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[1], tmp
, tmp
, B
->NbColumns
);
275 /* put positive pair in position 3 */
276 for (i
= 1; i
<= 3; ++i
)
277 if (value_pos_p(B
->p
[0][pos
[i
]]) && value_pos_p(B
->p
[1][pos
[i
]]))
284 /* cases 1 and 2 in Theorem 11.1 */
285 value_set_si(tmp
, 1);
286 Vector_Combine(B
->p
[0], B
->p
[1], B
->p
[0], tmp
, tmp
, B
->NbColumns
);
288 /* put positive one in position 2 */
289 for (i
= 1; i
<= 3; ++i
)
290 if (value_pos_p(B
->p
[0][pos
[i
]]))
295 /* fourth constraint is redundant with respect to neighborhoods */
299 /* We will deal with these later */
312 Value last
; // last multiple of offset in link
314 Matrix
*M
; // rows: elements different from (0,0)
318 M
= Matrix_Alloc(d
, 2);
321 simplex(int d
, int mask
, Value last
) {
322 M
= Matrix_Alloc(d
, 2);
323 offset
= Vector_Alloc(2);
324 value_init(this->last
);
325 value_assign(this->last
, last
);
328 void transform(Matrix
*T
);
330 Polyhedron
*shrunk_polyhedron(Polyhedron
*P
, int dim
, Matrix
*A
,
332 void print(FILE *out
);
335 void simplex::print(FILE *out
)
338 Matrix_Print(out
, P_VALUE_FMT
, M
);
340 fprintf(out
, "%d %d\n", M
->NbRows
, M
->NbColumns
);
341 for (int j
= 0; j
< M
->NbRows
; ++j
) {
342 for (int k
= 0; k
< M
->NbColumns
; ++k
)
343 value_print(out
, P_VALUE_FMT
, M
->p
[j
][k
]);
344 if (mask
& (1 << j
)) {
345 fprintf(out
, " + k * ");
346 for (int k
= 0; k
< M
->NbColumns
; ++k
)
347 value_print(out
, P_VALUE_FMT
, offset
->p
[k
]);
351 fprintf(out
, "\t0 <= k <= ");
352 value_print(out
, P_VALUE_FMT
, last
);
357 static bool lex_smaller(Value
*v1
, Value
*v2
, int n
)
359 for (int i
= 0; i
< n
; ++i
)
360 if (value_lt(v1
[i
], v2
[i
]))
362 else if (value_gt(v1
[i
], v2
[i
]))
367 void simplex::transform(Matrix
*T
)
370 M
= Matrix_Alloc(M2
->NbRows
, M2
->NbColumns
);
371 Matrix_Product(M2
, T
, M
);
375 Vector
*offset2
= offset
;
376 offset
= Vector_Alloc(offset2
->Size
);
377 Vector_Matrix_Product(offset2
->p
, T
, offset
->p
);
378 Vector_Free(offset2
);
382 void simplex::normalize()
385 for (int i
= 1; i
< M
->NbRows
; ++i
)
386 if (lex_smaller(M
->p
[i
], M
->p
[lexmin
], 2))
388 if (lex_sign(M
->p
[lexmin
], 2) < 0) {
391 value_set_si(tmp
, -1);
392 Vector_Scale(M
->p
[lexmin
], M
->p
[lexmin
], tmp
, 2);
393 value_set_si(tmp
, 1);
394 for (int i
= 0; i
< M
->NbRows
; ++i
) {
397 Vector_Combine(M
->p
[lexmin
], M
->p
[i
], M
->p
[i
], tmp
, tmp
, 2);
399 if (offset
&& (mask
& (1 << lexmin
))) {
400 value_set_si(tmp
, -1);
401 Vector_Scale(offset
->p
, offset
->p
, tmp
, 2);
402 mask
^= (1 << M
->NbRows
) - 1 - (1 << lexmin
);
408 static Matrix
*InsertColumn(Matrix
*M
, int pos
)
413 R
= Matrix_Alloc(M
->NbRows
, M
->NbColumns
+1);
414 for (i
= 0; i
< M
->NbRows
; ++i
) {
415 Vector_Copy(M
->p
[i
], R
->p
[i
], pos
);
416 Vector_Copy(M
->p
[i
]+pos
, R
->p
[i
]+pos
+1, M
->NbColumns
-pos
);
421 Polyhedron
*simplex::shrunk_polyhedron(Polyhedron
*P
, int dim
, Matrix
*A
,
424 Matrix
*Constraints
, *b
;
425 Vector
*b_offset
= NULL
;
427 Value min
, min_var
, tmp
;
433 b
= Matrix_Alloc(M
->NbRows
, A
->NbColumns
);
434 Matrix_Product(M
, A
, b
);
437 b_offset
= Vector_Alloc(A
->NbColumns
);
438 Vector_Matrix_Product(offset
->p
, A
, b_offset
->p
);
442 Constraints
= Polyhedron2Constraints(P
);
444 Constraints
= Matrix_Alloc(P
->NbConstraints
+2, P
->Dimension
+2+1);
445 for (int i
= 0; i
< P
->NbConstraints
; ++i
) {
446 Vector_Copy(P
->Constraint
[i
], Constraints
->p
[i
], 1+dim
+2);
447 Vector_Copy(P
->Constraint
[i
]+1+dim
+2, Constraints
->p
[i
]+1+dim
+2+1,
448 (P
->Dimension
+2)-(1+dim
+2));
450 value_set_si(Constraints
->p
[P
->NbConstraints
][0], 1);
451 value_set_si(Constraints
->p
[P
->NbConstraints
][1+dim
+2], 1);
452 value_set_si(Constraints
->p
[P
->NbConstraints
+1][0], 1);
453 value_set_si(Constraints
->p
[P
->NbConstraints
+1][1+dim
+2], -1);
454 value_assign(Constraints
->p
[P
->NbConstraints
+1][Constraints
->NbColumns
-1],
457 constant
= Constraints
->NbColumns
- 1;
459 for (int i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
) {
460 if (value_zero_p(Constraints
->p
[i
][1+dim
]) &&
461 value_zero_p(Constraints
->p
[i
][1+dim
+1]))
463 value_set_si(min
, 0);
464 for (int k
= 0; k
< b
->NbRows
; ++k
) {
465 if (offset
&& (mask
& (1 << k
)))
467 if (value_lt(b
->p
[k
][j
], min
))
468 value_assign(min
, b
->p
[k
][j
]);
470 value_set_si(min_var
, 0);
472 if (value_neg_p(b_offset
->p
[j
])) {
473 value_oppose(min_var
, b_offset
->p
[j
]);
474 value_multiply(min_var
, min_var
, last
);
475 value_increment(min_var
, min_var
);
477 for (int k
= 0; k
< b
->NbRows
; ++k
) {
478 if (!(mask
& (1 << k
)))
480 if (value_lt(b
->p
[k
][j
], min_var
))
481 value_assign(min_var
, b
->p
[k
][j
]);
484 if (!offset
|| value_pos_p(b_offset
->p
[j
])) {
485 if (value_le(min
, min_var
))
486 value_addto(Constraints
->p
[i
][constant
],
487 Constraints
->p
[i
][constant
], min
);
489 value_assign(tmp
, min_var
);
490 value_addmul(tmp
, last
, b_offset
->p
[j
]);
491 if (value_le(tmp
, min
)) {
492 value_addto(Constraints
->p
[i
][constant
],
493 Constraints
->p
[i
][constant
], min_var
);
494 value_addto(Constraints
->p
[i
][1+dim
+2],
495 Constraints
->p
[i
][1+dim
+2], b_offset
->p
[j
]);
497 int lastrow
= Constraints
->NbRows
;
498 int cols
= Constraints
->NbColumns
;
499 Matrix
*C
= Constraints
;
500 Constraints
= AddANullRow(Constraints
);
502 Vector_Copy(Constraints
->p
[i
], Constraints
->p
[lastrow
], cols
);
503 value_addto(Constraints
->p
[i
][constant
],
504 Constraints
->p
[i
][constant
], min_var
);
505 value_addto(Constraints
->p
[i
][1+dim
+2],
506 Constraints
->p
[i
][1+dim
+2], b_offset
->p
[j
]);
507 value_addto(Constraints
->p
[lastrow
][constant
],
508 Constraints
->p
[lastrow
][constant
], min
);
512 if (value_le(min_var
, min
)) {
513 value_addto(Constraints
->p
[i
][constant
],
514 Constraints
->p
[i
][constant
], min_var
);
515 value_addto(Constraints
->p
[i
][1+dim
+2],
516 Constraints
->p
[i
][1+dim
+2], b_offset
->p
[j
]);
518 value_assign(tmp
, min_var
);
519 value_addmul(tmp
, last
, b_offset
->p
[j
]);
520 if (value_le(min
, tmp
)) {
521 value_addto(Constraints
->p
[i
][constant
],
522 Constraints
->p
[i
][constant
], min
);
524 int lastrow
= Constraints
->NbRows
;
525 int cols
= Constraints
->NbColumns
;
526 Matrix
*C
= Constraints
;
527 Constraints
= AddANullRow(Constraints
);
529 Vector_Copy(Constraints
->p
[i
], Constraints
->p
[lastrow
], cols
);
530 value_addto(Constraints
->p
[i
][constant
],
531 Constraints
->p
[i
][constant
], min_var
);
532 value_addto(Constraints
->p
[i
][1+dim
+2],
533 Constraints
->p
[i
][1+dim
+2], b_offset
->p
[j
]);
534 value_addto(Constraints
->p
[lastrow
][constant
],
535 Constraints
->p
[lastrow
][constant
], min
);
541 Q
= Constraints2Polyhedron(Constraints
, MaxRays
);
544 Vector_Free(b_offset
);
546 Matrix_Free(Constraints
);
549 value_clear(min_var
);
554 struct scarf_complex
{
555 vector
<simplex
> simplices
;
556 void add(Matrix
*B
, int pos
[4], int n
);
557 void add(Matrix
*T
, simplex s
);
558 void print(FILE *out
);
560 for (int i
= 0; i
< simplices
.size(); ++i
) {
561 Matrix_Free(simplices
[i
].M
);
562 if (simplices
[i
].offset
) {
563 Vector_Free(simplices
[i
].offset
);
564 value_clear(simplices
[i
].last
);
570 void scarf_complex::add(Matrix
*T
, simplex s
)
574 if (s
.offset
&& lex_sign(s
.offset
->p
, 2) < 0) {
579 /* compute the smallest multiple (factor) of the offset that
580 * makes on of the vertices lexico-negative.
583 for (int i
= 0; i
< s
.M
->NbRows
; ++i
) {
584 if (!(s
.mask
& (1 << i
)))
586 if (lexmin
== -1 || lex_smaller(s
.M
->p
[i
], s
.M
->p
[lexmin
], 2))
589 if (value_zero_p(s
.offset
->p
[0])) {
590 if (value_pos_p(s
.M
->p
[lexmin
][0]))
591 value_increment(factor
, s
.last
);
593 value_oppose(factor
, s
.M
->p
[lexmin
][1]);
594 mpz_cdiv_q(factor
, factor
, s
.offset
->p
[1]);
597 value_oppose(factor
, s
.M
->p
[lexmin
][0]);
598 mpz_cdiv_q(factor
, factor
, s
.offset
->p
[0]);
599 if (mpz_divisible_p(s
.M
->p
[lexmin
][0], s
.offset
->p
[0])) {
600 value_assign(tmp
, s
.M
->p
[lexmin
][1]);
601 value_addmul(tmp
, factor
, s
.offset
->p
[1]);
602 if (value_pos_p(tmp
))
603 value_increment(factor
, factor
);
606 if (value_le(factor
, s
.last
)) {
607 simplex
part(s
.M
->NbRows
, s
.mask
, s
.last
);
608 Vector_Copy(s
.offset
->p
, part
.offset
->p
, 2);
609 value_set_si(tmp
, 1);
610 for (int i
= 0; i
< s
.M
->NbRows
; ++i
) {
611 if (s
.mask
& (1 << i
))
612 Vector_Combine(s
.M
->p
[i
], s
.offset
->p
, part
.M
->p
[i
],
615 Vector_Copy(s
.M
->p
[i
], part
.M
->p
[i
], 2);
617 value_subtract(part
.last
, part
.last
, factor
);
618 value_decrement(s
.last
, factor
);
620 simplices
.push_back(part
);
625 simplices
.push_back(s
);
628 void scarf_complex::add(Matrix
*B
, int pos
[4], int n
)
632 T
= Matrix_Alloc(2, 2);
633 Vector_Copy(B
->p
[0]+B
->NbColumns
-2, T
->p
[0], 2);
634 Vector_Copy(B
->p
[1]+B
->NbColumns
-2, T
->p
[1], 2);
636 if (n
== 3 || value_neg_p(B
->p
[0][pos
[3]])) {
637 assert(n
== 3 || value_neg_p(B
->p
[1][pos
[3]]));
640 value_set_si(s1
.M
->p
[0][0], 0);
641 value_set_si(s1
.M
->p
[0][1], 1);
645 value_set_si(s2
.M
->p
[0][0], 1);
646 value_set_si(s2
.M
->p
[0][1], 1);
650 value_set_si(s3
.M
->p
[0][0], 1);
651 value_set_si(s3
.M
->p
[0][1], 0);
655 value_set_si(s4
.M
->p
[0][0], 0);
656 value_set_si(s4
.M
->p
[0][1], 1);
657 value_set_si(s4
.M
->p
[1][0], 1);
658 value_set_si(s4
.M
->p
[1][1], 1);
662 value_set_si(s5
.M
->p
[0][0], 1);
663 value_set_si(s5
.M
->p
[0][1], 0);
664 value_set_si(s5
.M
->p
[1][0], 1);
665 value_set_si(s5
.M
->p
[1][1], 1);
671 bool progress
= true;
672 Value tmp
, tmp2
, factor
;
679 assert(value_pos_p(B
->p
[0][pos
[3]]));
680 assert(value_pos_p(B
->p
[1][pos
[3]]));
682 h
= Matrix_Alloc(3, 2);
683 value_set_si(h
->p
[0][0], 1);
684 value_set_si(h
->p
[0][1], 0);
685 value_set_si(h
->p
[1][0], 0);
686 value_set_si(h
->p
[1][1], 1);
687 value_set_si(h
->p
[2][0], 1);
688 value_set_si(h
->p
[2][1], 1);
690 offset
= Vector_Alloc(2);
694 for (int i
= 0; i
<= 1; ++i
) {
695 value_set_si(factor
, -1);
696 for (int j
= 1; j
<= 2; ++j
) {
697 if (value_zero_p(B
->p
[1-i
][pos
[j
]]))
699 value_oppose(tmp
, B
->p
[i
][pos
[j
]]);
700 value_pdivision(tmp
, tmp
, B
->p
[1-i
][pos
[j
]]);
701 if (value_neg_p(factor
) || value_lt(tmp
, factor
))
702 value_assign(factor
, tmp
);
704 if (value_pos_p(factor
)) {
705 value_set_si(tmp
, 1);
706 Vector_Combine(B
->p
[i
], B
->p
[1-i
], B
->p
[i
], tmp
, factor
,
708 sign
= lex_sign(B
->p
[i
], B
->NbColumns
);
709 for (int j
= 1; j
<= 2; ++j
) {
710 if (value_notzero_p(B
->p
[i
][pos
[j
]]))
712 /* a zero is interpreted to be of sign sign */
713 if ((sign
> 0 && value_pos_p(B
->p
[1-i
][pos
[j
]])) ||
714 (sign
< 0 && value_neg_p(B
->p
[1-i
][pos
[j
]]))) {
715 /* the zero is of the wrong sign => back-off one */
716 value_set_si(tmp2
, -1);
717 Vector_Combine(B
->p
[i
], B
->p
[1-i
], B
->p
[i
], tmp
, tmp2
,
719 value_decrement(factor
, factor
);
722 /* We may have backed-off, so we need to check again. */
723 if (value_pos_p(factor
)) {
725 value_set_si(tmp
, 1);
726 value_set_si(tmp2
, -1);
728 Vector_Combine(h
->p
[2], h
->p
[i
], offset
->p
, tmp
, tmp2
, 2);
731 /* the initial simplices not in any link */
733 Vector_Copy(h
->p
[0], l1
.M
->p
[0], 2);
737 Vector_Copy(h
->p
[1], l2
.M
->p
[0], 2);
741 Vector_Combine(h
->p
[0], h
->p
[1], l3
.M
->p
[0],
746 Vector_Copy(h
->p
[0], t1
.M
->p
[0], 2);
747 Vector_Copy(h
->p
[1], t1
.M
->p
[1], 2);
751 Vector_Combine(h
->p
[0], h
->p
[1], t2
.M
->p
[0],
753 Vector_Combine(h
->p
[2], h
->p
[1], t2
.M
->p
[1],
758 Vector_Combine(h
->p
[i
], offset
->p
, h
->p
[i
],
760 Vector_Combine(h
->p
[2], offset
->p
, h
->p
[2],
762 value_decrement(factor
, factor
);
765 simplex
q(3, 0x4 | (1 << i
), factor
);
766 Vector_Copy(h
->p
[0], q
.M
->p
[0], 2);
767 Vector_Copy(h
->p
[1], q
.M
->p
[1], 2);
768 Vector_Copy(h
->p
[2], q
.M
->p
[2], 2);
769 Vector_Copy(offset
->p
, q
.offset
->p
, 2);
772 simplex
t1(2, 0x3, factor
);
773 Vector_Copy(h
->p
[i
], t1
.M
->p
[0], 2);
774 Vector_Copy(h
->p
[2], t1
.M
->p
[1], 2);
775 Vector_Copy(offset
->p
, t1
.offset
->p
, 2);
778 simplex
t2(2, 0x2, factor
);
779 Vector_Copy(h
->p
[1-i
], t2
.M
->p
[0], 2);
780 Vector_Copy(h
->p
[2], t2
.M
->p
[1], 2);
781 Vector_Copy(offset
->p
, t2
.offset
->p
, 2);
784 simplex
l(1, 0x1, factor
);
785 Vector_Copy(h
->p
[2], l
.M
->p
[0], 2);
786 Vector_Copy(offset
->p
, l
.offset
->p
, 2);
790 Vector_Combine(h
->p
[i
], offset
->p
, h
->p
[i
], tmp
, factor
, 2);
791 Vector_Combine(h
->p
[2], offset
->p
, h
->p
[2], tmp
, factor
, 2);
799 /* the initial simplices not in any link */
801 Vector_Copy(h
->p
[0], l1
.M
->p
[0], 2);
805 Vector_Copy(h
->p
[1], l2
.M
->p
[0], 2);
809 Vector_Combine(h
->p
[0], h
->p
[1], l3
.M
->p
[0],
814 Vector_Copy(h
->p
[0], t1
.M
->p
[0], 2);
815 Vector_Copy(h
->p
[1], t1
.M
->p
[1], 2);
819 Vector_Combine(h
->p
[0], h
->p
[1], t2
.M
->p
[0],
821 Vector_Combine(h
->p
[2], h
->p
[1], t2
.M
->p
[1],
826 /* the simplices in a link, here of length 1 */
828 Vector_Copy(h
->p
[0], q
.M
->p
[0], 2);
829 Vector_Copy(h
->p
[1], q
.M
->p
[1], 2);
830 Vector_Copy(h
->p
[2], q
.M
->p
[2], 2);
834 Vector_Copy(h
->p
[0], t1
.M
->p
[0], 2);
835 Vector_Copy(h
->p
[2], t1
.M
->p
[1], 2);
839 Vector_Copy(h
->p
[1], t2
.M
->p
[0], 2);
840 Vector_Copy(h
->p
[2], t2
.M
->p
[1], 2);
844 Vector_Copy(h
->p
[2], l
.M
->p
[0], 2);
860 void scarf_complex::print(FILE *out
)
862 for (int i
= 0; i
< simplices
.size(); ++i
)
863 simplices
[i
].print(out
);
866 struct scarf_collector
{
867 virtual void add(Polyhedron
*P
, int sign
, Polyhedron
*C
,
868 barvinok_options
*options
) = 0;
869 virtual ~scarf_collector() {}
872 static void scarf(Polyhedron
*P
, unsigned exist
, unsigned nparam
,
873 barvinok_options
*options
, scarf_collector
& col
)
876 int dim
= P
->Dimension
- exist
- nparam
;
883 A
= extract_matrix(P
, dim
);
885 n
= A
->NbColumns
- 2;
886 assert(n
>= 3 && n
<= 4);
889 for (int i
= 0; i
< n
; ++i
) {
891 for (j
= 0; j
< l
; ++j
)
892 if (value_eq(A
->p
[0][pos
[j
]], A
->p
[0][i
]) &&
893 value_eq(A
->p
[1][pos
[j
]], A
->p
[1][i
]))
900 assert(l
>= 3 && l
<= 4);
901 B
= normalize_matrix(A
, pos
, &l
);
904 scarf
.add(B
, pos
, l
);
906 U
= Universe_Polyhedron(nparam
);
907 col
.add(P
, 0, U
, options
);
908 for (int i
= 0; i
< scarf
.simplices
.size(); ++i
) {
910 int sign
= (scarf
.simplices
[i
].M
->NbRows
% 2) ? -1 : 1;
911 Q
= scarf
.simplices
[i
].shrunk_polyhedron(P
, dim
, A
, options
->MaxRays
);
912 col
.add(Q
, sign
, U
, options
);
922 struct scarf_collector_gf
: public scarf_collector
{
926 scarf_collector_gf() {
929 virtual void add(Polyhedron
*P
, int sign
, Polyhedron
*C
,
930 barvinok_options
*options
);
933 void scarf_collector_gf::add(Polyhedron
*P
, int sign
, Polyhedron
*C
,
934 barvinok_options
*options
)
937 gf
= barvinok_series_with_options(P
, C
, options
);
941 gf2
= barvinok_series_with_options(P
, C
, options
);
947 gen_fun
*barvinok_enumerate_scarf_series(Polyhedron
*P
,
948 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
950 scarf_collector_gf scgf
;
951 scarf(P
, exist
, nparam
, options
, scgf
);
955 struct scarf_collector_ev
: public scarf_collector
{
959 scarf_collector_ev() {
961 evalue_set_si(&mone
, -1, 1);
963 ~scarf_collector_ev() {
964 free_evalue_refs(&mone
);
966 virtual void add(Polyhedron
*P
, int sign
, Polyhedron
*C
,
967 barvinok_options
*options
);
970 void scarf_collector_ev::add(Polyhedron
*P
, int sign
, Polyhedron
*C
,
971 barvinok_options
*options
)
974 EP
= barvinok_enumerate_with_options(P
, C
, options
);
977 E2
= barvinok_enumerate_with_options(P
, C
, options
);
981 free_evalue_refs(E2
);
986 evalue
*barvinok_enumerate_scarf(Polyhedron
*P
,
987 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
989 scarf_collector_ev scev
;
990 scarf(P
, exist
, nparam
, options
, scev
);