bernstein: piecewise_lst::simplify_domains: add MaxRays argument
[barvinok.git] / bernstein.cc
blobc4b673fc7976ef8569c93274860ef9da6badda65
1 #include <bernstein/bernstein.h>
2 #include <bernstein/piecewise_lst.h>
3 #include <barvinok/barvinok.h>
4 #include <barvinok/util.h>
5 #include <barvinok/bernstein.h>
7 #ifdef HAVE_GROWING_CHERNIKOVA
8 #define MAXRAYS POL_NO_DUAL
9 #else
10 #define MAXRAYS 600
11 #endif
13 using namespace GiNaC;
14 using namespace bernstein;
16 namespace barvinok {
18 ex evalue2ex(evalue *e, const exvector& vars)
20 if (value_notzero_p(e->d))
21 return value2numeric(e->x.n)/value2numeric(e->d);
22 if (e->x.p->type != polynomial)
23 return fail();
24 ex poly = 0;
25 for (int i = e->x.p->size-1; i >= 0; --i) {
26 poly *= vars[e->x.p->pos-1];
27 ex t = evalue2ex(&e->x.p->arr[i], vars);
28 if (is_exactly_a<fail>(t))
29 return t;
30 poly += t;
32 return poly;
35 /* if the evalue is a relation, we use the relation to cut off the
36 * the edges of the domain
38 static void evalue_extract_poly(evalue *e, int i, Polyhedron **D, evalue **poly)
40 *D = EVALUE_DOMAIN(e->x.p->arr[2*i]);
41 *poly = e = &e->x.p->arr[2*i+1];
42 if (value_notzero_p(e->d))
43 return;
44 if (e->x.p->type != relation)
45 return;
46 if (e->x.p->size > 2)
47 return;
48 evalue *fr = &e->x.p->arr[0];
49 assert(value_zero_p(fr->d));
50 assert(fr->x.p->type == fractional);
51 assert(fr->x.p->size == 3);
52 Matrix *T = Matrix_Alloc(2, (*D)->Dimension+1);
53 value_set_si(T->p[1][(*D)->Dimension], 1);
55 /* convert argument of fractional to polylib */
56 /* the argument is assumed to be linear */
57 evalue *p = &fr->x.p->arr[0];
58 evalue_denom(p, &T->p[1][(*D)->Dimension]);
59 for (;value_zero_p(p->d); p = &p->x.p->arr[0]) {
60 assert(p->x.p->type == polynomial);
61 assert(p->x.p->size == 2);
62 assert(value_notzero_p(p->x.p->arr[1].d));
63 int pos = p->x.p->pos - 1;
64 value_assign(T->p[0][pos], p->x.p->arr[1].x.n);
65 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][(*D)->Dimension]);
66 value_division(T->p[0][pos], T->p[0][pos], p->x.p->arr[1].d);
68 int pos = (*D)->Dimension;
69 value_assign(T->p[0][pos], p->x.n);
70 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][(*D)->Dimension]);
71 value_division(T->p[0][pos], T->p[0][pos], p->d);
73 Polyhedron *E = NULL;
74 for (Polyhedron *P = *D; P; P = P->next) {
75 Polyhedron *I = Polyhedron_Image(P, T, MAXRAYS);
76 I = DomainConstraintSimplify(I, MAXRAYS);
77 Polyhedron *R = Polyhedron_Preimage(I, T, MAXRAYS);
78 Polyhedron_Free(I);
79 Polyhedron *next = P->next;
80 P->next = NULL;
81 Polyhedron *S = DomainIntersection(P, R, MAXRAYS);
82 Polyhedron_Free(R);
83 P->next = next;
84 if (emptyQ2(S))
85 Polyhedron_Free(S);
86 else
87 E = DomainConcat(S, E);
89 Matrix_Free(T);
91 *D = E;
92 *poly = &e->x.p->arr[1];
95 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
96 Polyhedron *ctx, const exvector& params)
98 unsigned nparam = ctx->Dimension;
99 if (EVALUE_IS_ZERO(*e))
100 return pl_all;
101 assert(value_zero_p(e->d));
102 assert(e->x.p->type == partition);
103 assert(e->x.p->size >= 2);
104 unsigned nvars = EVALUE_DOMAIN(e->x.p->arr[0])->Dimension - nparam;
106 exvector vars = constructVariableVector(nvars, "v");
107 exvector allvars = vars;
108 allvars.insert(allvars.end(), params.begin(), params.end());
110 for (int i = 0; i < e->x.p->size/2; ++i) {
111 Param_Polyhedron *PP;
112 Polyhedron *E;
113 evalue *EP;
114 evalue_extract_poly(e, i, &E, &EP);
115 ex poly = evalue2ex(EP, allvars);
116 if (is_exactly_a<fail>(poly)) {
117 if (E != EVALUE_DOMAIN(e->x.p->arr[2*i]))
118 Domain_Free(E);
119 delete pl_all;
120 return NULL;
122 for (Polyhedron *P = E; P; P = P->next) {
123 Polyhedron *next = P->next;
124 piecewise_lst *pl = new piecewise_lst(params);
125 Polyhedron *P1 = P;
126 P->next = NULL;
127 PP = Polyhedron2Param_Domain(P, ctx, 0);
128 for (Param_Domain *Q = PP->D; Q; Q = Q->next) {
129 matrix VM = domainVertices(PP, Q, params);
130 lst coeffs = bernsteinExpansion(VM, poly, vars, params);
131 pl->list.push_back(guarded_lst(Polyhedron_Copy(Q->Domain), coeffs));
133 Param_Polyhedron_Free(PP);
134 if (!pl_all)
135 pl_all = pl;
136 else {
137 pl_all->combine(*pl);
138 delete pl;
140 P->next = next;
142 if (E != EVALUE_DOMAIN(e->x.p->arr[2*i]))
143 Domain_Free(E);
145 return pl_all;