laurent.cc: laurent_summator: member initializer list: put base classes first
[barvinok.git] / genfun.cc
blob94791362bdc066be493692265640d8644d6bb73a
1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include <assert.h>
5 #include <barvinok/genfun.h>
6 #include <barvinok/barvinok.h>
7 #include "conversion.h"
8 #include "counter.h"
9 #include "genfun_constructor.h"
10 #include "mat_util.h"
11 #include "matrix_read.h"
12 #include "remove_equalities.h"
14 using std::cout;
15 using std::cerr;
16 using std::endl;
17 using std::pair;
18 using std::vector;
20 bool short_rat_lex_smaller_denominator::operator()(const short_rat* r1,
21 const short_rat* r2) const
23 return lex_cmp(r1->d.power, r2->d.power) < 0;
26 static void lex_order_terms(struct short_rat* rat)
28 for (int i = 0; i < rat->n.power.NumRows(); ++i) {
29 int m = i;
30 for (int j = i+1; j < rat->n.power.NumRows(); ++j)
31 if (lex_cmp(rat->n.power[j], rat->n.power[m]) < 0)
32 m = j;
33 if (m != i) {
34 vec_ZZ tmp = rat->n.power[m];
35 rat->n.power[m] = rat->n.power[i];
36 rat->n.power[i] = tmp;
37 QQ tmp_coeff = rat->n.coeff[m];
38 rat->n.coeff[m] = rat->n.coeff[i];
39 rat->n.coeff[i] = tmp_coeff;
44 short_rat::short_rat(const short_rat& r)
46 n.coeff = r.n.coeff;
47 n.power = r.n.power;
48 d.power = r.d.power;
51 short_rat::short_rat(Value c)
53 n.coeff.SetLength(1);
54 value2zz(c, n.coeff[0].n);
55 n.coeff[0].d = 1;
56 n.power.SetDims(1, 0);
57 d.power.SetDims(0, 0);
60 short_rat::short_rat(const QQ& c, const vec_ZZ& num, const mat_ZZ& den)
62 n.coeff.SetLength(1);
63 ZZ g = GCD(c.n, c.d);
64 n.coeff[0].n = c.n/g;
65 n.coeff[0].d = c.d/g;
66 n.power.SetDims(1, num.length());
67 n.power[0] = num;
68 d.power = den;
69 normalize();
72 short_rat::short_rat(const vec_QQ& c, const mat_ZZ& num, const mat_ZZ& den)
74 n.coeff = c;
75 n.power = num;
76 d.power = den;
77 normalize();
80 void short_rat::normalize()
82 /* Make all powers in denominator reverse-lexico-positive */
83 for (int i = 0; i < d.power.NumRows(); ++i) {
84 int j;
85 for (j = d.power.NumCols()-1; j >= 0; --j)
86 if (!IsZero(d.power[i][j]))
87 break;
88 assert(j >= 0);
89 if (sign(d.power[i][j]) < 0) {
90 negate(d.power[i], d.power[i]);
91 for (int k = 0; k < n.coeff.length(); ++k) {
92 negate(n.coeff[k].n, n.coeff[k].n);
93 n.power[k] += d.power[i];
98 /* Order powers in denominator */
99 lex_order_rows(d.power);
102 void short_rat::add(const short_rat *r)
104 for (int i = 0; i < r->n.power.NumRows(); ++i) {
105 int len = n.coeff.length();
106 int j;
107 for (j = 0; j < len; ++j)
108 if (r->n.power[i] == n.power[j])
109 break;
110 if (j < len) {
111 n.coeff[j] += r->n.coeff[i];
112 if (n.coeff[j].n == 0) {
113 if (j < len-1) {
114 n.power[j] = n.power[len-1];
115 n.coeff[j] = n.coeff[len-1];
117 int dim = n.power.NumCols();
118 n.coeff.SetLength(len-1);
119 n.power.SetDims(len-1, dim);
121 } else {
122 int dim = n.power.NumCols();
123 n.coeff.SetLength(len+1);
124 n.power.SetDims(len+1, dim);
125 n.coeff[len] = r->n.coeff[i];
126 n.power[len] = r->n.power[i];
131 QQ short_rat::coefficient(Value* params, barvinok_options *options) const
133 unsigned nvar = d.power.NumRows();
134 unsigned nparam = d.power.NumCols();
135 Matrix *C = Matrix_Alloc(nparam + nvar, 1 + nvar + 1);
136 Value tmp;
137 value_init(tmp);
139 QQ c(0, 1);
141 for (int j = 0; j < n.coeff.length(); ++j) {
142 C->NbRows = nparam+nvar;
143 for (int r = 0; r < nparam; ++r) {
144 value_set_si(C->p[r][0], 0);
145 for (int c = 0; c < nvar; ++c) {
146 zz2value(d.power[c][r], C->p[r][1+c]);
148 zz2value(n.power[j][r], C->p[r][1+nvar]);
149 value_subtract(C->p[r][1+nvar], C->p[r][1+nvar], params[r]);
151 for (int r = 0; r < nvar; ++r) {
152 value_set_si(C->p[nparam+r][0], 1);
153 Vector_Set(&C->p[nparam+r][1], 0, nvar + 1);
154 value_set_si(C->p[nparam+r][1+r], 1);
156 Polyhedron *P = Constraints2Polyhedron(C, options->MaxRays);
157 if (emptyQ2(P)) {
158 Polyhedron_Free(P);
159 continue;
161 barvinok_count_with_options(P, &tmp, options);
162 Polyhedron_Free(P);
163 if (value_zero_p(tmp))
164 continue;
165 QQ c2(0, 1);
166 value2zz(tmp, c2.n);
167 c2 *= n.coeff[j];
168 c += c2;
170 Matrix_Free(C);
171 value_clear(tmp);
172 return c;
175 bool short_rat::reduced()
177 int dim = n.power.NumCols();
178 lex_order_terms(this);
179 if (n.power.NumRows() % 2 == 0) {
180 if (n.coeff[0].n == -n.coeff[1].n &&
181 n.coeff[0].d == n.coeff[1].d) {
182 vec_ZZ step = n.power[1] - n.power[0];
183 int k;
184 for (k = 1; k < n.power.NumRows()/2; ++k) {
185 if (n.coeff[2*k].n != -n.coeff[2*k+1].n ||
186 n.coeff[2*k].d != n.coeff[2*k+1].d)
187 break;
188 if (step != n.power[2*k+1] - n.power[2*k])
189 break;
191 if (k == n.power.NumRows()/2) {
192 for (k = 0; k < d.power.NumRows(); ++k)
193 if (d.power[k] == step)
194 break;
195 if (k < d.power.NumRows()) {
196 for (++k; k < d.power.NumRows(); ++k)
197 d.power[k-1] = d.power[k];
198 d.power.SetDims(k-1, dim);
199 for (k = 1; k < n.power.NumRows()/2; ++k) {
200 n.coeff[k] = n.coeff[2*k];
201 n.power[k] = n.power[2*k];
203 n.coeff.SetLength(k);
204 n.power.SetDims(k, dim);
205 return true;
210 return false;
213 gen_fun::gen_fun(Value c)
215 short_rat *r = new short_rat(c);
216 context = Universe_Polyhedron(0);
217 term.insert(r);
220 void gen_fun::add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den)
222 if (c.n == 0)
223 return;
225 add(new short_rat(c, num, den));
228 void gen_fun::add(short_rat *r)
230 short_rat_list::iterator i = term.find(r);
231 while (i != term.end()) {
232 (*i)->add(r);
233 if ((*i)->n.coeff.length() == 0) {
234 delete *i;
235 term.erase(i);
236 } else if ((*i)->reduced()) {
237 delete r;
238 /* we've modified term[i], so remove it
239 * and add it back again
241 r = *i;
242 term.erase(i);
243 i = term.find(r);
244 continue;
246 delete r;
247 return;
250 term.insert(r);
253 /* Extend the context of "this" to include the one of "gf".
255 void gen_fun::extend_context(const gen_fun *gf, barvinok_options *options)
257 Polyhedron *U = DomainUnion(context, gf->context, options->MaxRays);
258 Polyhedron *C = DomainConvex(U, options->MaxRays);
259 Domain_Free(U);
260 Domain_Free(context);
261 context = C;
264 /* Add the generating "gf" to "this" on the union of their domains.
266 void gen_fun::add(const QQ& c, const gen_fun *gf, barvinok_options *options)
268 extend_context(gf, options);
269 add(c, gf);
272 void gen_fun::add(const QQ& c, const gen_fun *gf)
274 QQ p;
275 for (short_rat_list::iterator i = gf->term.begin(); i != gf->term.end(); ++i) {
276 for (int j = 0; j < (*i)->n.power.NumRows(); ++j) {
277 p = c;
278 p *= (*i)->n.coeff[j];
279 add(p, (*i)->n.power[j], (*i)->d.power);
284 static void split_param_compression(Matrix *CP, mat_ZZ& map, vec_ZZ& offset)
286 Matrix *T = Transpose(CP);
287 matrix2zz(T, map, T->NbRows-1, T->NbColumns-1);
288 values2zz(T->p[T->NbRows-1], offset, T->NbColumns-1);
289 Matrix_Free(T);
293 * Perform the substitution specified by CP
295 * CP is a homogeneous matrix that maps a set of "compressed parameters"
296 * to the original set of parameters.
298 * This function is applied to a gen_fun computed with the compressed parameters
299 * and adapts it to refer to the original parameters.
301 * That is, if y are the compressed parameters and x = A y + b are the original
302 * parameters, then we want the coefficient of the monomial t^y in the original
303 * generating function to be the coefficient of the monomial u^x in the resulting
304 * generating function.
305 * The original generating function has the form
307 * a t^m/(1-t^n) = a t^m + a t^{m+n} + a t^{m+2n} + ...
309 * Since each term t^y should correspond to a term u^x, with x = A y + b, we want
311 * a u^{A m + b} + a u^{A (m+n) + b} + a u^{A (m+2n) +b} + ... =
313 * = a u^{A m + b}/(1-u^{A n})
315 * Therefore, we multiply the powers m and n in both numerator and denominator by A
316 * and add b to the power in the numerator.
317 * Since the above powers are stored as row vectors m^T and n^T,
318 * we compute, say, m'^T = m^T A^T to obtain m' = A m.
320 * The pair (map, offset) contains the same information as CP.
321 * map is the transpose of the linear part of CP, while offset is the constant part.
323 void gen_fun::substitute(Matrix *CP)
325 mat_ZZ map;
326 vec_ZZ offset;
327 split_param_compression(CP, map, offset);
328 Polyhedron *C = Polyhedron_Image(context, CP, 0);
329 Polyhedron_Free(context);
330 context = C;
332 short_rat_list new_term;
333 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
334 short_rat *r = (*i);
335 r->d.power *= map;
336 r->n.power *= map;
337 for (int j = 0; j < r->n.power.NumRows(); ++j)
338 r->n.power[j] += offset;
339 r->normalize();
340 new_term.insert(r);
342 term.swap(new_term);
345 static int Matrix_Equal(Matrix *M1, Matrix *M2)
347 int i, j;
349 if (M1->NbRows != M2->NbRows)
350 return 0;
351 if (M1->NbColumns != M2->NbColumns)
352 return 0;
353 for (i = 0; i < M1->NbRows; ++i)
354 for (j = 0; j < M1->NbColumns; ++j)
355 if (value_ne(M1->p[i][j], M2->p[i][j]))
356 return 0;
358 return 1;
361 struct parallel_cones {
362 int *pos;
363 vector<pair<Vector *, QQ> > vertices;
364 parallel_cones(int *pos) : pos(pos) {}
367 /* This structure helps in computing the generating functions
368 * of polytopes with pairwise parallel hyperplanes more efficiently.
369 * These occur when computing hadamard products of pairs of generating
370 * functions with the same denominators.
371 * If there are many such pairs then the same vertex cone
372 * may appear more than once. We therefore keep a list of all
373 * vertex cones and only compute the corresponding generating function
374 * once.
375 * However, even HPs of generating functions with the same denominators
376 * can result in polytopes of different "shapes", making them incomparable.
377 * In particular, they can have different equalities among the parameters
378 * and the variables. In such cases, only polytopes of the first "shape"
379 * that is encountered are kept in this way. The others are handled
380 * in the usual, non-optimized way.
382 struct parallel_polytopes {
383 gf_base *red;
384 Polyhedron *context;
385 Matrix *Constraints;
386 Matrix *CP, *T;
387 int dim;
388 int nparam;
389 unsigned reduced_nparam;
390 vector<parallel_cones> cones;
391 barvinok_options *options;
393 parallel_polytopes(int n, Polyhedron *context, int nparam,
394 barvinok_options *options) :
395 context(context), dim(-1), nparam(nparam),
396 options(options) {
397 red = NULL;
398 Constraints = NULL;
399 CP = NULL;
400 T = NULL;
402 bool add(const QQ& c, Polyhedron *P) {
403 int i;
405 for (i = 0; i < P->NbEq; ++i)
406 if (First_Non_Zero(P->Constraint[i]+1,
407 P->Dimension-nparam) == -1)
408 break;
409 if (i < P->NbEq)
410 return false;
412 Polyhedron *Q = remove_equalities_p(Polyhedron_Copy(P), P->Dimension-nparam,
413 NULL, options->MaxRays);
414 POL_ENSURE_VERTICES(Q);
415 if (emptyQ(Q)) {
416 Polyhedron_Free(Q);
417 return true;
420 if (Q->Dimension == 0) {
421 Polyhedron_Free(Q);
422 return false;
425 if (Q->NbEq != 0) {
426 Matrix *Q_CP;
427 Polyhedron *R = Q;
429 remove_all_equalities(&Q, NULL, &Q_CP, NULL, nparam,
430 options->MaxRays);
432 POL_ENSURE_VERTICES(Q);
433 if (emptyQ(Q) || Q->NbEq > 0 || Q->Dimension == 0) {
434 if (Q_CP)
435 Matrix_Free(Q_CP);
436 Polyhedron_Free(R);
437 Polyhedron_Free(Q);
438 return emptyQ(Q);
441 if (red) {
442 if ((!CP ^ !Q_CP) || (CP && !Matrix_Equal(CP, Q_CP))) {
443 Matrix_Free(Q_CP);
444 Polyhedron_Free(R);
445 Polyhedron_Free(Q);
446 return false;
448 Matrix_Free(Q_CP);
449 } else {
450 CP = Q_CP;
451 T = align_matrix(CP, R->Dimension+1);
454 reduced_nparam = CP->NbColumns-1;
455 Polyhedron_Free(R);
456 } else {
457 if (red && CP) {
458 Polyhedron_Free(Q);
459 return false;
461 reduced_nparam = nparam;
464 if (First_Non_Zero(Q->Constraint[Q->NbConstraints-1]+1, Q->Dimension) == -1)
465 Q->NbConstraints--;
467 if (!Constraints) {
468 Polyhedron *reduced_context;
469 dim = Q->Dimension;
470 if (CP)
471 reduced_context = Polyhedron_Preimage(context, CP, options->MaxRays);
472 else
473 reduced_context = Polyhedron_Copy(context);
474 red = gf_base::create(reduced_context, dim, reduced_nparam, options);
475 red->base->init(Q, 0);
476 Constraints = Matrix_Alloc(Q->NbConstraints, Q->Dimension);
477 for (int i = 0; i < Q->NbConstraints; ++i) {
478 Vector_Copy(Q->Constraint[i]+1, Constraints->p[i], Q->Dimension);
480 } else {
481 if (Q->Dimension != dim) {
482 Polyhedron_Free(Q);
483 return false;
485 assert(Q->Dimension == dim);
486 for (int i = 0; i < Q->NbConstraints; ++i) {
487 int j;
488 for (j = 0; j < Constraints->NbRows; ++j)
489 if (Vector_Equal(Q->Constraint[i]+1, Constraints->p[j],
490 Q->Dimension))
491 break;
492 if (j >= Constraints->NbRows) {
493 Matrix_Extend(Constraints, Constraints->NbRows+1);
494 Vector_Copy(Q->Constraint[i]+1,
495 Constraints->p[Constraints->NbRows-1],
496 Q->Dimension);
501 for (int i = 0; i < Q->NbRays; ++i) {
502 if (!value_pos_p(Q->Ray[i][dim+1]))
503 continue;
505 Polyhedron *C = supporting_cone(Q, i);
507 if (First_Non_Zero(C->Constraint[C->NbConstraints-1]+1,
508 C->Dimension) == -1)
509 C->NbConstraints--;
511 int *pos = new int[1+C->NbConstraints];
512 int l = 0;
513 for (int k = 0; k < Constraints->NbRows; ++k) {
514 for (int j = 0; j < C->NbConstraints; ++j) {
515 if (Vector_Equal(C->Constraint[j]+1, Constraints->p[k],
516 C->Dimension)) {
517 pos[1+l++] = k;
518 break;
522 pos[0] = l;
524 int j;
525 for (j = 0; j < cones.size(); ++j)
526 if (!memcmp(pos, cones[j].pos, (1+C->NbConstraints)*sizeof(int)))
527 break;
528 if (j == cones.size())
529 cones.push_back(parallel_cones(pos));
530 else
531 delete [] pos;
533 Polyhedron_Free(C);
535 int k;
536 for (k = 0; k < cones[j].vertices.size(); ++k)
537 if (Vector_Equal(Q->Ray[i]+1, cones[j].vertices[k].first->p,
538 Q->Dimension+1))
539 break;
541 if (k == cones[j].vertices.size()) {
542 Vector *vertex = Vector_Alloc(Q->Dimension+1);
543 Vector_Copy(Q->Ray[i]+1, vertex->p, Q->Dimension+1);
544 cones[j].vertices.push_back(pair<Vector*,QQ>(vertex, c));
545 } else {
546 cones[j].vertices[k].second += c;
547 if (cones[j].vertices[k].second.n == 0) {
548 int size = cones[j].vertices.size();
549 Vector_Free(cones[j].vertices[k].first);
550 if (k < size-1)
551 cones[j].vertices[k] = cones[j].vertices[size-1];
552 cones[j].vertices.pop_back();
557 Polyhedron_Free(Q);
558 return true;
560 gen_fun *compute() {
561 if (!red)
562 return NULL;
563 for (int i = 0; i < cones.size(); ++i) {
564 Matrix *M = Matrix_Alloc(cones[i].pos[0], 1+Constraints->NbColumns+1);
565 Polyhedron *Cone;
566 for (int j = 0; j <cones[i].pos[0]; ++j) {
567 value_set_si(M->p[j][0], 1);
568 Vector_Copy(Constraints->p[cones[i].pos[1+j]], M->p[j]+1,
569 Constraints->NbColumns);
571 Cone = Constraints2Polyhedron(M, options->MaxRays);
572 Matrix_Free(M);
573 for (int j = 0; j < cones[i].vertices.size(); ++j) {
574 red->base->do_vertex_cone(cones[i].vertices[j].second,
575 Polyhedron_Copy(Cone),
576 cones[i].vertices[j].first->p, options);
578 Polyhedron_Free(Cone);
580 if (CP)
581 red->gf->substitute(CP);
582 return red->gf;
584 void print(std::ostream& os) const {
585 for (int i = 0; i < cones.size(); ++i) {
586 os << "[";
587 for (int j = 0; j < cones[i].pos[0]; ++j) {
588 if (j)
589 os << ", ";
590 os << cones[i].pos[1+j];
592 os << "]" << endl;
593 for (int j = 0; j < cones[i].vertices.size(); ++j) {
594 Vector_Print(stderr, P_VALUE_FMT, cones[i].vertices[j].first);
595 os << cones[i].vertices[j].second << endl;
599 ~parallel_polytopes() {
600 for (int i = 0; i < cones.size(); ++i) {
601 delete [] cones[i].pos;
602 for (int j = 0; j < cones[i].vertices.size(); ++j)
603 Vector_Free(cones[i].vertices[j].first);
605 if (Constraints)
606 Matrix_Free(Constraints);
607 if (CP)
608 Matrix_Free(CP);
609 if (T)
610 Matrix_Free(T);
611 delete red;
615 gen_fun *gen_fun::Hadamard_product(const gen_fun *gf, barvinok_options *options)
617 QQ one(1, 1);
618 Polyhedron *C = DomainIntersection(context, gf->context, options->MaxRays);
619 gen_fun *sum = new gen_fun(C);
621 int j = 0;
622 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i, j++) {
623 int k = 0;
624 for (short_rat_list::iterator i2 = gf->term.begin();
625 i2 != gf->term.end();
626 ++i2, k++) {
627 int d = (*i)->d.power.NumCols();
628 int k1 = (*i)->d.power.NumRows();
629 int k2 = (*i2)->d.power.NumRows();
630 assert((*i)->d.power.NumCols() == (*i2)->d.power.NumCols());
632 if (options->verbose)
633 fprintf(stderr, "HP: %d/%zd %d/%zd \r",
634 j, term.size(), k, gf->term.size());
636 parallel_polytopes pp((*i)->n.power.NumRows() *
637 (*i2)->n.power.NumRows(),
638 sum->context, d, options);
640 for (int j = 0; j < (*i)->n.power.NumRows(); ++j) {
641 for (int j2 = 0; j2 < (*i2)->n.power.NumRows(); ++j2) {
642 Matrix *M = Matrix_Alloc(k1+k2+d+d, 1+k1+k2+d+1);
643 for (int k = 0; k < k1+k2; ++k) {
644 value_set_si(M->p[k][0], 1);
645 value_set_si(M->p[k][1+k], 1);
647 for (int k = 0; k < d; ++k) {
648 value_set_si(M->p[k1+k2+k][1+k1+k2+k], -1);
649 zz2value((*i)->n.power[j][k], M->p[k1+k2+k][1+k1+k2+d]);
650 for (int l = 0; l < k1; ++l)
651 zz2value((*i)->d.power[l][k], M->p[k1+k2+k][1+l]);
653 for (int k = 0; k < d; ++k) {
654 value_set_si(M->p[k1+k2+d+k][1+k1+k2+k], -1);
655 zz2value((*i2)->n.power[j2][k],
656 M->p[k1+k2+d+k][1+k1+k2+d]);
657 for (int l = 0; l < k2; ++l)
658 zz2value((*i2)->d.power[l][k],
659 M->p[k1+k2+d+k][1+k1+l]);
661 Polyhedron *P = Constraints2Polyhedron(M, options->MaxRays);
662 Matrix_Free(M);
664 QQ c = (*i)->n.coeff[j];
665 c *= (*i2)->n.coeff[j2];
666 if (!pp.add(c, P)) {
667 gen_fun *t = barvinok_enumerate_series(P, C->Dimension, options);
668 sum->add(c, t);
669 delete t;
672 Polyhedron_Free(P);
676 gen_fun *t = pp.compute();
677 if (t) {
678 sum->add(one, t);
679 delete t;
683 return sum;
686 /* Assuming "this" and "gf" are generating functions for sets,
687 * replace "this" by the generating function for the union of these sets.
689 * In particular, compute
691 * this + gf - gen_fun(intersection of sets)
693 void gen_fun::add_union(gen_fun *gf, barvinok_options *options)
695 QQ one(1, 1), mone(-1, 1);
697 gen_fun *hp = Hadamard_product(gf, options);
698 extend_context(gf, options);
699 add(one, gf);
700 add(mone, hp);
701 delete hp;
704 static void Polyhedron_Shift(Polyhedron *P, Vector *offset)
706 Value tmp;
707 value_init(tmp);
708 for (int i = 0; i < P->NbConstraints; ++i) {
709 Inner_Product(P->Constraint[i]+1, offset->p, P->Dimension, &tmp);
710 value_subtract(P->Constraint[i][1+P->Dimension],
711 P->Constraint[i][1+P->Dimension], tmp);
713 for (int i = 0; i < P->NbRays; ++i) {
714 if (value_notone_p(P->Ray[i][0]))
715 continue;
716 if (value_zero_p(P->Ray[i][1+P->Dimension]))
717 continue;
718 Vector_Combine(P->Ray[i]+1, offset->p, P->Ray[i]+1,
719 P->Ray[i][0], P->Ray[i][1+P->Dimension], P->Dimension);
721 value_clear(tmp);
724 void gen_fun::shift(const vec_ZZ& offset)
726 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
727 for (int j = 0; j < (*i)->n.power.NumRows(); ++j)
728 (*i)->n.power[j] += offset;
730 Vector *v = Vector_Alloc(offset.length());
731 zz2values(offset, v->p);
732 Polyhedron_Shift(context, v);
733 Vector_Free(v);
736 /* Divide the generating functin by 1/(1-z^power).
737 * The effect on the corresponding explicit function f(x) is
738 * f'(x) = \sum_{i=0}^\infty f(x - i * power)
740 void gen_fun::divide(const vec_ZZ& power)
742 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
743 int r = (*i)->d.power.NumRows();
744 int c = (*i)->d.power.NumCols();
745 (*i)->d.power.SetDims(r+1, c);
746 (*i)->d.power[r] = power;
749 Vector *v = Vector_Alloc(1+power.length()+1);
750 value_set_si(v->p[0], 1);
751 zz2values(power, v->p+1);
752 Polyhedron *C = AddRays(v->p, 1, context, context->NbConstraints+1);
753 Vector_Free(v);
754 Polyhedron_Free(context);
755 context = C;
758 static void print_power(std::ostream& os, const QQ& c, const vec_ZZ& p,
759 unsigned int nparam, const char **param_name)
761 bool first = true;
763 for (int i = 0; i < p.length(); ++i) {
764 if (p[i] == 0)
765 continue;
766 if (first) {
767 if (c.n == -1 && c.d == 1)
768 os << "-";
769 else if (c.n != 1 || c.d != 1) {
770 os << c.n;
771 if (c.d != 1)
772 os << "/" << c.d;
773 os << "*";
775 first = false;
776 } else
777 os << "*";
778 if (i < nparam)
779 os << param_name[i];
780 else
781 os << "x" << i;
782 if (p[i] == 1)
783 continue;
784 if (p[i] < 0)
785 os << "^(" << p[i] << ")";
786 else
787 os << "^" << p[i];
789 if (first) {
790 os << c.n;
791 if (c.d != 1)
792 os << "/" << c.d;
796 void short_rat::print(std::ostream& os, unsigned int nparam,
797 const char **param_name) const
799 QQ mone(-1, 1);
800 os << "(";
801 for (int j = 0; j < n.coeff.length(); ++j) {
802 if (j != 0 && n.coeff[j].n >= 0)
803 os << "+";
804 print_power(os, n.coeff[j], n.power[j], nparam, param_name);
806 os << ")";
807 if (d.power.NumRows() == 0)
808 return;
809 os << "/(";
810 for (int j = 0; j < d.power.NumRows(); ++j) {
811 if (j != 0)
812 os << " * ";
813 os << "(1";
814 print_power(os, mone, d.power[j], nparam, param_name);
815 os << ")";
817 os << ")";
820 void gen_fun::print(std::ostream& os, unsigned int nparam,
821 const char **param_name) const
823 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
824 if (i != term.begin())
825 os << " + ";
826 (*i)->print(os, nparam, param_name);
830 std::ostream & operator<< (std::ostream & os, const short_rat& r)
832 os << r.n.coeff << endl;
833 os << r.n.power << endl;
834 os << r.d.power << endl;
835 return os;
838 extern "C" { typedef void (*gmp_free_t)(void *, size_t); }
840 std::ostream & operator<< (std::ostream & os, const Polyhedron& P)
842 char *str;
843 gmp_free_t gmp_free;
844 mp_get_memory_functions(NULL, NULL, &gmp_free);
845 os << P.NbConstraints << " " << P.Dimension+2 << endl;
846 for (int i = 0; i < P.NbConstraints; ++i) {
847 for (int j = 0; j < P.Dimension+2; ++j) {
848 str = mpz_get_str(0, 10, P.Constraint[i][j]);
849 os << std::setw(4) << str << " ";
850 (*gmp_free)(str, strlen(str)+1);
852 os << endl;
854 return os;
857 std::ostream & operator<< (std::ostream & os, const gen_fun& gf)
859 os << *gf.context << endl;
860 os << endl;
861 os << gf.term.size() << endl;
862 for (short_rat_list::iterator i = gf.term.begin(); i != gf.term.end(); ++i)
863 os << **i;
864 return os;
867 gen_fun *gen_fun::read(std::istream& is, barvinok_options *options)
869 Matrix *M = Matrix_Read(is);
870 Polyhedron *C = Constraints2Polyhedron(M, options->MaxRays);
871 Matrix_Free(M);
873 gen_fun *gf = new gen_fun(C);
875 int n;
876 is >> n;
878 vec_QQ c;
879 mat_ZZ num;
880 mat_ZZ den;
881 for (int i = 0; i < n; ++i) {
882 is >> c >> num >> den;
883 gf->add(new short_rat(c, num, den));
886 return gf;
889 gen_fun::operator evalue *() const
891 evalue *EP = NULL;
892 evalue factor;
893 value_init(factor.d);
894 value_init(factor.x.n);
895 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i) {
896 unsigned nvar = (*i)->d.power.NumRows();
897 unsigned nparam = (*i)->d.power.NumCols();
898 Matrix *C = Matrix_Alloc(nparam + nvar, 1 + nvar + nparam + 1);
899 mat_ZZ& d = (*i)->d.power;
900 Polyhedron *U = context;
902 for (int j = 0; j < (*i)->n.coeff.length(); ++j) {
903 for (int r = 0; r < nparam; ++r) {
904 value_set_si(C->p[r][0], 0);
905 for (int c = 0; c < nvar; ++c) {
906 zz2value(d[c][r], C->p[r][1+c]);
908 Vector_Set(&C->p[r][1+nvar], 0, nparam);
909 value_set_si(C->p[r][1+nvar+r], -1);
910 zz2value((*i)->n.power[j][r], C->p[r][1+nvar+nparam]);
912 for (int r = 0; r < nvar; ++r) {
913 value_set_si(C->p[nparam+r][0], 1);
914 Vector_Set(&C->p[nparam+r][1], 0, nvar + nparam + 1);
915 value_set_si(C->p[nparam+r][1+r], 1);
917 Polyhedron *P = Constraints2Polyhedron(C, 0);
918 evalue *E = barvinok_enumerate_ev(P, U, 0);
919 Polyhedron_Free(P);
920 if (EVALUE_IS_ZERO(*E)) {
921 evalue_free(E);
922 continue;
924 zz2value((*i)->n.coeff[j].n, factor.x.n);
925 zz2value((*i)->n.coeff[j].d, factor.d);
926 emul(&factor, E);
927 if (!EP)
928 EP = E;
929 else {
930 eadd(E, EP);
931 evalue_free(E);
934 Matrix_Free(C);
936 value_clear(factor.d);
937 value_clear(factor.x.n);
938 return EP ? EP : evalue_zero();
941 ZZ gen_fun::coefficient(Value* params, barvinok_options *options) const
943 if (!in_domain(context, params))
944 return ZZ::zero();
946 QQ sum(0, 1);
948 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
949 sum += (*i)->coefficient(params, options);
951 assert(sum.d == 1);
952 return sum.n;
955 void gen_fun::coefficient(Value* params, Value* c) const
957 barvinok_options *options = barvinok_options_new_with_defaults();
959 ZZ coeff = coefficient(params, options);
961 zz2value(coeff, *c);
963 barvinok_options_free(options);
966 gen_fun *gen_fun::summate(int nvar, barvinok_options *options) const
968 int n_try;
969 int dim = context->Dimension;
970 int nparam = dim - nvar;
971 reducer *red;
972 gen_fun *gf;
974 if (nparam == 0) {
975 bool finite;
976 Value c;
977 value_init(c);
978 finite = summate(&c);
979 assert(finite);
980 gf = new gen_fun(c);
981 value_clear(c);
982 return gf;
985 if (options->incremental_specialization == 1) {
986 red = new partial_ireducer(Polyhedron_Project(context, nparam), dim, nparam);
987 } else
988 red = new partial_reducer(Polyhedron_Project(context, nparam), dim, nparam);
989 n_try = 0;
990 for (;;) {
991 try {
992 red->init(context, n_try);
993 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
994 red->reduce((*i)->n.coeff, (*i)->n.power, (*i)->d.power);
995 break;
996 } catch (OrthogonalException &e) {
997 red->reset();
998 n_try++;
1001 gf = red->get_gf();
1002 delete red;
1003 return gf;
1006 /* returns true if the set was finite and false otherwise */
1007 bool gen_fun::summate(Value *sum) const
1009 if (term.size() == 0) {
1010 value_set_si(*sum, 0);
1011 return true;
1014 int maxlen = 0;
1015 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
1016 if ((*i)->d.power.NumRows() > maxlen)
1017 maxlen = (*i)->d.power.NumRows();
1019 infinite_counter cnt((*term.begin())->d.power.NumCols(), maxlen);
1020 cnt.init(context, 0);
1021 for (short_rat_list::iterator i = term.begin(); i != term.end(); ++i)
1022 cnt.reduce((*i)->n.coeff, (*i)->n.power, (*i)->d.power);
1024 for (int i = 1; i <= maxlen; ++i)
1025 if (value_notzero_p(mpq_numref(cnt.count[i]))) {
1026 value_set_si(*sum, -1);
1027 return false;
1030 assert(value_one_p(mpq_denref(cnt.count[0])));
1031 value_assign(*sum, mpq_numref(cnt.count[0]));
1032 return true;
1035 bool gen_fun::is_zero() const
1037 bool empty;
1038 Value c;
1040 value_init(c);
1042 empty = summate(&c) && value_zero_p(c);
1044 value_clear(c);
1046 return empty;