3 #include "lattice_point.h"
9 static int lex_cmp(vec_ZZ
& a
, vec_ZZ
& b
)
11 assert(a
.length() == b
.length());
13 for (int j
= 0; j
< a
.length(); ++j
)
15 return a
[j
] < b
[j
] ? -1 : 1;
19 void bf_base::add_term(bfc_term_base
*t
, vec_ZZ
& num_orig
, vec_ZZ
& extra_num
)
22 int d
= num_orig
.length();
24 for (int l
= 0; l
< d
-1; ++l
)
25 num
[l
] = num_orig
[l
+1] + extra_num
[l
];
30 void bf_base::add_term(bfc_term_base
*t
, vec_ZZ
& num
)
32 int len
= t
->terms
.NumRows();
34 for (i
= 0; i
< len
; ++i
) {
35 r
= lex_cmp(t
->terms
[i
], num
);
39 if (i
== len
|| r
> 0) {
40 t
->terms
.SetDims(len
+1, num
.length());
49 bfc_term_base
* bf_base::find_bfc_term(bfc_vec
& v
, int *powers
, int len
)
52 for (i
= v
.begin(); i
!= v
.end(); ++i
) {
54 for (j
= 0; j
< len
; ++j
)
55 if ((*i
)->powers
[j
] != powers
[j
])
59 if ((*i
)->powers
[j
] > powers
[j
])
63 bfc_term_base
* t
= new_bf_term(len
);
65 memcpy(t
->powers
, powers
, len
* sizeof(int));
70 void bf_base::reduce(mat_ZZ
& factors
, bfc_vec
& v
, barvinok_options
*options
)
73 unsigned d
= factors
.NumCols();
76 return base(factors
, v
);
78 bf_reducer
bfr(factors
, v
, this);
82 if (bfr
.vn
.size() > 0)
83 reduce(bfr
.nfactors
, bfr
.vn
, options
);
86 int bf_base::setup_factors(const mat_ZZ
& rays
, mat_ZZ
& factors
,
87 bfc_term_base
* t
, int s
)
89 factors
.SetDims(dim
, dim
);
93 for (r
= 0; r
< dim
; ++r
)
96 for (r
= 0; r
< dim
; ++r
) {
99 for (k
= 0; k
< dim
; ++k
)
100 if (factors
[r
][k
] != 0)
102 if (factors
[r
][k
] < 0) {
103 factors
[r
] = -factors
[r
];
104 for (int i
= 0; i
< t
->terms
.NumRows(); ++i
)
105 t
->terms
[i
] += factors
[r
];
113 void bf_base::handle(const mat_ZZ
& rays
, Value
*vertex
, const QQ
& c
,
114 unsigned long det
, barvinok_options
*options
)
116 bfc_term
* t
= new bfc_term(dim
);
117 vector
< bfc_term_base
* > v
;
120 Matrix
*points
= Matrix_Alloc(det
, dim
);
121 Matrix
* Rays
= zz2matrix(rays
);
122 lattice_points_fixed(vertex
, vertex
, Rays
, Rays
, points
, det
);
124 matrix2zz(points
, t
->terms
, points
->NbRows
, points
->NbColumns
);
127 // the elements of factors are always lexpositive
129 int s
= setup_factors(rays
, factors
, t
, 1);
131 t
->c
.SetLength(t
->terms
.NumRows());
133 for (int i
= 0; i
< t
->c
.length(); ++i
) {
138 reduce(factors
, v
, options
);
141 bfc_term_base
* bfcounter_base::new_bf_term(int len
)
143 bfc_term
* t
= new bfc_term(len
);
148 void bfcounter_base::set_factor(bfc_term_base
*t
, int k
, int change
)
150 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
156 void bfcounter_base::set_factor(bfc_term_base
*t
, int k
, mpq_t
&f
, int change
)
158 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
159 value2zz(mpq_numref(f
), c
.n
);
160 value2zz(mpq_denref(f
), c
.d
);
166 void bfcounter_base::set_factor(bfc_term_base
*t
, int k
, const QQ
& c_factor
,
169 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
176 void bfcounter_base::insert_term(bfc_term_base
*t
, int i
)
178 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
179 int len
= t
->terms
.NumRows()-1; // already increased by one
181 bfct
->c
.SetLength(len
+1);
182 for (int j
= len
; j
> i
; --j
) {
183 bfct
->c
[j
] = bfct
->c
[j
-1];
184 t
->terms
[j
] = t
->terms
[j
-1];
189 void bfcounter_base::update_term(bfc_term_base
*t
, int i
)
191 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
196 void bf_reducer::compute_extra_num(int i
)
200 no_param
= 0; // r from text
201 only_param
= 0; // k-r-s from text
202 total_power
= 0; // k from text
204 for (int j
= 0; j
< nf
; ++j
) {
205 if (v
[i
]->powers
[j
] == 0)
208 total_power
+= v
[i
]->powers
[j
];
209 if (factors
[j
][0] == 0) {
210 only_param
+= v
[i
]->powers
[j
];
214 if (old2new
[j
] == -1)
215 no_param
+= v
[i
]->powers
[j
];
217 extra_num
+= -sign
[j
] * v
[i
]->powers
[j
] * nfactors
[old2new
[j
]];
218 changes
+= v
[i
]->powers
[j
];
222 void bf_reducer::update_powers(const std::vector
<int>& powers
)
224 for (int l
= 0; l
< nnf
; ++l
)
225 npowers
[l
] = bpowers
[l
];
227 l_extra_num
= extra_num
;
230 for (int l
= 0; l
< powers
.size(); ++l
) {
234 assert(old2new
[l
] != -1);
236 npowers
[old2new
[l
]] += n
;
237 // interpretation of sign has been inverted
238 // since we inverted the power for specialization
240 l_extra_num
+= n
* nfactors
[old2new
[l
]];
247 void bf_reducer::compute_reduced_factors()
249 unsigned nf
= factors
.NumRows();
250 unsigned d
= factors
.NumCols();
252 nfactors
.SetDims(nnf
, d
-1);
254 for (int i
= 0; i
< nf
; ++i
) {
257 for (j
= 0; j
< nnf
; ++j
) {
259 for (k
= 1; k
< d
; ++k
)
260 if (factors
[i
][k
] != 0 || nfactors
[j
][k
-1] != 0)
262 if (k
< d
&& factors
[i
][k
] == -nfactors
[j
][k
-1])
265 if (factors
[i
][k
] != s
* nfactors
[j
][k
-1])
273 for (k
= 1; k
< d
; ++k
)
274 if (factors
[i
][k
] != 0)
277 if (factors
[i
][k
] < 0)
279 nfactors
.SetDims(++nnf
, d
-1);
280 for (int k
= 1; k
< d
; ++k
)
281 nfactors
[j
][k
-1] = s
* factors
[i
][k
];
287 npowers
= new int[nnf
];
288 bpowers
= new int[nnf
];
291 void bf_reducer::reduce(barvinok_options
*options
)
293 compute_reduced_factors();
297 for (int i
= 0; i
< v
.size(); ++i
) {
298 compute_extra_num(i
);
302 extra_num
.SetLength(d
-1);
304 int *npowers
= new int[nnf
];
305 for (int k
= 0; k
< nnf
; ++k
)
307 for (int k
= 0; k
< nf
; ++k
) {
308 assert(old2new
[k
] != -1);
309 npowers
[old2new
[k
]] += v
[i
]->powers
[k
];
311 extra_num
+= v
[i
]->powers
[k
] * nfactors
[old2new
[k
]];
312 changes
+= v
[i
]->powers
[k
];
316 bfc_term_base
* t
= bf
->find_bfc_term(vn
, npowers
, nnf
);
317 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
318 bf
->set_factor(v
[i
], k
, changes
% 2);
319 bf
->add_term(t
, v
[i
]->terms
[k
], extra_num
);
323 // powers of "constant" part
324 for (int k
= 0; k
< nnf
; ++k
)
326 for (int k
= 0; k
< nf
; ++k
) {
327 if (factors
[k
][0] != 0)
329 assert(old2new
[k
] != -1);
330 bpowers
[old2new
[k
]] += v
[i
]->powers
[k
];
332 extra_num
+= v
[i
]->powers
[k
] * nfactors
[old2new
[k
]];
333 changes
+= v
[i
]->powers
[k
];
338 for (j
= 0; j
< nf
; ++j
)
339 if (old2new
[j
] == -1 && v
[i
]->powers
[j
] > 0)
342 zz2value(factors
[j
][0], tmp
);
343 dpoly
D(no_param
, tmp
, 1);
344 for (int k
= 1; k
< v
[i
]->powers
[j
]; ++k
) {
345 dpoly
fact(no_param
, tmp
, 1);
349 if (old2new
[j
] == -1) {
350 zz2value(factors
[j
][0], tmp
);
351 for (int k
= 0; k
< v
[i
]->powers
[j
]; ++k
) {
352 dpoly
fact(no_param
, tmp
, 1);
357 if (no_param
+ only_param
== total_power
&&
358 bf
->constant_vertex(d
)) {
359 bfc_term_base
* t
= NULL
;
360 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
361 zz2value(v
[i
]->terms
[k
][0], tmp
);
362 dpoly
n(no_param
, tmp
);
363 mpq_set_si(bf
->tcount
, 0, 1);
364 n
.div(D
, bf
->tcount
, 1);
366 if (value_zero_p(mpq_numref(bf
->tcount
)))
370 t
= bf
->find_bfc_term(vn
, bpowers
, nnf
);
371 bf
->set_factor(v
[i
], k
, bf
->tcount
, changes
% 2);
372 bf
->add_term(t
, v
[i
]->terms
[k
], extra_num
);
375 for (int j
= 0; j
< v
[i
]->terms
.NumRows(); ++j
) {
376 zz2value(v
[i
]->terms
[j
][0], tmp
);
377 dpoly
n(no_param
, tmp
);
380 if (no_param
+ only_param
== total_power
)
381 r
= new dpoly_r(n
, nf
);
383 for (int k
= 0; k
< nf
; ++k
) {
384 if (v
[i
]->powers
[k
] == 0)
386 if (factors
[k
][0] == 0 || old2new
[k
] == -1)
389 zz2value(factors
[k
][0], tmp
);
390 dpoly
pd(no_param
-1, tmp
, 1);
392 for (int l
= 0; l
< v
[i
]->powers
[k
]; ++l
) {
394 for (q
= 0; q
< k
; ++q
)
395 if (old2new
[q
] == old2new
[k
] &&
400 r
= new dpoly_r(n
, pd
, q
, nf
);
402 dpoly_r
*nr
= new dpoly_r(r
, pd
, q
, nf
);
409 dpoly_r
*rc
= r
->div(D
);
412 factor
.d
= rc
->denom
;
414 if (bf
->constant_vertex(d
)) {
415 dpoly_r_term_list
& final
= rc
->c
[rc
->len
-1];
417 dpoly_r_term_list::iterator k
;
418 for (k
= final
.begin(); k
!= final
.end(); ++k
) {
419 if ((*k
)->coeff
== 0)
422 update_powers((*k
)->powers
);
424 bfc_term_base
* t
= bf
->find_bfc_term(vn
, npowers
, nnf
);
425 factor
.n
= (*k
)->coeff
;
426 bf
->set_factor(v
[i
], j
, factor
, l_changes
% 2);
427 bf
->add_term(t
, v
[i
]->terms
[j
], l_extra_num
);
430 bf
->cum(this, v
[i
], j
, rc
, options
);