eliminate parameters if we can
[barvinok.git] / barvinok.cc
blob2293d79fce5fc68e0bff887019806dfd6e812506
1 #include <assert.h>
2 #include <iostream>
3 #include <vector>
4 #include <deque>
5 #include <string>
6 #include <sstream>
7 #include <gmp.h>
8 #include <NTL/mat_ZZ.h>
9 #include <NTL/LLL.h>
10 #include <util.h>
11 extern "C" {
12 #include <polylib/polylibgmp.h>
13 #include "ev_operations.h"
15 #include "config.h"
16 #include <barvinok.h>
18 #ifdef NTL_STD_CXX
19 using namespace NTL;
20 #endif
21 using std::cout;
22 using std::endl;
23 using std::vector;
24 using std::deque;
25 using std::string;
26 using std::ostringstream;
28 #define ALLOC(p) (((long *) (p))[0])
29 #define SIZE(p) (((long *) (p))[1])
30 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
32 static void value2zz(Value v, ZZ& z)
34 int sa = v[0]._mp_size;
35 int abs_sa = sa < 0 ? -sa : sa;
37 _ntl_gsetlength(&z.rep, abs_sa);
38 mp_limb_t * adata = DATA(z.rep);
39 for (int i = 0; i < abs_sa; ++i)
40 adata[i] = v[0]._mp_d[i];
41 SIZE(z.rep) = sa;
44 static void zz2value(ZZ& z, Value& v)
46 if (!z.rep) {
47 value_set_si(v, 0);
48 return;
51 int sa = SIZE(z.rep);
52 int abs_sa = sa < 0 ? -sa : sa;
54 mp_limb_t * adata = DATA(z.rep);
55 mpz_realloc2(v, __GMP_BITS_PER_MP_LIMB * abs_sa);
56 for (int i = 0; i < abs_sa; ++i)
57 v[0]._mp_d[i] = adata[i];
58 v[0]._mp_size = sa;
61 #undef ALLOC
62 #define ALLOC(p) p = (typeof(p))malloc(sizeof(*p))
65 * We just ignore the last column and row
66 * If the final element is not equal to one
67 * then the result will actually be a multiple of the input
69 static void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
71 m.SetDims(nr, nc);
73 for (int i = 0; i < nr; ++i) {
74 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
75 for (int j = 0; j < nc; ++j) {
76 value2zz(M->p[i][j], m[i][j]);
81 static void values2zz(Value *p, vec_ZZ& v, int len)
83 v.SetLength(len);
85 for (int i = 0; i < len; ++i) {
86 value2zz(p[i], v[i]);
92 static void zz2values(vec_ZZ& v, Value *p)
94 for (int i = 0; i < v.length(); ++i)
95 zz2value(v[i], p[i]);
98 static void rays(mat_ZZ& r, Polyhedron *C)
100 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
101 assert(C->NbRays - 1 == C->Dimension);
102 r.SetDims(dim, dim);
103 ZZ tmp;
105 int i, c;
106 for (i = 0, c = 0; i < dim; ++i)
107 if (value_zero_p(C->Ray[i][dim+1])) {
108 for (int j = 0; j < dim; ++j) {
109 value2zz(C->Ray[i][j+1], tmp);
110 r[j][c] = tmp;
112 ++c;
116 static Matrix * rays(Polyhedron *C)
118 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
119 assert(C->NbRays - 1 == C->Dimension);
121 Matrix *M = Matrix_Alloc(dim+1, dim+1);
122 assert(M);
124 int i, c;
125 for (i = 0, c = 0; i <= dim && c < dim; ++i)
126 if (value_zero_p(C->Ray[i][dim+1])) {
127 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
128 value_set_si(M->p[c++][dim], 0);
130 assert(c == dim);
131 value_set_si(M->p[dim][dim], 1);
133 return M;
136 static Matrix * rays2(Polyhedron *C)
138 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
139 assert(C->NbRays - 1 == C->Dimension);
141 Matrix *M = Matrix_Alloc(dim, dim);
142 assert(M);
144 int i, c;
145 for (i = 0, c = 0; i <= dim && c < dim; ++i)
146 if (value_zero_p(C->Ray[i][dim+1]))
147 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
148 assert(c == dim);
150 return M;
154 * Returns the largest absolute value in the vector
156 static ZZ max(vec_ZZ& v)
158 ZZ max = abs(v[0]);
159 for (int i = 1; i < v.length(); ++i)
160 if (abs(v[i]) > max)
161 max = abs(v[i]);
162 return max;
165 class cone {
166 public:
167 cone(Matrix *M) {
168 Cone = 0;
169 Rays = Matrix_Copy(M);
170 set_det();
172 cone(Polyhedron *C) {
173 Cone = Polyhedron_Copy(C);
174 Rays = rays(C);
175 set_det();
177 void set_det() {
178 mat_ZZ A;
179 matrix2zz(Rays, A, Rays->NbRows - 1, Rays->NbColumns - 1);
180 det = determinant(A);
181 Value v;
182 value_init(v);
183 zz2value(det, v);
184 value_clear(v);
187 Vector* short_vector(vec_ZZ& lambda) {
188 Matrix *M = Matrix_Copy(Rays);
189 Matrix *inv = Matrix_Alloc(M->NbRows, M->NbColumns);
190 int ok = Matrix_Inverse(M, inv);
191 assert(ok);
192 Matrix_Free(M);
194 ZZ det2;
195 mat_ZZ B;
196 mat_ZZ U;
197 matrix2zz(inv, B, inv->NbRows - 1, inv->NbColumns - 1);
198 long r = LLL(det2, B, U);
200 ZZ min = max(B[0]);
201 int index = 0;
202 for (int i = 1; i < B.NumRows(); ++i) {
203 ZZ tmp = max(B[i]);
204 if (tmp < min) {
205 min = tmp;
206 index = i;
210 Matrix_Free(inv);
212 lambda = B[index];
214 Vector *z = Vector_Alloc(U[index].length()+1);
215 assert(z);
216 zz2values(U[index], z->p);
217 value_set_si(z->p[U[index].length()], 0);
219 Value tmp;
220 value_init(tmp);
221 Polyhedron *C = poly();
222 int i;
223 for (i = 0; i < C->NbConstraints; ++i) {
224 Inner_Product(z->p, C->Constraint[i]+1, z->Size-1, &tmp);
225 if (value_pos_p(tmp))
226 break;
228 if (i == C->NbConstraints) {
229 value_set_si(tmp, -1);
230 Vector_Scale(z->p, z->p, tmp, z->Size-1);
232 value_clear(tmp);
233 return z;
236 ~cone() {
237 Polyhedron_Free(Cone);
238 Matrix_Free(Rays);
241 Polyhedron *poly() {
242 if (!Cone) {
243 Matrix *M = Matrix_Alloc(Rays->NbRows+1, Rays->NbColumns+1);
244 for (int i = 0; i < Rays->NbRows; ++i) {
245 Vector_Copy(Rays->p[i], M->p[i]+1, Rays->NbColumns);
246 value_set_si(M->p[i][0], 1);
248 Vector_Set(M->p[Rays->NbRows]+1, 0, Rays->NbColumns-1);
249 value_set_si(M->p[Rays->NbRows][0], 1);
250 value_set_si(M->p[Rays->NbRows][Rays->NbColumns], 1);
251 Cone = Rays2Polyhedron(M, M->NbRows+1);
252 assert(Cone->NbConstraints == Cone->NbRays);
253 Matrix_Free(M);
255 return Cone;
258 ZZ det;
259 Polyhedron *Cone;
260 Matrix *Rays;
263 class dpoly {
264 public:
265 vec_ZZ coeff;
266 dpoly(int d, ZZ& degree, int offset = 0) {
267 coeff.SetLength(d+1);
269 int min = d + offset;
270 if (degree < ZZ(INIT_VAL, min))
271 min = to_int(degree);
273 ZZ c = ZZ(INIT_VAL, 1);
274 if (!offset)
275 coeff[0] = c;
276 for (int i = 1; i <= min; ++i) {
277 c *= (degree -i + 1);
278 c /= i;
279 coeff[i-offset] = c;
282 void operator *= (dpoly& f) {
283 assert(coeff.length() == f.coeff.length());
284 vec_ZZ old = coeff;
285 coeff = f.coeff[0] * coeff;
286 for (int i = 1; i < coeff.length(); ++i)
287 for (int j = 0; i+j < coeff.length(); ++j)
288 coeff[i+j] += f.coeff[i] * old[j];
290 void div(dpoly& d, mpq_t count, ZZ& sign) {
291 int len = coeff.length();
292 Value tmp;
293 value_init(tmp);
294 mpq_t* c = new mpq_t[coeff.length()];
295 mpq_t qtmp;
296 mpq_init(qtmp);
297 for (int i = 0; i < len; ++i) {
298 mpq_init(c[i]);
299 zz2value(coeff[i], tmp);
300 mpq_set_z(c[i], tmp);
302 for (int j = 1; j <= i; ++j) {
303 zz2value(d.coeff[j], tmp);
304 mpq_set_z(qtmp, tmp);
305 mpq_mul(qtmp, qtmp, c[i-j]);
306 mpq_sub(c[i], c[i], qtmp);
309 zz2value(d.coeff[0], tmp);
310 mpq_set_z(qtmp, tmp);
311 mpq_div(c[i], c[i], qtmp);
313 if (sign == -1)
314 mpq_sub(count, count, c[len-1]);
315 else
316 mpq_add(count, count, c[len-1]);
318 value_clear(tmp);
319 mpq_clear(qtmp);
320 for (int i = 0; i < len; ++i)
321 mpq_clear(c[i]);
322 delete [] c;
326 class dpoly_n {
327 public:
328 Matrix *coeff;
329 ~dpoly_n() {
330 Matrix_Free(coeff);
332 dpoly_n(int d, ZZ& degree_0, ZZ& degree_1, int offset = 0) {
333 Value d0, d1;
334 value_init(d0);
335 value_init(d1);
336 zz2value(degree_0, d0);
337 zz2value(degree_1, d1);
338 coeff = Matrix_Alloc(d+1, d+1+1);
339 value_set_si(coeff->p[0][0], 1);
340 value_set_si(coeff->p[0][d+1], 1);
341 for (int i = 1; i <= d; ++i) {
342 value_multiply(coeff->p[i][0], coeff->p[i-1][0], d0);
343 Vector_Combine(coeff->p[i-1], coeff->p[i-1]+1, coeff->p[i]+1,
344 d1, d0, i);
345 value_set_si(coeff->p[i][d+1], i);
346 value_multiply(coeff->p[i][d+1], coeff->p[i][d+1], coeff->p[i-1][d+1]);
347 value_decrement(d0, d0);
349 value_clear(d0);
350 value_clear(d1);
352 void div(dpoly& d, Vector *count, ZZ& sign) {
353 int len = coeff->NbRows;
354 Matrix * c = Matrix_Alloc(coeff->NbRows, coeff->NbColumns);
355 Value tmp;
356 value_init(tmp);
357 for (int i = 0; i < len; ++i) {
358 Vector_Copy(coeff->p[i], c->p[i], len+1);
359 for (int j = 1; j <= i; ++j) {
360 zz2value(d.coeff[j], tmp);
361 value_multiply(tmp, tmp, c->p[i][len]);
362 value_oppose(tmp, tmp);
363 Vector_Combine(c->p[i], c->p[i-j], c->p[i],
364 c->p[i-j][len], tmp, len);
365 value_multiply(c->p[i][len], c->p[i][len], c->p[i-j][len]);
367 zz2value(d.coeff[0], tmp);
368 value_multiply(c->p[i][len], c->p[i][len], tmp);
370 if (sign == -1) {
371 value_set_si(tmp, -1);
372 Vector_Scale(c->p[len-1], count->p, tmp, len);
373 value_assign(count->p[len], c->p[len-1][len]);
374 } else
375 Vector_Copy(c->p[len-1], count->p, len+1);
376 Vector_Normalize(count->p, len+1);
377 value_clear(tmp);
378 Matrix_Free(c);
383 * Barvinok's Decomposition of a simplicial cone
385 * Returns two lists of polyhedra
387 void barvinok_decompose(Polyhedron *C, Polyhedron **ppos, Polyhedron **pneg)
389 Polyhedron *pos = *ppos, *neg = *pneg;
390 vector<cone *> nonuni;
391 cone * c = new cone(C);
392 ZZ det = c->det;
393 int s = sign(det);
394 assert(det != 0);
395 if (abs(det) > 1) {
396 nonuni.push_back(c);
397 } else {
398 Polyhedron *p = Polyhedron_Copy(c->Cone);
399 p->next = pos;
400 pos = p;
401 delete c;
403 vec_ZZ lambda;
404 while (!nonuni.empty()) {
405 c = nonuni.back();
406 nonuni.pop_back();
407 Vector* v = c->short_vector(lambda);
408 for (int i = 0; i < c->Rays->NbRows - 1; ++i) {
409 if (lambda[i] == 0)
410 continue;
411 Matrix* M = Matrix_Copy(c->Rays);
412 Vector_Copy(v->p, M->p[i], v->Size);
413 cone * pc = new cone(M);
414 assert (pc->det != 0);
415 if (abs(pc->det) > 1) {
416 assert(abs(pc->det) < abs(c->det));
417 nonuni.push_back(pc);
418 } else {
419 Polyhedron *p = pc->poly();
420 pc->Cone = 0;
421 if (sign(pc->det) == s) {
422 p->next = pos;
423 pos = p;
424 } else {
425 p->next = neg;
426 neg = p;
428 delete pc;
430 Matrix_Free(M);
432 Vector_Free(v);
433 delete c;
435 *ppos = pos;
436 *pneg = neg;
440 * Returns a single list of npos "positive" cones followed by nneg
441 * "negative" cones.
442 * The input cone is freed
444 void decompose(Polyhedron *cone, Polyhedron **parts, int *npos, int *nneg, unsigned MaxRays)
446 Polyhedron_Polarize(cone);
447 if (cone->NbRays - 1 != cone->Dimension) {
448 Polyhedron *tmp = cone;
449 cone = triangularize_cone(cone, MaxRays);
450 Polyhedron_Free(tmp);
452 Polyhedron *polpos = NULL, *polneg = NULL;
453 *npos = 0; *nneg = 0;
454 for (Polyhedron *Polar = cone; Polar; Polar = Polar->next)
455 barvinok_decompose(Polar, &polpos, &polneg);
457 Polyhedron *last;
458 for (Polyhedron *i = polpos; i; i = i->next) {
459 Polyhedron_Polarize(i);
460 ++*npos;
461 last = i;
463 for (Polyhedron *i = polneg; i; i = i->next) {
464 Polyhedron_Polarize(i);
465 ++*nneg;
467 if (last) {
468 last->next = polneg;
469 *parts = polpos;
470 } else
471 *parts = polneg;
472 Domain_Free(cone);
475 const int MAX_TRY=10;
477 * Searches for a vector that is not othogonal to any
478 * of the rays in rays.
480 static void nonorthog(mat_ZZ& rays, vec_ZZ& lambda)
482 int dim = rays.NumCols();
483 bool found = false;
484 lambda.SetLength(dim);
485 for (int i = 2; !found && i <= 50*dim; i+=4) {
486 for (int j = 0; j < MAX_TRY; ++j) {
487 for (int k = 0; k < dim; ++k) {
488 int r = random_int(i)+2;
489 int v = (2*(r%2)-1) * (r >> 1);
490 lambda[k] = v;
492 int k = 0;
493 for (; k < rays.NumRows(); ++k)
494 if (lambda * rays[k] == 0)
495 break;
496 if (k == rays.NumRows()) {
497 found = true;
498 break;
502 assert(found);
505 static void add_rays(mat_ZZ& rays, Polyhedron *i, int *r)
507 unsigned dim = i->Dimension;
508 for (int k = 0; k < i->NbRays; ++k) {
509 if (!value_zero_p(i->Ray[k][dim+1]))
510 continue;
511 values2zz(i->Ray[k]+1, rays[(*r)++], dim);
515 void lattice_point(Value* values, Polyhedron *i, vec_ZZ& lambda, ZZ& num)
517 vec_ZZ vertex;
518 unsigned dim = i->Dimension;
519 if(!value_one_p(values[dim])) {
520 Matrix* Rays = rays(i);
521 Matrix *inv = Matrix_Alloc(Rays->NbRows, Rays->NbColumns);
522 int ok = Matrix_Inverse(Rays, inv);
523 assert(ok);
524 Matrix_Free(Rays);
525 Rays = rays(i);
526 Vector *lambda = Vector_Alloc(dim+1);
527 Vector_Matrix_Product(values, inv, lambda->p);
528 Matrix_Free(inv);
529 for (int j = 0; j < dim; ++j)
530 mpz_cdiv_q(lambda->p[j], lambda->p[j], lambda->p[dim]);
531 value_set_si(lambda->p[dim], 1);
532 Vector *A = Vector_Alloc(dim+1);
533 Vector_Matrix_Product(lambda->p, Rays, A->p);
534 Vector_Free(lambda);
535 Matrix_Free(Rays);
536 values2zz(A->p, vertex, dim);
537 Vector_Free(A);
538 } else
539 values2zz(values, vertex, dim);
541 num = vertex * lambda;
544 static evalue *term(int param, ZZ& c, Value *den = NULL)
546 evalue *EP = new evalue();
547 value_init(EP->d);
548 value_set_si(EP->d,0);
549 EP->x.p = new_enode(polynomial, 2, param + 1);
550 evalue_set_si(&EP->x.p->arr[0], 0, 1);
551 value_init(EP->x.p->arr[1].x.n);
552 if (den == NULL)
553 value_set_si(EP->x.p->arr[1].d, 1);
554 else
555 value_assign(EP->x.p->arr[1].d, *den);
556 zz2value(c, EP->x.p->arr[1].x.n);
557 return EP;
560 static void vertex_period(
561 Polyhedron *i, vec_ZZ& lambda, Matrix *T,
562 Value lcm, int p, Vector *val,
563 evalue *E, evalue* ev,
564 ZZ& offset)
566 unsigned nparam = T->NbRows - 1;
567 unsigned dim = i->Dimension;
568 Value tmp;
569 ZZ nump;
571 if (p == nparam) {
572 ZZ num, l;
573 Vector * values = Vector_Alloc(dim + 1);
574 Vector_Matrix_Product(val->p, T, values->p);
575 value_assign(values->p[dim], lcm);
576 lattice_point(values->p, i, lambda, num);
577 value2zz(lcm, l);
578 num *= l;
579 num += offset;
580 value_init(ev->x.n);
581 zz2value(num, ev->x.n);
582 value_assign(ev->d, lcm);
583 Vector_Free(values);
584 return;
587 value_init(tmp);
588 vec_ZZ vertex;
589 values2zz(T->p[p], vertex, dim);
590 nump = vertex * lambda;
591 if (First_Non_Zero(val->p, p) == -1) {
592 value_assign(tmp, lcm);
593 evalue *ET = term(p, nump, &tmp);
594 eadd(ET, E);
595 free_evalue_refs(ET);
596 delete ET;
599 value_assign(tmp, lcm);
600 if (First_Non_Zero(T->p[p], dim) != -1)
601 Vector_Gcd(T->p[p], dim, &tmp);
602 Gcd(tmp, lcm, &tmp);
603 if (value_lt(tmp, lcm)) {
604 ZZ count;
606 value_division(tmp, lcm, tmp);
607 value_set_si(ev->d, 0);
608 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
609 value2zz(tmp, count);
610 do {
611 value_decrement(tmp, tmp);
612 --count;
613 ZZ new_offset = offset - count * nump;
614 value_assign(val->p[p], tmp);
615 vertex_period(i, lambda, T, lcm, p+1, val, E,
616 &ev->x.p->arr[VALUE_TO_INT(tmp)], new_offset);
617 } while (value_pos_p(tmp));
618 } else
619 vertex_period(i, lambda, T, lcm, p+1, val, E, ev, offset);
620 value_clear(tmp);
623 static void mask_r(Matrix *f, int nr, Vector *lcm, int p, Vector *val, evalue *ev)
625 unsigned nparam = lcm->Size;
627 if (p == nparam) {
628 Vector * prod = Vector_Alloc(f->NbRows);
629 Matrix_Vector_Product(f, val->p, prod->p);
630 int isint = 1;
631 for (int i = 0; i < nr; ++i) {
632 value_modulus(prod->p[i], prod->p[i], f->p[i][nparam+1]);
633 isint &= value_zero_p(prod->p[i]);
635 value_set_si(ev->d, 1);
636 value_init(ev->x.n);
637 value_set_si(ev->x.n, isint);
638 Vector_Free(prod);
639 return;
642 Value tmp;
643 value_init(tmp);
644 if (value_one_p(lcm->p[p]))
645 mask_r(f, nr, lcm, p+1, val, ev);
646 else {
647 value_assign(tmp, lcm->p[p]);
648 value_set_si(ev->d, 0);
649 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
650 do {
651 value_decrement(tmp, tmp);
652 value_assign(val->p[p], tmp);
653 mask_r(f, nr, lcm, p+1, val, &ev->x.p->arr[VALUE_TO_INT(tmp)]);
654 } while (value_pos_p(tmp));
656 value_clear(tmp);
659 static evalue *multi_monom(vec_ZZ& p)
661 evalue *X = new evalue();
662 value_init(X->d);
663 value_init(X->x.n);
664 unsigned nparam = p.length()-1;
665 zz2value(p[nparam], X->x.n);
666 value_set_si(X->d, 1);
667 for (int i = 0; i < nparam; ++i) {
668 if (p[i] == 0)
669 continue;
670 evalue *T = term(i, p[i]);
671 eadd(T, X);
672 free_evalue_refs(T);
673 delete T;
675 return X;
679 * Check whether mapping polyhedron P on the affine combination
680 * num yields a range that has a fixed quotient on integer
681 * division by d
682 * If zero is true, then we are only interested in the quotient
683 * for the cases where the remainder is zero.
684 * Returns NULL if false and a newly allocated value if true.
686 static Value *fixed_quotient(Polyhedron *P, vec_ZZ& num, Value d, bool zero)
688 Value* ret = NULL;
689 int len = num.length();
690 Matrix *T = Matrix_Alloc(2, len);
691 zz2values(num, T->p[0]);
692 value_set_si(T->p[1][len-1], 1);
693 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
694 Matrix_Free(T);
696 int i;
697 for (i = 0; i < I->NbRays; ++i)
698 if (value_zero_p(I->Ray[i][2])) {
699 Polyhedron_Free(I);
700 return NULL;
703 Value min, max;
704 value_init(min);
705 value_init(max);
706 line_minmax(I, &min, &max);
708 if (zero)
709 mpz_cdiv_q(min, min, d);
710 else
711 mpz_fdiv_q(min, min, d);
712 mpz_fdiv_q(max, max, d);
714 if (value_eq(min, max)) {
715 ALLOC(ret);
716 value_init(*ret);
717 value_assign(*ret, min);
719 value_clear(min);
720 value_clear(max);
721 return ret;
725 * Normalize linear expression coef modulo m
726 * Removes common factor and reduces coefficients
727 * Returns index of first non-zero coefficient or len
729 static int normal_mod(Value *coef, int len, Value *m)
731 Value gcd;
732 value_init(gcd);
734 Vector_Gcd(coef, len, &gcd);
735 Gcd(gcd, *m, &gcd);
736 Vector_AntiScale(coef, coef, gcd, len);
738 value_division(*m, *m, gcd);
739 value_clear(gcd);
741 if (value_one_p(*m))
742 return len;
744 int j;
745 for (j = 0; j < len; ++j)
746 mpz_fdiv_r(coef[j], coef[j], *m);
747 for (j = 0; j < len; ++j)
748 if (value_notzero_p(coef[j]))
749 break;
751 return j;
754 #ifdef USE_MODULO
755 static void mask(Matrix *f, evalue *factor)
757 int nr = f->NbRows, nc = f->NbColumns;
758 int n;
759 bool found = false;
760 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
761 if (value_notone_p(f->p[n][nc-1]) &&
762 value_notmone_p(f->p[n][nc-1]))
763 found = true;
764 if (!found)
765 return;
767 evalue EP;
768 nr = n;
770 Value m;
771 value_init(m);
773 evalue EV;
774 value_init(EV.d);
775 value_init(EV.x.n);
776 value_set_si(EV.x.n, 1);
778 for (n = 0; n < nr; ++n) {
779 value_assign(m, f->p[n][nc-1]);
780 if (value_one_p(m) || value_mone_p(m))
781 continue;
783 int j = normal_mod(f->p[n], nc-1, &m);
784 if (j == nc-1) {
785 free_evalue_refs(factor);
786 value_init(factor->d);
787 evalue_set_si(factor, 0, 1);
788 break;
790 vec_ZZ row;
791 values2zz(f->p[n], row, nc-1);
792 ZZ g;
793 value2zz(m, g);
794 if (j < (nc-1)-1 && row[j] > g/2) {
795 for (int k = j; k < (nc-1); ++k)
796 if (row[k] != 0)
797 row[k] = g - row[k];
800 value_init(EP.d);
801 value_set_si(EP.d, 0);
802 EP.x.p = new_enode(relation, 2, 0);
803 value_clear(EP.x.p->arr[1].d);
804 EP.x.p->arr[1] = *factor;
805 evalue *ev = &EP.x.p->arr[0];
806 value_set_si(ev->d, 0);
807 ev->x.p = new_enode(fractional, 3, -1);
808 evalue_set_si(&ev->x.p->arr[1], 0, 1);
809 evalue_set_si(&ev->x.p->arr[2], 1, 1);
810 evalue *E = multi_monom(row);
811 value_assign(EV.d, m);
812 emul(&EV, E);
813 value_clear(ev->x.p->arr[0].d);
814 ev->x.p->arr[0] = *E;
815 delete E;
816 *factor = EP;
819 value_clear(m);
820 free_evalue_refs(&EV);
822 #else
826 static void mask(Matrix *f, evalue *factor)
828 int nr = f->NbRows, nc = f->NbColumns;
829 int n;
830 bool found = false;
831 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
832 if (value_notone_p(f->p[n][nc-1]) &&
833 value_notmone_p(f->p[n][nc-1]))
834 found = true;
835 if (!found)
836 return;
838 Value tmp;
839 value_init(tmp);
840 nr = n;
841 unsigned np = nc - 2;
842 Vector *lcm = Vector_Alloc(np);
843 Vector *val = Vector_Alloc(nc);
844 Vector_Set(val->p, 0, nc);
845 value_set_si(val->p[np], 1);
846 Vector_Set(lcm->p, 1, np);
847 for (n = 0; n < nr; ++n) {
848 if (value_one_p(f->p[n][nc-1]) ||
849 value_mone_p(f->p[n][nc-1]))
850 continue;
851 for (int j = 0; j < np; ++j)
852 if (value_notzero_p(f->p[n][j])) {
853 Gcd(f->p[n][j], f->p[n][nc-1], &tmp);
854 value_division(tmp, f->p[n][nc-1], tmp);
855 value_lcm(tmp, lcm->p[j], &lcm->p[j]);
858 evalue EP;
859 value_init(EP.d);
860 mask_r(f, nr, lcm, 0, val, &EP);
861 value_clear(tmp);
862 Vector_Free(val);
863 Vector_Free(lcm);
864 emul(&EP,factor);
865 free_evalue_refs(&EP);
867 #endif
869 struct term_info {
870 evalue *E;
871 ZZ constant;
872 ZZ coeff;
873 int pos;
876 static bool mod_needed(Polyhedron *PD, vec_ZZ& num, Value d, evalue *E)
878 Value *q = fixed_quotient(PD, num, d, false);
880 if (!q)
881 return true;
883 value_oppose(*q, *q);
884 evalue EV;
885 value_init(EV.d);
886 value_set_si(EV.d, 1);
887 value_init(EV.x.n);
888 value_multiply(EV.x.n, *q, d);
889 eadd(&EV, E);
890 free_evalue_refs(&EV);
891 value_clear(*q);
892 free(q);
893 return false;
896 static void ceil_mod(Value *coef, int len, Value d, ZZ& f, evalue *EP, Polyhedron *PD)
898 Value m;
899 value_init(m);
900 value_set_si(m, -1);
902 Vector_Scale(coef, coef, m, len);
904 value_assign(m, d);
905 int j = normal_mod(coef, len, &m);
907 if (j == len) {
908 value_clear(m);
909 return;
912 vec_ZZ num;
913 values2zz(coef, num, len);
915 ZZ g;
916 value2zz(m, g);
918 evalue tmp;
919 value_init(tmp.d);
920 evalue_set_si(&tmp, 0, 1);
922 int p = j;
923 if (g % 2 == 0)
924 while (j < len-1 && (num[j] == g/2 || num[j] == 0))
925 ++j;
926 if ((j < len-1 && num[j] > g/2) || (j == len-1 && num[j] >= (g+1)/2)) {
927 for (int k = j; k < len-1; ++k)
928 if (num[k] != 0)
929 num[k] = g - num[k];
930 num[len-1] = g - 1 - num[len-1];
931 value_assign(tmp.d, m);
932 ZZ t = f*(g-1);
933 zz2value(t, tmp.x.n);
934 eadd(&tmp, EP);
935 f = -f;
938 if (p >= len-1) {
939 ZZ t = num[len-1] * f;
940 zz2value(t, tmp.x.n);
941 value_assign(tmp.d, m);
942 eadd(&tmp, EP);
943 } else {
944 evalue *E = multi_monom(num);
945 evalue EV;
946 value_init(EV.d);
948 if (PD && !mod_needed(PD, num, m, E)) {
949 value_init(EV.x.n);
950 zz2value(f, EV.x.n);
951 value_assign(EV.d, m);
952 emul(&EV, E);
953 eadd(E, EP);
954 } else {
955 value_init(EV.x.n);
956 value_set_si(EV.x.n, 1);
957 value_assign(EV.d, m);
958 emul(&EV, E);
959 value_clear(EV.x.n);
960 value_set_si(EV.d, 0);
961 EV.x.p = new_enode(fractional, 3, -1);
962 evalue_copy(&EV.x.p->arr[0], E);
963 evalue_set_si(&EV.x.p->arr[1], 0, 1);
964 value_init(EV.x.p->arr[2].x.n);
965 zz2value(f, EV.x.p->arr[2].x.n);
966 value_set_si(EV.x.p->arr[2].d, 1);
968 eadd(&EV, EP);
971 free_evalue_refs(&EV);
972 free_evalue_refs(E);
973 delete E;
976 free_evalue_refs(&tmp);
978 out:
979 value_clear(m);
982 evalue* bv_ceil3(Value *coef, int len, Value d, Polyhedron *P)
984 Vector *val = Vector_Alloc(len);
986 Value t;
987 value_init(t);
988 value_set_si(t, -1);
989 Vector_Scale(coef, val->p, t, len);
990 value_absolute(t, d);
992 vec_ZZ num;
993 values2zz(val->p, num, len);
994 evalue *EP = multi_monom(num);
996 evalue tmp;
997 value_init(tmp.d);
998 value_init(tmp.x.n);
999 value_set_si(tmp.x.n, 1);
1000 value_assign(tmp.d, t);
1002 emul(&tmp, EP);
1004 ZZ one;
1005 one = 1;
1006 ceil_mod(val->p, len, t, one, EP, P);
1007 value_clear(t);
1009 /* copy EP to malloc'ed evalue */
1010 evalue *E;
1011 ALLOC(E);
1012 *E = *EP;
1013 delete EP;
1015 free_evalue_refs(&tmp);
1016 Vector_Free(val);
1018 return E;
1021 #ifdef USE_MODULO
1022 evalue* lattice_point(
1023 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1025 unsigned nparam = W->NbColumns - 1;
1027 Matrix* Rays = rays2(i);
1028 Matrix *T = Transpose(Rays);
1029 Matrix *T2 = Matrix_Copy(T);
1030 Matrix *inv = Matrix_Alloc(T2->NbRows, T2->NbColumns);
1031 int ok = Matrix_Inverse(T2, inv);
1032 assert(ok);
1033 Matrix_Free(Rays);
1034 Matrix_Free(T2);
1035 mat_ZZ vertex;
1036 matrix2zz(W, vertex, W->NbRows, W->NbColumns);
1038 vec_ZZ num;
1039 num = lambda * vertex;
1041 evalue *EP = multi_monom(num);
1043 evalue tmp;
1044 value_init(tmp.d);
1045 value_init(tmp.x.n);
1046 value_set_si(tmp.x.n, 1);
1047 value_assign(tmp.d, lcm);
1049 emul(&tmp, EP);
1051 Matrix *L = Matrix_Alloc(inv->NbRows, W->NbColumns);
1052 Matrix_Product(inv, W, L);
1054 mat_ZZ RT;
1055 matrix2zz(T, RT, T->NbRows, T->NbColumns);
1056 Matrix_Free(T);
1058 vec_ZZ p = lambda * RT;
1060 for (int i = 0; i < L->NbRows; ++i) {
1061 ceil_mod(L->p[i], nparam+1, lcm, p[i], EP, PD);
1064 Matrix_Free(L);
1066 Matrix_Free(inv);
1067 free_evalue_refs(&tmp);
1068 return EP;
1070 #else
1071 evalue* lattice_point(
1072 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1074 Matrix *T = Transpose(W);
1075 unsigned nparam = T->NbRows - 1;
1077 evalue *EP = new evalue();
1078 value_init(EP->d);
1079 evalue_set_si(EP, 0, 1);
1081 evalue ev;
1082 Vector *val = Vector_Alloc(nparam+1);
1083 value_set_si(val->p[nparam], 1);
1084 ZZ offset(INIT_VAL, 0);
1085 value_init(ev.d);
1086 vertex_period(i, lambda, T, lcm, 0, val, EP, &ev, offset);
1087 Vector_Free(val);
1088 eadd(&ev, EP);
1089 free_evalue_refs(&ev);
1091 Matrix_Free(T);
1093 reduce_evalue(EP);
1095 return EP;
1097 #endif
1099 void lattice_point(
1100 Param_Vertices* V, Polyhedron *i, vec_ZZ& lambda, term_info* term,
1101 Polyhedron *PD)
1103 unsigned nparam = V->Vertex->NbColumns - 2;
1104 unsigned dim = i->Dimension;
1105 mat_ZZ vertex;
1106 vertex.SetDims(V->Vertex->NbRows, nparam+1);
1107 Value lcm, tmp;
1108 value_init(lcm);
1109 value_init(tmp);
1110 value_set_si(lcm, 1);
1111 for (int j = 0; j < V->Vertex->NbRows; ++j) {
1112 value_lcm(lcm, V->Vertex->p[j][nparam+1], &lcm);
1114 if (value_notone_p(lcm)) {
1115 Matrix * mv = Matrix_Alloc(dim, nparam+1);
1116 for (int j = 0 ; j < dim; ++j) {
1117 value_division(tmp, lcm, V->Vertex->p[j][nparam+1]);
1118 Vector_Scale(V->Vertex->p[j], mv->p[j], tmp, nparam+1);
1121 term->E = lattice_point(i, lambda, mv, lcm, PD);
1122 term->constant = 0;
1124 Matrix_Free(mv);
1125 value_clear(lcm);
1126 value_clear(tmp);
1127 return;
1129 for (int i = 0; i < V->Vertex->NbRows; ++i) {
1130 assert(value_one_p(V->Vertex->p[i][nparam+1])); // for now
1131 values2zz(V->Vertex->p[i], vertex[i], nparam+1);
1134 vec_ZZ num;
1135 num = lambda * vertex;
1137 int p = -1;
1138 int nn = 0;
1139 for (int j = 0; j < nparam; ++j)
1140 if (num[j] != 0) {
1141 ++nn;
1142 p = j;
1144 if (nn >= 2) {
1145 term->E = multi_monom(num);
1146 term->constant = 0;
1147 } else {
1148 term->E = NULL;
1149 term->constant = num[nparam];
1150 term->pos = p;
1151 if (p != -1)
1152 term->coeff = num[p];
1155 value_clear(lcm);
1156 value_clear(tmp);
1159 void normalize(Polyhedron *i, vec_ZZ& lambda, ZZ& sign, ZZ& num, vec_ZZ& den)
1161 unsigned dim = i->Dimension;
1163 int r = 0;
1164 mat_ZZ rays;
1165 rays.SetDims(dim, dim);
1166 add_rays(rays, i, &r);
1167 den = rays * lambda;
1168 int change = 0;
1170 for (int j = 0; j < den.length(); ++j) {
1171 if (den[j] > 0)
1172 change ^= 1;
1173 else {
1174 den[j] = abs(den[j]);
1175 num += den[j];
1178 if (change)
1179 sign = -sign;
1182 void barvinok_count(Polyhedron *P, Value* result, unsigned NbMaxCons)
1184 Polyhedron ** vcone;
1185 vec_ZZ sign;
1186 int ncone = 0;
1187 sign.SetLength(ncone);
1188 unsigned dim;
1189 int allocated = 0;
1190 Value factor;
1191 Polyhedron *Q;
1192 int r = 0;
1194 if (emptyQ(P)) {
1195 value_set_si(*result, 0);
1196 return;
1198 if (P->NbBid == 0)
1199 for (; r < P->NbRays; ++r)
1200 if (value_zero_p(P->Ray[r][P->Dimension+1]))
1201 break;
1202 if (P->NbBid !=0 || r < P->NbRays) {
1203 value_set_si(*result, -1);
1204 return;
1206 if (P->NbEq != 0) {
1207 P = remove_equalities(P);
1208 if (emptyQ(P)) {
1209 Polyhedron_Free(P);
1210 value_set_si(*result, 0);
1211 return;
1213 allocated = 1;
1215 value_init(factor);
1216 value_set_si(factor, 1);
1217 Q = Polyhedron_Reduce(P, &factor);
1218 if (Q) {
1219 if (allocated)
1220 Polyhedron_Free(P);
1221 P = Q;
1222 allocated = 1;
1224 if (P->Dimension == 0) {
1225 value_assign(*result, factor);
1226 if (allocated)
1227 Polyhedron_Free(P);
1228 value_clear(factor);
1229 return;
1232 dim = P->Dimension;
1233 vcone = new (Polyhedron *)[P->NbRays];
1235 for (int j = 0; j < P->NbRays; ++j) {
1236 int npos, nneg;
1237 Polyhedron *C = supporting_cone(P, j);
1238 decompose(C, &vcone[j], &npos, &nneg, NbMaxCons);
1239 ncone += npos + nneg;
1240 sign.SetLength(ncone);
1241 for (int k = 0; k < npos; ++k)
1242 sign[ncone-nneg-k-1] = 1;
1243 for (int k = 0; k < nneg; ++k)
1244 sign[ncone-k-1] = -1;
1247 mat_ZZ rays;
1248 rays.SetDims(ncone * dim, dim);
1249 r = 0;
1250 for (int j = 0; j < P->NbRays; ++j) {
1251 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1252 assert(i->NbRays-1 == dim);
1253 add_rays(rays, i, &r);
1256 vec_ZZ lambda;
1257 nonorthog(rays, lambda);
1259 vec_ZZ num;
1260 mat_ZZ den;
1261 num.SetLength(ncone);
1262 den.SetDims(ncone,dim);
1264 int f = 0;
1265 for (int j = 0; j < P->NbRays; ++j) {
1266 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1267 lattice_point(P->Ray[j]+1, i, lambda, num[f]);
1268 normalize(i, lambda, sign[f], num[f], den[f]);
1269 ++f;
1272 ZZ min = num[0];
1273 for (int j = 1; j < num.length(); ++j)
1274 if (num[j] < min)
1275 min = num[j];
1276 for (int j = 0; j < num.length(); ++j)
1277 num[j] -= min;
1279 f = 0;
1280 mpq_t count;
1281 mpq_init(count);
1282 for (int j = 0; j < P->NbRays; ++j) {
1283 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1284 dpoly d(dim, num[f]);
1285 dpoly n(dim, den[f][0], 1);
1286 for (int k = 1; k < dim; ++k) {
1287 dpoly fact(dim, den[f][k], 1);
1288 n *= fact;
1290 d.div(n, count, sign[f]);
1291 ++f;
1294 assert(value_one_p(&count[0]._mp_den));
1295 value_multiply(*result, &count[0]._mp_num, factor);
1296 mpq_clear(count);
1298 for (int j = 0; j < P->NbRays; ++j)
1299 Domain_Free(vcone[j]);
1301 delete [] vcone;
1303 if (allocated)
1304 Polyhedron_Free(P);
1305 value_clear(factor);
1308 static void uni_polynom(int param, Vector *c, evalue *EP)
1310 unsigned dim = c->Size-2;
1311 value_init(EP->d);
1312 value_set_si(EP->d,0);
1313 EP->x.p = new_enode(polynomial, dim+1, param+1);
1314 for (int j = 0; j <= dim; ++j)
1315 evalue_set(&EP->x.p->arr[j], c->p[j], c->p[dim+1]);
1318 static void multi_polynom(Vector *c, evalue* X, evalue *EP)
1320 unsigned dim = c->Size-2;
1321 evalue EC;
1323 value_init(EC.d);
1324 evalue_set(&EC, c->p[dim], c->p[dim+1]);
1326 value_init(EP->d);
1327 evalue_set(EP, c->p[dim], c->p[dim+1]);
1329 for (int i = dim-1; i >= 0; --i) {
1330 emul(X, EP);
1331 value_assign(EC.x.n, c->p[i]);
1332 eadd(&EC, EP);
1334 free_evalue_refs(&EC);
1337 Polyhedron *unfringe (Polyhedron *P, unsigned MaxRays)
1339 int len = P->Dimension+2;
1340 Polyhedron *T, *R = P;
1341 Value g;
1342 value_init(g);
1343 Vector *row = Vector_Alloc(len);
1344 value_set_si(row->p[0], 1);
1346 R = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
1348 Matrix *M = Matrix_Alloc(2, len-1);
1349 value_set_si(M->p[1][len-2], 1);
1350 for (int v = 0; v < P->Dimension; ++v) {
1351 value_set_si(M->p[0][v], 1);
1352 Polyhedron *I = Polyhedron_Image(P, M, 2+1);
1353 value_set_si(M->p[0][v], 0);
1354 for (int r = 0; r < I->NbConstraints; ++r) {
1355 if (value_zero_p(I->Constraint[r][0]))
1356 continue;
1357 if (value_zero_p(I->Constraint[r][1]))
1358 continue;
1359 if (value_one_p(I->Constraint[r][1]))
1360 continue;
1361 if (value_mone_p(I->Constraint[r][1]))
1362 continue;
1363 value_absolute(g, I->Constraint[r][1]);
1364 Vector_Set(row->p+1, 0, len-2);
1365 value_division(row->p[1+v], I->Constraint[r][1], g);
1366 mpz_fdiv_q(row->p[len-1], I->Constraint[r][2], g);
1367 T = R;
1368 R = AddConstraints(row->p, 1, R, MaxRays);
1369 if (T != P)
1370 Polyhedron_Free(T);
1373 value_clear(g);
1374 return R;
1377 static Polyhedron *reduce_domain(Polyhedron *D, Matrix *CT, Polyhedron *CEq,
1378 Polyhedron **fVD, int nd, unsigned MaxRays)
1380 assert(CEq);
1382 Polyhedron *Dt;
1383 Dt = CT ? DomainPreimage(D, CT, MaxRays) : D;
1384 Polyhedron *rVD = DomainIntersection(Dt, CEq, MaxRays);
1386 /* if rVD is empty or too small in geometric dimension */
1387 if(!rVD || emptyQ(rVD) ||
1388 (rVD->Dimension-rVD->NbEq < Dt->Dimension-Dt->NbEq-CEq->NbEq)) {
1389 if(rVD)
1390 Domain_Free(rVD);
1391 if (CT)
1392 Domain_Free(Dt);
1393 return 0; /* empty validity domain */
1396 if (CT)
1397 Domain_Free(Dt);
1399 fVD[nd] = Domain_Copy(rVD);
1400 for (int i = 0 ; i < nd; ++i) {
1401 Polyhedron *I = DomainIntersection(fVD[nd], fVD[i], MaxRays);
1402 if (emptyQ(I)) {
1403 Domain_Free(I);
1404 continue;
1406 Polyhedron *F = DomainSimplify(I, fVD[nd], MaxRays);
1407 if (F->NbEq == 1) {
1408 Polyhedron *T = rVD;
1409 rVD = DomainDifference(rVD, F, MaxRays);
1410 Domain_Free(T);
1412 Domain_Free(F);
1413 Domain_Free(I);
1416 rVD = DomainConstraintSimplify(rVD, MaxRays);
1417 if (emptyQ(rVD)) {
1418 Domain_Free(rVD);
1419 return 0;
1422 Value c;
1423 value_init(c);
1424 barvinok_count(rVD, &c, MaxRays);
1425 if (value_zero_p(c)) {
1426 Domain_Free(rVD);
1427 rVD = 0;
1429 value_clear(c);
1431 return rVD;
1434 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1436 //P = unfringe(P, MaxRays);
1437 Polyhedron *CEq = NULL, *rVD, *pVD, *CA;
1438 Matrix *CT = NULL;
1439 Param_Polyhedron *PP = NULL;
1440 Param_Domain *D, *next;
1441 Param_Vertices *V;
1442 int r = 0;
1443 unsigned nparam = C->Dimension;
1444 evalue *eres;
1445 ALLOC(eres);
1446 value_init(eres->d);
1447 value_set_si(eres->d, 0);
1449 evalue factor;
1450 value_init(factor.d);
1451 evalue_set_si(&factor, 1, 1);
1453 CA = align_context(C, P->Dimension, MaxRays);
1454 P = DomainIntersection(P, CA, MaxRays);
1455 Polyhedron_Free(CA);
1457 if (C->Dimension == 0 || emptyQ(P)) {
1458 constant:
1459 eres->x.p = new_enode(partition, 2, -1);
1460 EVALUE_SET_DOMAIN(eres->x.p->arr[0],
1461 DomainConstraintSimplify(CEq ? CEq : Polyhedron_Copy(C), MaxRays));
1462 value_set_si(eres->x.p->arr[1].d, 1);
1463 value_init(eres->x.p->arr[1].x.n);
1464 if (emptyQ(P))
1465 value_set_si(eres->x.p->arr[1].x.n, 0);
1466 else
1467 barvinok_count(P, &eres->x.p->arr[1].x.n, MaxRays);
1468 out:
1469 emul(&factor, eres);
1470 reduce_evalue(eres);
1471 free_evalue_refs(&factor);
1472 Polyhedron_Free(P);
1473 if (CT)
1474 Matrix_Free(CT);
1475 if (PP)
1476 Param_Polyhedron_Free(PP);
1478 return eres;
1480 for (r = 0; r < P->NbRays; ++r)
1481 if (value_zero_p(P->Ray[r][0]) ||
1482 value_zero_p(P->Ray[r][P->Dimension+1])) {
1483 int i;
1484 for (i = P->Dimension - nparam; i < P->Dimension; ++i)
1485 if (value_notzero_p(P->Ray[r][i+1]))
1486 break;
1487 if (i >= P->Dimension)
1488 break;
1490 if (r < P->NbRays)
1491 goto constant;
1493 if (P->NbEq != 0) {
1494 Matrix *f;
1495 P = remove_equalities_p(P, P->Dimension-nparam, &f);
1496 mask(f, &factor);
1497 Matrix_Free(f);
1499 if (P->Dimension == nparam) {
1500 CEq = P;
1501 P = Universe_Polyhedron(0);
1502 goto constant;
1505 Polyhedron *Q = ParamPolyhedron_Reduce(P, P->Dimension-nparam, &factor);
1506 if (Q) {
1507 Polyhedron_Free(P);
1508 if (Q->Dimension == nparam) {
1509 CEq = Q;
1510 P = Universe_Polyhedron(0);
1511 goto constant;
1513 P = Q;
1515 Polyhedron *oldP = P;
1516 PP = Polyhedron2Param_SimplifiedDomain(&P,C,MaxRays,&CEq,&CT);
1517 if (P != oldP)
1518 Polyhedron_Free(oldP);
1520 if (isIdentity(CT)) {
1521 Matrix_Free(CT);
1522 CT = NULL;
1523 } else {
1524 assert(CT->NbRows != CT->NbColumns);
1525 if (CT->NbRows == 1) // no more parameters
1526 goto constant;
1527 nparam = CT->NbRows - 1;
1530 unsigned dim = P->Dimension - nparam;
1531 Polyhedron ** vcone = new (Polyhedron *)[PP->nbV];
1532 int * npos = new int[PP->nbV];
1533 int * nneg = new int[PP->nbV];
1534 vec_ZZ sign;
1536 int i;
1537 for (i = 0, V = PP->V; V; ++i, V = V->next) {
1538 Polyhedron *C = supporting_cone_p(P, V);
1539 decompose(C, &vcone[i], &npos[i], &nneg[i], MaxRays);
1542 Vector *c = Vector_Alloc(dim+2);
1544 int nd;
1545 for (nd = 0, D=PP->D; D; ++nd, D=D->next);
1546 struct section { Polyhedron *D; evalue E; };
1547 section *s = new section[nd];
1548 Polyhedron **fVD = new (Polyhedron*)[nd];
1550 for(nd = 0, D=PP->D; D; D=next) {
1551 next = D->next;
1553 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
1554 fVD, nd, MaxRays);
1555 if (!rVD)
1556 continue;
1558 pVD = CT ? DomainImage(rVD,CT,MaxRays) : rVD;
1560 int ncone = 0;
1561 sign.SetLength(ncone);
1562 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1563 ncone += npos[_i] + nneg[_i];
1564 sign.SetLength(ncone);
1565 for (int k = 0; k < npos[_i]; ++k)
1566 sign[ncone-nneg[_i]-k-1] = 1;
1567 for (int k = 0; k < nneg[_i]; ++k)
1568 sign[ncone-k-1] = -1;
1569 END_FORALL_PVertex_in_ParamPolyhedron;
1571 mat_ZZ rays;
1572 rays.SetDims(ncone * dim, dim);
1573 r = 0;
1574 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1575 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1576 assert(i->NbRays-1 == dim);
1577 add_rays(rays, i, &r);
1579 END_FORALL_PVertex_in_ParamPolyhedron;
1580 vec_ZZ lambda;
1581 nonorthog(rays, lambda);
1583 mat_ZZ den;
1584 den.SetDims(ncone,dim);
1585 term_info *num = new term_info[ncone];
1587 int f = 0;
1588 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1589 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1590 lattice_point(V, i, lambda, &num[f], pVD);
1591 normalize(i, lambda, sign[f], num[f].constant, den[f]);
1592 ++f;
1594 END_FORALL_PVertex_in_ParamPolyhedron;
1595 ZZ min = num[0].constant;
1596 for (int j = 1; j < ncone; ++j)
1597 if (num[j].constant < min)
1598 min = num[j].constant;
1599 for (int j = 0; j < ncone; ++j)
1600 num[j].constant -= min;
1601 f = 0;
1602 value_init(s[nd].E.d);
1603 evalue_set_si(&s[nd].E, 0, 1);
1604 mpq_t count;
1605 mpq_init(count);
1606 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1607 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1608 dpoly n(dim, den[f][0], 1);
1609 for (int k = 1; k < dim; ++k) {
1610 dpoly fact(dim, den[f][k], 1);
1611 n *= fact;
1613 if (num[f].E != NULL) {
1614 ZZ one(INIT_VAL, 1);
1615 dpoly_n d(dim, num[f].constant, one);
1616 d.div(n, c, sign[f]);
1617 evalue EV;
1618 multi_polynom(c, num[f].E, &EV);
1619 eadd(&EV , &s[nd].E);
1620 free_evalue_refs(&EV);
1621 free_evalue_refs(num[f].E);
1622 delete num[f].E;
1623 } else if (num[f].pos != -1) {
1624 dpoly_n d(dim, num[f].constant, num[f].coeff);
1625 d.div(n, c, sign[f]);
1626 evalue EV;
1627 uni_polynom(num[f].pos, c, &EV);
1628 eadd(&EV , &s[nd].E);
1629 free_evalue_refs(&EV);
1630 } else {
1631 mpq_set_si(count, 0, 1);
1632 dpoly d(dim, num[f].constant);
1633 d.div(n, count, sign[f]);
1634 evalue EV;
1635 value_init(EV.d);
1636 evalue_set(&EV, &count[0]._mp_num, &count[0]._mp_den);
1637 eadd(&EV , &s[nd].E);
1638 free_evalue_refs(&EV);
1640 ++f;
1642 END_FORALL_PVertex_in_ParamPolyhedron;
1644 mpq_clear(count);
1645 delete [] num;
1647 if (CT)
1648 addeliminatedparams_evalue(&s[nd].E, CT);
1649 s[nd].D = rVD;
1650 ++nd;
1651 if (rVD != pVD)
1652 Domain_Free(pVD);
1655 if (nd == 0)
1656 evalue_set_si(eres, 0, 1);
1657 else {
1658 eres->x.p = new_enode(partition, 2*nd, -1);
1659 for (int j = 0; j < nd; ++j) {
1660 EVALUE_SET_DOMAIN(eres->x.p->arr[2*j], s[j].D);
1661 value_clear(eres->x.p->arr[2*j+1].d);
1662 eres->x.p->arr[2*j+1] = s[j].E;
1663 Domain_Free(fVD[j]);
1666 delete [] s;
1667 delete [] fVD;
1669 Vector_Free(c);
1671 for (int j = 0; j < PP->nbV; ++j)
1672 Domain_Free(vcone[j]);
1673 delete [] vcone;
1674 delete [] npos;
1675 delete [] nneg;
1677 if (CEq)
1678 Polyhedron_Free(CEq);
1680 goto out;
1683 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1685 evalue *EP = barvinok_enumerate_ev(P, C, MaxRays);
1687 return partition2enumeration(EP);
1690 static void SwapColumns(Value **V, int n, int i, int j)
1692 for (int r = 0; r < n; ++r)
1693 value_swap(V[r][i], V[r][j]);
1696 static void SwapColumns(Polyhedron *P, int i, int j)
1698 SwapColumns(P->Constraint, P->NbConstraints, i, j);
1699 SwapColumns(P->Ray, P->NbRays, i, j);
1702 static bool SplitOnConstraint(Polyhedron *P, int i, int l, int u,
1703 int nvar, int len, int exist, int MaxRays,
1704 Vector *row, Value& f, bool independent,
1705 Polyhedron **pos, Polyhedron **neg)
1707 value_oppose(f, P->Constraint[u][nvar+i+1]);
1708 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
1709 row->p+1,
1710 f, P->Constraint[l][nvar+i+1], len-1);
1712 //printf("l: %d, u: %d\n", l, u);
1713 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
1714 value_substract(row->p[len-1], row->p[len-1], f);
1715 value_set_si(f, -1);
1716 Vector_Scale(row->p+1, row->p+1, f, len-1);
1717 value_decrement(row->p[len-1], row->p[len-1]);
1718 Vector_Gcd(row->p+1, len - 2, &f);
1719 if (value_notone_p(f)) {
1720 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
1721 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
1723 *neg = AddConstraints(row->p, 1, P, MaxRays);
1725 /* We found an independent, but useless constraint
1726 * Maybe we should detect this earlier and not
1727 * mark the variable as INDEPENDENT
1729 if (emptyQ((*neg))) {
1730 Polyhedron_Free(*neg);
1731 return false;
1734 value_set_si(f, -1);
1735 Vector_Scale(row->p+1, row->p+1, f, len-1);
1736 value_decrement(row->p[len-1], row->p[len-1]);
1737 *pos = AddConstraints(row->p, 1, P, MaxRays);
1739 if (emptyQ((*pos))) {
1740 Polyhedron_Free(*neg);
1741 Polyhedron_Free(*pos);
1742 return false;
1745 return true;
1749 * unimodularly transform P such that constraint r is transformed
1750 * into a constraint that involves only a single (the first)
1751 * existential variable
1754 static Polyhedron *rotate_along(Polyhedron *P, int r, int nvar, int exist,
1755 unsigned MaxRays)
1757 Value g;
1758 value_init(g);
1760 Vector *row = Vector_Alloc(exist);
1761 Vector_Copy(P->Constraint[r]+1+nvar, row->p, exist);
1762 Vector_Gcd(row->p, exist, &g);
1763 if (value_notone_p(g))
1764 Vector_AntiScale(row->p, row->p, g, exist);
1765 value_clear(g);
1767 Matrix *M = unimodular_complete(row);
1768 Matrix *M2 = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
1769 for (r = 0; r < nvar; ++r)
1770 value_set_si(M2->p[r][r], 1);
1771 for ( ; r < nvar+exist; ++r)
1772 Vector_Copy(M->p[r-nvar], M2->p[r]+nvar, exist);
1773 for ( ; r < P->Dimension+1; ++r)
1774 value_set_si(M2->p[r][r], 1);
1775 Polyhedron *T = Polyhedron_Image(P, M2, MaxRays);
1777 Matrix_Free(M2);
1778 Matrix_Free(M);
1779 Vector_Free(row);
1781 return T;
1784 static bool SplitOnVar(Polyhedron *P, int i,
1785 int nvar, int len, int exist, int MaxRays,
1786 Vector *row, Value& f, bool independent,
1787 Polyhedron **pos, Polyhedron **neg)
1789 int j;
1791 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
1792 if (value_negz_p(P->Constraint[l][nvar+i+1]))
1793 continue;
1795 if (independent) {
1796 for (j = 0; j < exist; ++j)
1797 if (j != i && value_notzero_p(P->Constraint[l][nvar+j+1]))
1798 break;
1799 if (j < exist)
1800 continue;
1803 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
1804 if (value_posz_p(P->Constraint[u][nvar+i+1]))
1805 continue;
1807 if (independent) {
1808 for (j = 0; j < exist; ++j)
1809 if (j != i && value_notzero_p(P->Constraint[u][nvar+j+1]))
1810 break;
1811 if (j < exist)
1812 continue;
1815 if (SplitOnConstraint(P, i, l, u,
1816 nvar, len, exist, MaxRays,
1817 row, f, independent,
1818 pos, neg)) {
1819 if (independent) {
1820 if (i != 0)
1821 SwapColumns(*neg, nvar+1, nvar+1+i);
1823 return true;
1828 return false;
1831 static bool double_bound_pair(Polyhedron *P, int nvar, int exist,
1832 int i, int l1, int l2,
1833 Polyhedron **pos, Polyhedron **neg)
1835 Value f;
1836 value_init(f);
1837 Vector *row = Vector_Alloc(P->Dimension+2);
1838 value_set_si(row->p[0], 1);
1839 value_oppose(f, P->Constraint[l1][nvar+i+1]);
1840 Vector_Combine(P->Constraint[l1]+1, P->Constraint[l2]+1,
1841 row->p+1,
1842 P->Constraint[l2][nvar+i+1], f,
1843 P->Dimension+1);
1844 ConstraintSimplify(row->p, row->p, P->Dimension+2, &f);
1845 *pos = AddConstraints(row->p, 1, P, 0);
1846 value_set_si(f, -1);
1847 Vector_Scale(row->p+1, row->p+1, f, P->Dimension+1);
1848 value_decrement(row->p[P->Dimension+1], row->p[P->Dimension+1]);
1849 *neg = AddConstraints(row->p, 1, P, 0);
1850 Vector_Free(row);
1851 value_clear(f);
1853 return !emptyQ((*pos)) && !emptyQ((*neg));
1856 static bool double_bound(Polyhedron *P, int nvar, int exist,
1857 Polyhedron **pos, Polyhedron **neg)
1859 for (int i = 0; i < exist; ++i) {
1860 int l1, l2;
1861 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1862 if (value_negz_p(P->Constraint[l1][nvar+i+1]))
1863 continue;
1864 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1865 if (value_negz_p(P->Constraint[l2][nvar+i+1]))
1866 continue;
1867 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1868 return true;
1871 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1872 if (value_posz_p(P->Constraint[l1][nvar+i+1]))
1873 continue;
1874 if (l1 < P->NbConstraints)
1875 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1876 if (value_posz_p(P->Constraint[l2][nvar+i+1]))
1877 continue;
1878 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1879 return true;
1882 return false;
1884 return false;
1887 enum constraint {
1888 ALL_POS = 1 << 0,
1889 ONE_NEG = 1 << 1,
1890 INDEPENDENT = 1 << 2,
1893 static evalue* enumerate_or(Polyhedron *pos, Polyhedron *neg,
1894 unsigned exist, unsigned nparam, unsigned MaxRays)
1896 #ifdef DEBUG_ER
1897 fprintf(stderr, "\nER: Or\n");
1898 #endif /* DEBUG_ER */
1900 evalue *EN =
1901 barvinok_enumerate_e(neg, exist, nparam, MaxRays);
1902 evalue *EP =
1903 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
1904 evalue E;
1905 value_init(E.d);
1906 evalue_copy(&E, EP);
1907 eadd(EN, &E);
1908 emul(EN, EP);
1909 free_evalue_refs(EN);
1910 value_init(EN->d);
1911 evalue_set_si(EN, -1, 1);
1912 emul(EN, EP);
1913 eadd(&E, EP);
1915 free_evalue_refs(EN);
1916 free(EN);
1917 free_evalue_refs(&E);
1918 Polyhedron_Free(neg);
1919 Polyhedron_Free(pos);
1921 reduce_evalue(EP);
1923 return EP;
1926 static evalue* enumerate_sum(Polyhedron *P,
1927 unsigned exist, unsigned nparam, unsigned MaxRays)
1929 int nvar = P->Dimension - exist - nparam;
1930 int toswap = nvar < exist ? nvar : exist;
1931 for (int i = 0; i < toswap; ++i)
1932 SwapColumns(P, 1 + i, nvar+exist - i);
1933 nparam += nvar;
1935 #ifdef DEBUG_ER
1936 fprintf(stderr, "\nER: Sum\n");
1937 #endif /* DEBUG_ER */
1939 evalue *EP = barvinok_enumerate_e(P, exist, nparam, MaxRays);
1941 for (int i = 0; i < /* nvar */ nparam; ++i) {
1942 Matrix *C = Matrix_Alloc(1, 1 + nparam + 1);
1943 value_set_si(C->p[0][0], 1);
1944 evalue split;
1945 value_init(split.d);
1946 value_set_si(split.d, 0);
1947 split.x.p = new_enode(partition, 4, -1);
1948 value_set_si(C->p[0][1+i], 1);
1949 Matrix *C2 = Matrix_Copy(C);
1950 EVALUE_SET_DOMAIN(split.x.p->arr[0],
1951 Constraints2Polyhedron(C2, MaxRays));
1952 Matrix_Free(C2);
1953 evalue_set_si(&split.x.p->arr[1], 1, 1);
1954 value_set_si(C->p[0][1+i], -1);
1955 value_set_si(C->p[0][1+nparam], -1);
1956 EVALUE_SET_DOMAIN(split.x.p->arr[2],
1957 Constraints2Polyhedron(C, MaxRays));
1958 evalue_set_si(&split.x.p->arr[3], 1, 1);
1959 emul(&split, EP);
1960 free_evalue_refs(&split);
1961 Matrix_Free(C);
1963 reduce_evalue(EP);
1964 evalue_range_reduction(EP);
1966 evalue_frac2floor(EP);
1968 evalue *sum = esum(EP, nvar);
1970 free_evalue_refs(EP);
1971 free(EP);
1972 EP = sum;
1974 evalue_range_reduction(EP);
1976 return EP;
1979 static evalue* enumerate_sure(Polyhedron *P,
1980 unsigned exist, unsigned nparam, unsigned MaxRays)
1982 int i;
1983 Polyhedron *S = P;
1984 int nvar = P->Dimension - exist - nparam;
1986 for (i = 0; i < exist; ++i) {
1987 Matrix *M = Matrix_Alloc(S->NbConstraints, S->Dimension+2);
1988 int c = 0;
1989 for (int j = 0; j < S->NbConstraints; ++j) {
1990 if (value_negz_p(S->Constraint[j][1+nvar+i]))
1991 continue;
1992 if (value_one_p(S->Constraint[j][1+nvar+i]))
1993 continue;
1994 Vector_Copy(S->Constraint[j], M->p[c], S->Dimension+2);
1995 value_substract(M->p[c][S->Dimension+1],
1996 M->p[c][S->Dimension+1],
1997 S->Constraint[j][1+nvar+i]);
1998 value_increment(M->p[c][S->Dimension+1],
1999 M->p[c][S->Dimension+1]);
2000 ++c;
2002 Polyhedron *O = S;
2003 S = AddConstraints(M->p[0], c, S, MaxRays);
2004 if (O != P)
2005 Polyhedron_Free(O);
2006 Matrix_Free(M);
2007 if (emptyQ(S)) {
2008 Polyhedron_Free(S);
2009 return 0;
2013 Matrix *M = Matrix_Alloc(exist, S->Dimension+2);
2014 for (i = 0; i < exist; ++i)
2015 value_set_si(M->p[i][nvar+i+1], 1);
2016 Polyhedron *O = S;
2017 S = DomainAddRays(S, M, MaxRays);
2018 Polyhedron_Free(O);
2019 Polyhedron *F = DomainAddRays(P, M, MaxRays);
2020 Polyhedron *D = DomainDifference(F, S, MaxRays);
2021 O = D;
2022 D = Disjoint_Domain(D, 0, MaxRays);
2023 Polyhedron_Free(F);
2024 Domain_Free(O);
2025 Matrix_Free(M);
2027 #ifdef DEBUG_ER
2028 fprintf(stderr, "\nER: Sure\n");
2029 #endif /* DEBUG_ER */
2031 M = Matrix_Alloc(P->Dimension+1-exist, P->Dimension+1);
2032 for (int j = 0; j < nvar; ++j)
2033 value_set_si(M->p[j][j], 1);
2034 for (int j = 0; j < nparam+1; ++j)
2035 value_set_si(M->p[nvar+j][nvar+exist+j], 1);
2036 Polyhedron *T = Polyhedron_Image(S, M, MaxRays);
2037 evalue *EP = barvinok_enumerate_e(T, 0, nparam, MaxRays);
2038 Polyhedron_Free(S);
2039 Polyhedron_Free(T);
2040 Matrix_Free(M);
2042 for (Polyhedron *Q = D; Q; Q = Q->next) {
2043 Polyhedron *N = Q->next;
2044 Q->next = 0;
2045 T = DomainIntersection(P, Q, MaxRays);
2046 evalue *E = barvinok_enumerate_e(T, exist, nparam, MaxRays);
2047 eadd(E, EP);
2048 free_evalue_refs(E);
2049 free(E);
2050 Polyhedron_Free(T);
2051 Q->next = N;
2053 Domain_Free(D);
2054 return EP;
2057 static evalue* new_zero_ep()
2059 evalue *EP;
2060 ALLOC(EP);
2061 value_init(EP->d);
2062 evalue_set_si(EP, 0, 1);
2063 return EP;
2066 static evalue* enumerate_vd(Polyhedron **PA,
2067 unsigned exist, unsigned nparam, unsigned MaxRays)
2069 Polyhedron *P = *PA;
2070 int nvar = P->Dimension - exist - nparam;
2071 Param_Polyhedron *PP = NULL;
2072 Polyhedron *C = Universe_Polyhedron(nparam);
2073 Polyhedron *CEq;
2074 Matrix *CT;
2075 Polyhedron *PR = P;
2076 PP = Polyhedron2Param_SimplifiedDomain(&PR,C,MaxRays,&CEq,&CT);
2077 Polyhedron_Free(C);
2079 int nd;
2080 Param_Domain *D, *last;
2081 Value c;
2082 value_init(c);
2083 for (nd = 0, D=PP->D; D; D=D->next, ++nd)
2086 Polyhedron **VD = new (Polyhedron*)[nd];
2087 Polyhedron **fVD = new (Polyhedron*)[nd];
2088 for(nd = 0, D=PP->D; D; D=D->next) {
2089 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
2090 fVD, nd, MaxRays);
2091 if (!rVD)
2092 continue;
2094 VD[nd++] = rVD;
2095 last = D;
2098 evalue *EP = 0;
2100 if (nd == 0)
2101 EP = new_zero_ep();
2103 /* This doesn't seem to have any effect */
2104 if (nd == 1) {
2105 Polyhedron *CA = align_context(VD[0], P->Dimension, MaxRays);
2106 Polyhedron *O = P;
2107 P = DomainIntersection(P, CA, MaxRays);
2108 if (O != *PA)
2109 Polyhedron_Free(O);
2110 Polyhedron_Free(CA);
2111 if (emptyQ(P))
2112 EP = new_zero_ep();
2115 if (!EP && CT->NbColumns != CT->NbRows) {
2116 Polyhedron *CEqr = DomainImage(CEq, CT, MaxRays);
2117 Polyhedron *CA = align_context(CEqr, PR->Dimension, MaxRays);
2118 Polyhedron *I = DomainIntersection(PR, CA, MaxRays);
2119 Polyhedron_Free(CEqr);
2120 Polyhedron_Free(CA);
2121 #ifdef DEBUG_ER
2122 fprintf(stderr, "\nER: Eliminate\n");
2123 #endif /* DEBUG_ER */
2124 nparam -= CT->NbColumns - CT->NbRows;
2125 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2126 addeliminatedparams_enum(EP, CT, CEq, MaxRays);
2127 Polyhedron_Free(I);
2129 PR = 0;
2131 if (!EP && nd > 1) {
2132 #ifdef DEBUG_ER
2133 fprintf(stderr, "\nER: VD\n");
2134 #endif /* DEBUG_ER */
2135 for (int i = 0; i < nd; ++i) {
2136 Polyhedron *CA = align_context(VD[i], P->Dimension, MaxRays);
2137 Polyhedron *I = DomainIntersection(P, CA, MaxRays);
2139 if (i == 0)
2140 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2141 else {
2142 evalue *E = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2143 eadd(E, EP);
2144 free_evalue_refs(E);
2145 free(E);
2147 Polyhedron_Free(I);
2148 Polyhedron_Free(CA);
2152 for (int i = 0; i < nd; ++i) {
2153 Polyhedron_Free(VD[i]);
2154 Polyhedron_Free(fVD[i]);
2156 delete [] VD;
2157 delete [] fVD;
2158 value_clear(c);
2160 if (!EP && nvar == 0) {
2161 Value f;
2162 value_init(f);
2163 Param_Vertices *V, *V2;
2164 Matrix* M = Matrix_Alloc(1, P->Dimension+2);
2166 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2167 bool found = false;
2168 FORALL_PVertex_in_ParamPolyhedron(V2, last, PP) {
2169 if (V == V2) {
2170 found = true;
2171 continue;
2173 if (!found)
2174 continue;
2175 for (int i = 0; i < exist; ++i) {
2176 value_oppose(f, V->Vertex->p[i][nparam+1]);
2177 Vector_Combine(V->Vertex->p[i],
2178 V2->Vertex->p[i],
2179 M->p[0] + 1 + nvar + exist,
2180 V2->Vertex->p[i][nparam+1],
2182 nparam+1);
2183 int j;
2184 for (j = 0; j < nparam; ++j)
2185 if (value_notzero_p(M->p[0][1+nvar+exist+j]))
2186 break;
2187 if (j >= nparam)
2188 continue;
2189 ConstraintSimplify(M->p[0], M->p[0],
2190 P->Dimension+2, &f);
2191 value_set_si(M->p[0][0], 0);
2192 Polyhedron *para = AddConstraints(M->p[0], 1, P,
2193 MaxRays);
2194 if (emptyQ(para)) {
2195 Polyhedron_Free(para);
2196 continue;
2198 Polyhedron *pos, *neg;
2199 value_set_si(M->p[0][0], 1);
2200 value_decrement(M->p[0][P->Dimension+1],
2201 M->p[0][P->Dimension+1]);
2202 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2203 value_set_si(f, -1);
2204 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2205 P->Dimension+1);
2206 value_decrement(M->p[0][P->Dimension+1],
2207 M->p[0][P->Dimension+1]);
2208 value_decrement(M->p[0][P->Dimension+1],
2209 M->p[0][P->Dimension+1]);
2210 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2211 if (emptyQ(neg) && emptyQ(pos)) {
2212 Polyhedron_Free(para);
2213 Polyhedron_Free(pos);
2214 Polyhedron_Free(neg);
2215 continue;
2217 #ifdef DEBUG_ER
2218 fprintf(stderr, "\nER: Order\n");
2219 #endif /* DEBUG_ER */
2220 EP = barvinok_enumerate_e(para, exist, nparam, MaxRays);
2221 evalue *E;
2222 if (!emptyQ(pos)) {
2223 E = barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2224 eadd(E, EP);
2225 free_evalue_refs(E);
2226 free(E);
2228 if (!emptyQ(neg)) {
2229 E = barvinok_enumerate_e(neg, exist, nparam, MaxRays);
2230 eadd(E, EP);
2231 free_evalue_refs(E);
2232 free(E);
2234 break;
2236 if (EP)
2237 break;
2238 } END_FORALL_PVertex_in_ParamPolyhedron;
2239 if (EP)
2240 break;
2241 } END_FORALL_PVertex_in_ParamPolyhedron;
2243 if (!EP) {
2244 /* Search for vertex coordinate to split on */
2245 /* First look for one independent of the parameters */
2246 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2247 for (int i = 0; i < exist; ++i) {
2248 int j;
2249 for (j = 0; j < nparam; ++j)
2250 if (value_notzero_p(V->Vertex->p[i][j]))
2251 break;
2252 if (j < nparam)
2253 continue;
2254 value_set_si(M->p[0][0], 1);
2255 Vector_Set(M->p[0]+1, 0, nvar+exist);
2256 Vector_Copy(V->Vertex->p[i],
2257 M->p[0] + 1 + nvar + exist, nparam+1);
2258 value_oppose(M->p[0][1+nvar+i],
2259 V->Vertex->p[i][nparam+1]);
2261 Polyhedron *pos, *neg;
2262 value_set_si(M->p[0][0], 1);
2263 value_decrement(M->p[0][P->Dimension+1],
2264 M->p[0][P->Dimension+1]);
2265 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2266 value_set_si(f, -1);
2267 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2268 P->Dimension+1);
2269 value_decrement(M->p[0][P->Dimension+1],
2270 M->p[0][P->Dimension+1]);
2271 value_decrement(M->p[0][P->Dimension+1],
2272 M->p[0][P->Dimension+1]);
2273 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2274 if (emptyQ(neg) || emptyQ(pos)) {
2275 Polyhedron_Free(pos);
2276 Polyhedron_Free(neg);
2277 continue;
2279 Polyhedron_Free(pos);
2280 value_increment(M->p[0][P->Dimension+1],
2281 M->p[0][P->Dimension+1]);
2282 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2283 #ifdef DEBUG_ER
2284 fprintf(stderr, "\nER: Vertex\n");
2285 #endif /* DEBUG_ER */
2286 EP = enumerate_or(pos, neg, exist, nparam, MaxRays);
2287 break;
2289 if (EP)
2290 break;
2291 } END_FORALL_PVertex_in_ParamPolyhedron;
2294 Matrix_Free(M);
2295 value_clear(f);
2298 if (CEq)
2299 Polyhedron_Free(CEq);
2300 if (CT)
2301 Matrix_Free(CT);
2302 if (PP)
2303 Param_Polyhedron_Free(PP);
2304 *PA = P;
2306 return EP;
2309 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2310 unsigned exist, unsigned nparam, unsigned MaxRays);
2312 #ifdef DEBUG_ER
2313 static int er_level = 0;
2315 evalue* barvinok_enumerate_e(Polyhedron *P,
2316 unsigned exist, unsigned nparam, unsigned MaxRays)
2318 fprintf(stderr, "\nER: level %i\n", er_level);
2319 int nvar = P->Dimension - exist - nparam;
2320 fprintf(stderr, "%d %d %d\n", nvar, exist, nparam);
2322 Polyhedron_Print(stderr, P_VALUE_FMT, P);
2323 ++er_level;
2324 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2325 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2326 Polyhedron_Free(P);
2327 --er_level;
2328 return EP;
2330 #else
2331 evalue* barvinok_enumerate_e(Polyhedron *P,
2332 unsigned exist, unsigned nparam, unsigned MaxRays)
2334 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2335 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2336 Polyhedron_Free(P);
2337 return EP;
2339 #endif
2341 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2342 unsigned exist, unsigned nparam, unsigned MaxRays)
2344 if (exist == 0) {
2345 Polyhedron *U = Universe_Polyhedron(nparam);
2346 evalue *EP = barvinok_enumerate_ev(P, U, MaxRays);
2347 //char *param_name[] = {"P", "Q", "R", "S", "T" };
2348 //print_evalue(stdout, EP, param_name);
2349 Polyhedron_Free(U);
2350 return EP;
2353 int nvar = P->Dimension - exist - nparam;
2354 int len = P->Dimension + 2;
2356 if (emptyQ(P))
2357 return new_zero_ep();
2359 if (nvar == 0 && nparam == 0) {
2360 evalue *EP = new_zero_ep();
2361 barvinok_count(P, &EP->x.n, MaxRays);
2362 if (value_pos_p(EP->x.n))
2363 value_set_si(EP->x.n, 1);
2364 return EP;
2367 int r;
2368 for (r = 0; r < P->NbRays; ++r)
2369 if (value_zero_p(P->Ray[r][0]) ||
2370 value_zero_p(P->Ray[r][P->Dimension+1])) {
2371 int i;
2372 for (i = 0; i < nvar; ++i)
2373 if (value_notzero_p(P->Ray[r][i+1]))
2374 break;
2375 if (i >= nvar)
2376 continue;
2377 for (i = nvar; i < nvar + exist; ++i)
2378 if (value_notzero_p(P->Ray[r][i+1]))
2379 break;
2380 if (i >= nvar + exist)
2381 break;
2383 if (r < P->NbRays) {
2384 evalue *EP = new_zero_ep();
2385 value_set_si(EP->x.n, -1);
2386 return EP;
2389 int first;
2390 for (r = 0; r < P->NbEq; ++r)
2391 if ((first = First_Non_Zero(P->Constraint[r]+1+nvar, exist)) != -1)
2392 break;
2393 if (r < P->NbEq) {
2394 if (First_Non_Zero(P->Constraint[r]+1+nvar+first+1,
2395 exist-first-1) != -1) {
2396 Polyhedron *T = rotate_along(P, r, nvar, exist, MaxRays);
2397 #ifdef DEBUG_ER
2398 fprintf(stderr, "\nER: Equality\n");
2399 #endif /* DEBUG_ER */
2400 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2401 Polyhedron_Free(T);
2402 return EP;
2403 } else {
2404 #ifdef DEBUG_ER
2405 fprintf(stderr, "\nER: Fixed\n");
2406 #endif /* DEBUG_ER */
2407 if (first == 0)
2408 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
2409 else {
2410 Polyhedron *T = Polyhedron_Copy(P);
2411 SwapColumns(T, nvar+1, nvar+1+first);
2412 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2413 Polyhedron_Free(T);
2414 return EP;
2419 Vector *row = Vector_Alloc(len);
2420 value_set_si(row->p[0], 1);
2422 Value f;
2423 value_init(f);
2425 enum constraint info[exist];
2426 for (int i = 0; i < exist; ++i) {
2427 info[i] = ALL_POS;
2428 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
2429 if (value_negz_p(P->Constraint[l][nvar+i+1]))
2430 continue;
2431 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
2432 if (value_posz_p(P->Constraint[u][nvar+i+1]))
2433 continue;
2434 value_oppose(f, P->Constraint[u][nvar+i+1]);
2435 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1, row->p+1,
2436 f, P->Constraint[l][nvar+i+1], len-1);
2437 if (!(info[i] & INDEPENDENT)) {
2438 int j;
2439 for (j = 0; j < exist; ++j)
2440 if (j != i && value_notzero_p(row->p[nvar+j+1]))
2441 break;
2442 if (j == exist) {
2443 //printf("independent: i: %d, l: %d, u: %d\n", i, l, u);
2444 info[i] = (constraint)(info[i] | INDEPENDENT);
2447 if (info[i] & ALL_POS) {
2448 value_addto(row->p[len-1], row->p[len-1],
2449 P->Constraint[l][nvar+i+1]);
2450 value_addto(row->p[len-1], row->p[len-1], f);
2451 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
2452 value_substract(row->p[len-1], row->p[len-1], f);
2453 value_decrement(row->p[len-1], row->p[len-1]);
2454 Vector_Gcd(row->p+1, len - 2, &f);
2455 if (value_notone_p(f)) {
2456 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
2457 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
2459 value_set_si(f, -1);
2460 Vector_Scale(row->p+1, row->p+1, f, len-1);
2461 value_decrement(row->p[len-1], row->p[len-1]);
2462 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
2463 if (!emptyQ(T)) {
2464 //printf("not all_pos: i: %d, l: %d, u: %d\n", i, l, u);
2465 info[i] = (constraint)(info[i] ^ ALL_POS);
2467 //puts("pos remainder");
2468 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
2469 Polyhedron_Free(T);
2471 if (!(info[i] & ONE_NEG)) {
2472 int j;
2473 for (j = 0; j < exist; ++j)
2474 if (j != i &&
2475 value_notzero_p(P->Constraint[l][nvar+j+1]))
2476 break;
2477 if (j != exist)
2478 for (j = 0; j < exist; ++j)
2479 if (j != i &&
2480 value_notzero_p(P->Constraint[u][nvar+j+1]))
2481 break;
2482 if (j == exist) {
2483 /* recalculate constant */
2484 /* We actually recalculate the whole row for
2485 * now, because it may have already been scaled
2487 value_oppose(f, P->Constraint[u][nvar+i+1]);
2488 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
2489 row->p+1,
2490 f, P->Constraint[l][nvar+i+1], len-1);
2492 Vector_Combine(P->Constraint[l]+len-1,
2493 P->Constraint[u]+len-1, row->p+len-1,
2494 f, P->Constraint[l][nvar+i+1], 1);
2496 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
2497 value_substract(row->p[len-1], row->p[len-1], f);
2498 value_set_si(f, -1);
2499 Vector_Scale(row->p+1, row->p+1, f, len-1);
2500 value_decrement(row->p[len-1], row->p[len-1]);
2501 Vector_Gcd(row->p+1, len - 2, &f);
2502 if (value_notone_p(f)) {
2503 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
2504 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
2506 value_set_si(f, -1);
2507 Vector_Scale(row->p+1, row->p+1, f, len-1);
2508 value_decrement(row->p[len-1], row->p[len-1]);
2509 //puts("row");
2510 //Vector_Print(stdout, P_VALUE_FMT, row);
2511 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
2512 if (emptyQ(T)) {
2513 //printf("one_neg i: %d, l: %d, u: %d\n", i, l, u);
2514 info[i] = (constraint)(info[i] | ONE_NEG);
2516 //puts("neg remainder");
2517 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
2518 Polyhedron_Free(T);
2521 if (!(info[i] & ALL_POS) && (info[i] & ONE_NEG))
2522 goto next;
2525 if (info[i] & ALL_POS)
2526 break;
2527 next:
2532 for (int i = 0; i < exist; ++i)
2533 printf("%i: %i\n", i, info[i]);
2535 for (int i = 0; i < exist; ++i)
2536 if (info[i] & ALL_POS) {
2537 #ifdef DEBUG_ER
2538 fprintf(stderr, "\nER: Positive\n");
2539 #endif /* DEBUG_ER */
2540 // Eliminate
2541 // Maybe we should chew off some of the fat here
2542 Matrix *M = Matrix_Alloc(P->Dimension, P->Dimension+1);
2543 for (int j = 0; j < P->Dimension; ++j)
2544 value_set_si(M->p[j][j + (j >= i+nvar)], 1);
2545 Polyhedron *T = Polyhedron_Image(P, M, MaxRays);
2546 Matrix_Free(M);
2547 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2548 Polyhedron_Free(T);
2549 value_clear(f);
2550 Vector_Free(row);
2551 return EP;
2553 for (int i = 0; i < exist; ++i)
2554 if (info[i] & ONE_NEG) {
2555 #ifdef DEBUG_ER
2556 fprintf(stderr, "\nER: Negative\n");
2557 #endif /* DEBUG_ER */
2558 Vector_Free(row);
2559 value_clear(f);
2560 if (i == 0)
2561 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
2562 else {
2563 Polyhedron *T = Polyhedron_Copy(P);
2564 SwapColumns(T, nvar+1, nvar+1+i);
2565 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2566 Polyhedron_Free(T);
2567 return EP;
2570 for (int i = 0; i < exist; ++i)
2571 if (info[i] & INDEPENDENT) {
2572 Polyhedron *pos, *neg;
2574 /* Find constraint again and split off negative part */
2576 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
2577 row, f, true, &pos, &neg)) {
2578 #ifdef DEBUG_ER
2579 fprintf(stderr, "\nER: Split\n");
2580 #endif /* DEBUG_ER */
2582 evalue *EP =
2583 barvinok_enumerate_e(neg, exist-1, nparam, MaxRays);
2584 evalue *E =
2585 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2586 eadd(E, EP);
2587 free_evalue_refs(E);
2588 free(E);
2589 Polyhedron_Free(neg);
2590 Polyhedron_Free(pos);
2591 value_clear(f);
2592 Vector_Free(row);
2593 return EP;
2597 evalue *EP;
2598 EP = enumerate_sure(P, exist, nparam, MaxRays);
2599 if (EP)
2600 return EP;
2602 Polyhedron *F = unfringe(P, MaxRays);
2603 if (!PolyhedronIncludes(F, P)) {
2604 #ifdef DEBUG_ER
2605 fprintf(stderr, "\nER: Fringed\n");
2606 #endif /* DEBUG_ER */
2607 EP = barvinok_enumerate_e(F, exist, nparam, MaxRays);
2608 Polyhedron_Free(F);
2609 return EP;
2611 Polyhedron_Free(F);
2613 Polyhedron *O = P;
2614 if (nparam)
2615 EP = enumerate_vd(&P, exist, nparam, MaxRays);
2616 if (EP) {
2617 if (O != P)
2618 Polyhedron_Free(P);
2619 return EP;
2622 if (nvar != 0) {
2623 EP = enumerate_sum(P, exist, nparam, MaxRays);
2624 if (O != P)
2625 Polyhedron_Free(P);
2626 return EP;
2629 assert(nvar == 0);
2631 int i;
2632 Polyhedron *pos, *neg;
2633 for (i = 0; i < exist; ++i)
2634 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
2635 row, f, false, &pos, &neg))
2636 break;
2638 assert (i < exist);
2640 EP = enumerate_or(pos, neg, exist, nparam, MaxRays);
2641 value_clear(f);
2642 Vector_Free(row);
2644 if (O != P)
2645 Polyhedron_Free(P);
2647 return EP;