param_util.c: export Param_Vertex_Set_Facets
[barvinok.git] / doc / Internal.tex
blob4486654fc497343ac418c91c0a9816ac02b1d325
1 \section{Internal Representation of the \protect\ai[\tt]{barvinok} library}
3 Our \barvinok/ library is built on top of \PolyLib/
4 \shortcite{Wilde1993,Loechner1999}.
5 In particular, it reuses the implementations
6 of the algorithm of
7 \shortciteN{Loechner97parameterized}
8 for computing parametric vertices
9 and the algorithm of
10 \shortciteN{Clauss1998parametric}
11 for computing chamber decompositions.
12 Initially, our library was meant to be a replacement
13 for the algorithm of \shortciteN{Clauss1998parametric},
14 also implemented in \PolyLib/, for computing quasi-polynomials.
15 To ease the transition of application programs we
16 tried to reuse the existing data structures as much as possible.
18 \subsection{Existing Data Structures}
19 \label{a:existing}
21 Inside \PolyLib/ integer values are represented by the
22 \ai[\tt]{Value} data type.
23 Depending on a configure option, the data type may
24 either by a 32-bit integer, a 64-bit integer
25 or an arbitrary precision integer using \ai[\tt]{GMP}.
26 The \barvinok/ library requires that \PolyLib/ is compiled
27 with support for arbitrary precision integers.
29 The basic structure for representing (unions of) polyhedra is a
30 \ai[\tt]{Polyhedron}.
31 \begin{verbatim}
32 typedef struct polyhedron {
33 unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
34 Value **Constraint;
35 Value **Ray;
36 Value *p_Init;
37 int p_Init_size;
38 struct polyhedron *next;
39 } Polyhedron;
40 \end{verbatim}
41 The attribute \ai[\tt]{Dimension} is the dimension
42 of the ambient space, i.e., the number of variables.
43 The attributes \ai[\tt]{Constraint}
44 and \ai[\tt]{Ray} point to two-dimensional arrays
45 of constraints and generators, respectively.
46 The number of rows is stored in
47 \ai[\tt]{NbConstraints} and
48 \ai[\tt]{NbRays}, respectively.
49 The number of columns in both arrays is equal
50 to \verb!1+Dimension+1!.
51 The first column of \ai[\tt]{Constraint} is either
52 $0$ or $1$ depending on whether the constraint
53 is an equality ($0$) or an inequality ($1$).
54 The number of equalities is stored in \ai[\tt]{NbEq}.
55 If the constraint is $\sp a x + c \ge 0$, then
56 the next columns contain the coefficients $a_i$
57 and the final column contains the constant $c$.
58 The first column of \ai[\tt]{Ray} is either
59 $0$ or $1$ depending on whether the generator
60 is a line ($0$) or a vertex or ray ($1$).
61 The number of lines is stored in \ai[\tt]{NbBid}.
62 Let $d$ be the \ac{lcm} of the denominators of the coordinates
63 of a vertex $\vec v$, then the next columns contain
64 $d v_i$ and the final column contains $d$.
65 For a ray, the final column contains $0$.
66 The field \ai[\tt]{next} points to the next polyhedron in
67 the union of polyhedra.
68 It is \verb+0+ if this is the last (or only) polyhedron in the union.
69 For more information on this structure, we refer to \shortciteN{Wilde1993}.
71 Quasi-polynomials are represented using the
72 \ai[\tt]{evalue} and \ai[\tt]{enode} structures.
73 \begin{verbatim}
74 typedef enum { polynomial, periodic, evector } enode_type;
76 typedef struct _evalue {
77 Value d; /* denominator */
78 union {
79 Value n; /* numerator (if denominator != 0) */
80 struct _enode *p; /* pointer (if denominator == 0) */
81 } x;
82 } evalue;
84 typedef struct _enode {
85 enode_type type; /* polynomial or periodic or evector */
86 int size; /* number of attached pointers */
87 int pos; /* parameter position */
88 evalue arr[1]; /* array of rational/pointer */
89 } enode;
90 \end{verbatim}
91 If the field \ai[\tt]{d} of an \ai[\tt]{evalue} is zero, then
92 the \ai[\tt]{evalue} is a placeholder for a pointer to
93 an \ai[\tt]{enode}, stored in \ai[\tt]{x.p}.
94 Otherwise, the \ai[\tt]{evalue} is a rational number with
95 numerator \ai[\tt]{x.n} and denominator \ai[\tt]{d}.
96 An \ai[\tt]{enode} is either a \ai[\tt]{polynomial}
97 or a \ai[\tt]{periodic}, depending on the value
98 of \ai[\tt]{type}.
99 The length of the array \ai[\tt]{arr} is stored in \ai[\tt]{size}.
100 For a \ai[\tt]{polynomial}, \ai[\tt]{arr} contains the coefficients.
101 For a \ai[\tt]{periodic}, it contains the values for the different
102 residue classes modulo the parameter indicated by \ai[\tt]{pos}.
103 For a polynomial, \ai[\tt]{pos} refers to the variable
104 of the polynomial.
105 The value of \ai[\tt]{pos} is \verb+1+ for the first parameter.
106 That is, if the value of \ai[\tt]{pos} is \verb+1+ and the first
107 parameter is $p$, and if the length of the array is $l$,
108 then in case it is a polynomial, the
109 \ai[\tt]{enode} represents
111 \verb+arr[0]+ + \verb+arr[1]+ p + \verb+arr[2]+ p^2 + \cdots +
112 \verb+arr[l-1]+ p^{l-1}
115 If it is a periodic, then it represents
117 \left[
118 \verb+arr[0]+, \verb+arr[1]+, \verb+arr[2]+, \ldots,
119 \verb+arr[l-1]+
120 \right]_p
123 Note that the elements of a \ai[\tt]{periodic} may themselves
124 be other \ai[\tt]{periodic}s or even \ai[\tt]{polynomial}s.
125 In our library, we only allow the elements of a \ai[\tt]{periodic}
126 to be other \ai[\tt]{periodic}s or rational numbers.
127 The chambers and their corresponding quasi-polynomial are
128 stored in \ai[\tt]{Enumeration} structures.
129 \begin{verbatim}
130 typedef struct _enumeration {
131 Polyhedron *ValidityDomain; /* constraints on the parameters */
132 evalue EP; /* dimension = combined space */
133 struct _enumeration *next; /* Ehrhart Polynomial,
134 corresponding to parameter
135 values inside the domain
136 ValidityDomain above */
137 } Enumeration;
138 \end{verbatim}
139 For more information on these structures, we refer to \shortciteN{Loechner1999}.
141 \begin{example}
142 Figure~\ref{f:Loechner} is a skillful reconstruction
143 of Figure~2 from \shortciteN{Loechner1999}.
144 It shows the contents of the \ai[\tt]{enode} structures
145 representing the quasi-polynomial
147 [1,2]_p p^2 + 3 p + \frac 5 2
150 \begin{figure}
151 \begin{xy}
152 \POS(0,0)*!UL{\hbox{
154 \begin{tabular}{|c|c|c|}
155 \hline
156 \multicolumn{2}{|c|}{type} & polynomial \\
157 \hline
158 \multicolumn{2}{|c|}{size} & 3 \\
159 \hline
160 \multicolumn{2}{|c|}{pos} & 1 \\
161 \hline
162 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
163 \cline{2-3}
164 & x.n & 5 \\
165 \hline
166 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
167 \cline{2-3}
168 & x.n & 3 \\
169 \hline
170 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
171 \cline{2-3}
172 & x.p & \\
173 \hline
174 \end{tabular}
176 }="box1"
177 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
178 \POS(60,-15)*!UL{\hbox{
180 \begin{tabular}{|c|c|c|}
181 \hline
182 \multicolumn{2}{|c|}{type} & periodic \\
183 \hline
184 \multicolumn{2}{|c|}{size} & 2 \\
185 \hline
186 \multicolumn{2}{|c|}{pos} & 1 \\
187 \hline
188 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
189 \cline{2-3}
190 & x.n & 1 \\
191 \hline
192 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
193 \cline{2-3}
194 & x.n & 2 \\
195 \hline
196 \end{tabular}
198 }="box2"
199 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
200 \POS"a"\ar@(r,l) "b"
201 \POS"box1"+UC*++!D\hbox{\tt enode}
202 \POS"box2"+UC*++!D\hbox{\tt enode}
203 \end{xy}
204 \caption{The quasi-polynomial $[1,2]_p p^2 + 3 p + \frac 5 2$.}
205 \label{f:Loechner}
206 \end{figure}
207 \end{example}
209 \subsection{Options}
210 \label{a:options}
212 The \ai[\tt]{barvinok\_options} structure contains various
213 options that influence the behavior of the library.
215 \begin{verbatim}
216 struct barvinok_options {
217 struct barvinok_stats *stats;
219 /* PolyLib options */
220 unsigned MaxRays;
222 /* NTL options */
223 /* LLL reduction parameter delta=LLL_a/LLL_b */
224 long LLL_a;
225 long LLL_b;
227 /* barvinok options */
228 #define BV_SPECIALIZATION_BF 2
229 #define BV_SPECIALIZATION_DF 1
230 #define BV_SPECIALIZATION_RANDOM 0
231 #define BV_SPECIALIZATION_TODD 3
232 int incremental_specialization;
234 unsigned long max_index;
235 int primal;
236 int lookup_table;
237 int count_sample_infinite;
239 int try_Delaunay_triangulation;
241 #define BV_APPROX_SIGN_NONE 0
242 #define BV_APPROX_SIGN_APPROX 1
243 #define BV_APPROX_SIGN_LOWER 2
244 #define BV_APPROX_SIGN_UPPER 3
245 int polynomial_approximation;
246 #define BV_APPROX_NONE 0
247 #define BV_APPROX_DROP 1
248 #define BV_APPROX_SCALE 2
249 #define BV_APPROX_VOLUME 3
250 #define BV_APPROX_BERNOULLI 4
251 int approximation_method;
252 #define BV_APPROX_SCALE_FAST (1 << 0)
253 #define BV_APPROX_SCALE_NARROW (1 << 1)
254 #define BV_APPROX_SCALE_NARROW2 (1 << 2)
255 #define BV_APPROX_SCALE_CHAMBER (1 << 3)
256 int scale_flags;
257 #define BV_VOL_LIFT 0
258 #define BV_VOL_VERTEX 1
259 #define BV_VOL_BARYCENTER 2
260 int volume_triangulate;
262 /* basis reduction options */
263 #define BV_GBR_NONE 0
264 #define BV_GBR_GLPK 1
265 #define BV_GBR_CDD 2
266 int gbr_lp_solver;
268 /* bernstein options */
269 #define BV_BERNSTEIN_NONE 0
270 #define BV_BERNSTEIN_MAX 1
271 #define BV_BERNSTEIN_MIN -1
272 int bernstein_optimize;
274 #define BV_BERNSTEIN_FACTORS 1
275 #define BV_BERNSTEIN_INTERVALS 2
276 int bernstein_recurse;
278 #define BV_LP_POLYLIB 0
279 #define BV_LP_GLPK 1
280 #define BV_LP_CDD 2
281 #define BV_LP_CDDF 3
282 #define BV_LP_PIP 4
283 int lp_solver;
285 #define BV_HULL_GBR 0
286 #define BV_HULL_HILBERT 1
287 int integer_hull;
290 struct barvinok_options *barvinok_options_new_with_defaults();
291 \end{verbatim}
293 The function \ai[\tt]{barvinok\_options\_new\_with\_defaults}
294 can be used to create a \ai[\tt]{barvinok\_options} structure
295 with default values.
297 \begin{itemize}
298 \item \PolyLib/ options
300 \begin{itemize}
302 \item \ai[\tt]{MaxRays}
304 The value of \ai[\tt]{MaxRays} is passed to various \PolyLib/
305 functions and defines the
306 maximum size of a table used in the \ai{double description} computation
307 in the \PolyLib/ function \ai[\tt]{Chernikova}.
308 In earlier versions of \PolyLib/,
309 this parameter had to be conservatively set
310 to a high number to ensure successful operation,
311 resulting in significant memory overhead.
312 Our change to allow this table to grow
313 dynamically is available in recent versions of \PolyLib/.
314 In these versions, the value no longer indicates the maximal
315 table size, but rather the size of the initial allocation.
316 This value may be set to \verb+0+ or left as set
317 by \ai[\tt]{barvinok\_options\_new\_with\_defaults}.
319 \end{itemize}
321 \item \ai[\tt]{NTL} options
323 \begin{itemize}
325 \item \ai[\tt]{LLL\_a}
326 \item \ai[\tt]{LLL\_b}
328 The values used for the \ai{reduction parameter}
329 in the call to \ai[\tt]{NTL}'s implementation of \indac{LLL}.
331 \end{itemize}
333 \item \ai[\tt]{barvinok} specific options
335 \begin{itemize}
337 \item \ai[\tt]{incremental\_specialization}
339 Selects the \ai{specialization} algorithm to be used.
340 If set to {\tt 0} then a direct specialization is performed
341 using a random vector.
342 Value {\tt 1} selects a depth first incremental specialization,
343 while value {\tt 2} selects a breadth first incremental specialization.
344 The default is selected by the \ai[\tt]{--enable-incremental}
345 \ai[\tt]{configure} option.
346 For more information we refer to~\citeN[Section~4.4.3]{Verdoolaege2005PhD}.
348 \end{itemize}
350 \end{itemize}
352 \subsection{Data Structures for Quasi-polynomials}
353 \label{a:data}
355 Internally, we do not represent our \ai{quasi-polynomial}s
356 as step-polynomials, but, similarly to \shortciteN{Loechner1999},
357 as polynomials with periodic numbers for coefficients.
358 However, we also allow our periodic numbers to be represented by
359 fractional parts of degree-$1$ polynomials rather than
360 an explicit enumeration using the \ai[\tt]{periodic} type.
361 By default, the current version of \barvinok/ uses
362 \ai[\tt]{periodic}s, but this can be changed through
363 the \ai[\tt]{--enable-fractional} configure option.
364 In the latter case, the quasi-polynomial using fractional
365 parts can also be converted to an actual step-polynomial
366 using \ai[\tt]{evalue\_frac2floor}, but this is not fully
367 supported yet.
369 For reasons of compatibility,%
370 \footnote{Also known as laziness.}
371 we shoehorned our representations for piecewise quasi-polynomials
372 into the existing data structures.
373 To this effect, we introduced four new types,
374 \ai[\tt]{fractional}, \ai[\tt]{relation},
375 \ai[\tt]{partition} and \ai[\tt]{flooring}.
376 \begin{verbatim}
377 typedef enum { polynomial, periodic, evector, fractional,
378 relation, partition, flooring } enode_type;
379 \end{verbatim}
380 The field \ai[\tt]{pos} is not used in most of these
381 additional types and is therefore set to \verb+-1+.
383 The types \ai[\tt]{fractional} and \ai[\tt]{flooring}
384 represent polynomial expressions in a fractional part or a floor respectively.
385 The generator is stored in \verb+arr[0]+, while the
386 coefficients are stored in the remaining array elements.
387 That is, an \ai[\tt]{enode} of type \ai[\tt]{fractional}
388 represents
390 \verb+arr[1]+ + \verb+arr[2]+ \{\verb+arr[0]+\} +
391 \verb+arr[3]+ \{\verb+arr[0]+\}^2 + \cdots +
392 \verb+arr[l-1]+ \{\verb+arr[0]+\}^{l-2}
395 An \ai[\tt]{enode} of type \ai[\tt]{flooring}
396 represents
398 \verb+arr[1]+ + \verb+arr[2]+ \lfloor\verb+arr[0]+\rfloor +
399 \verb+arr[3]+ \lfloor\verb+arr[0]+\rfloor^2 + \cdots +
400 \verb+arr[l-1]+ \lfloor\verb+arr[0]+\rfloor^{l-2}
404 \begin{example}
405 The internal representation of the quasi-polynomial
406 $$\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$$
407 is shown in Figure~\ref{f:fractional}.
409 \begin{figure}
410 \begin{xy}
411 \POS(0,0)*!UL{\hbox{
413 \begin{tabular}{|c|c|c|}
414 \hline
415 \multicolumn{2}{|c|}{type} & polynomial \\
416 \hline
417 \multicolumn{2}{|c|}{size} & 3 \\
418 \hline
419 \multicolumn{2}{|c|}{pos} & 1 \\
420 \hline
421 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
422 \cline{2-3}
423 & x.n & 5 \\
424 \hline
425 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
426 \cline{2-3}
427 & x.n & 3 \\
428 \hline
429 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
430 \cline{2-3}
431 & x.p & \\
432 \hline
433 \end{tabular}
435 }="box1"
436 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
437 \POS(60,0)*!UL{\hbox{
439 \begin{tabular}{|c|c|c|}
440 \hline
441 \multicolumn{2}{|c|}{type} & fractional \\
442 \hline
443 \multicolumn{2}{|c|}{size} & 3 \\
444 \hline
445 \multicolumn{2}{|c|}{pos} & -1 \\
446 \hline
447 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 0 \\
448 \cline{2-3}
449 & x.p & \\
450 \hline
451 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
452 \cline{2-3}
453 & x.n & 1 \\
454 \hline
455 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 1 \\
456 \cline{2-3}
457 & x.n & 2 \\
458 \hline
459 \end{tabular}
461 }="box2"
462 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
463 \POS"a"\ar@(r,l) "b"
464 \POS"box2"+UR*!UR{\hbox{
466 \begin{tabular}{|c|}
467 \hline
468 fractional \\
469 \hline
470 3 \\
471 \hline
472 -1 \\
473 \hline
474 0 \\
475 \hline
476 \end{tabular}
478 }+CD*!U{\strut}+C="c"
479 \POS(60,-50)*!UL{\hbox{
481 \begin{tabular}{|c|c|c|}
482 \hline
483 \multicolumn{2}{|c|}{type} & polynomial \\
484 \hline
485 \multicolumn{2}{|c|}{size} & 2 \\
486 \hline
487 \multicolumn{2}{|c|}{pos} & 1 \\
488 \hline
489 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
490 \cline{2-3}
491 & x.n & 0 \\
492 \hline
493 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 2 \\
494 \cline{2-3}
495 & x.n & 1 \\
496 \hline
497 \end{tabular}
499 }="box3"
500 +UR-<0.8\tabcolsep,0pt>*!UR\hbox{\strut}+CR="d"
501 \POS"c"\ar@(r,r) "d"
502 \POS"box1"+UC*++!D\hbox{\tt enode}
503 \POS"box2"+UC*++!D\hbox{\tt enode}
504 \POS"box3"+UC*++!D\hbox{\tt enode}
505 \end{xy}
506 \caption{The quasi-polynomial
507 $\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$.}
508 \label{f:fractional}
509 \end{figure}
511 \end{example}
513 The \ai[\tt]{relation} type is used to represent \ai{stride}s.
514 In particular, if the value of \ai[\tt]{size} is 2, then
515 the value of a \ai[\tt]{relation} is (in pseudo-code):
516 \begin{verbatim}
517 (value(arr[0]) == 0) ? value(arr[1]) : 0
518 \end{verbatim}
519 If the size is 3, then the value is:
520 \begin{verbatim}
521 (value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])
522 \end{verbatim}
523 The type of \verb+arr[0]+ is typically \ai[\tt]{fractional}.
525 Finally, the \ai[\tt]{partition} type is used to
526 represent piecewise quasi-polynomials.
527 We prefer to encode this information inside \ai[\tt]{evalue}s
528 themselves
529 rather than using \ai[\tt]{Enumeration}s since we want
530 to perform the same kinds of operations on both quasi-polynomials
531 and piecewise quasi-polynomials.
532 An \ai[\tt]{enode} of type \ai[\tt]{partition} may not be nested
533 inside another \ai[\tt]{enode}.
534 The size of the array is twice the number of ``chambers''.
535 Pointers to chambers are stored in the even slots,
536 whereas pointer to the associated quasi-polynomials
537 are stored in the odd slots.
538 To be able to store pointers to chambers, the
539 definition of \ai[\tt]{evalue} was changed as follows.
540 \begin{verbatim}
541 typedef struct _evalue {
542 Value d; /* denominator */
543 union {
544 Value n; /* numerator (if denominator > 0) */
545 struct _enode *p; /* pointer (if denominator == 0) */
546 Polyhedron *D; /* domain (if denominator == -1) */
547 } x;
548 } evalue;
549 \end{verbatim}
550 Note that we allow a ``chamber'' to be a union of polyhedra
551 as discussed in \citeN[Section~4.5.1]{Verdoolaege2005PhD}.
552 Chambers with extra variables, i.e., those of
553 \citeN[Section~4.6.5]{Verdoolaege2005PhD},
554 are only partially supported.
555 The field \ai[\tt]{pos} is set to the actual dimension,
556 i.e., the number of parameters.
558 \subsection{Operations on Quasi-polynomials}
559 \label{a:operations}
561 In this section we discuss some of the more important
562 operations on \ai[\tt]{evalue}s provided by the
563 \barvinok/ library.
564 Some of these operations are extensions
565 of the functions from \PolyLib/ with the same name.
567 \begin{verbatim}
568 void eadd(const evalue *e1,evalue *res);
569 void emul(const evalue *e1, evalue *res);
570 \end{verbatim}
571 The functions \ai[\tt]{eadd} and \ai[\tt]{emul} takes
572 two (pointers to) \ai[\tt]{evalue}s \verb+e1+ and \verb+res+
573 and computes their sum and product respectively.
574 The result is stored in \verb+res+, overwriting (and deallocating)
575 the original value of \verb+res+.
576 It is an error if exactly one of
577 the arguments of \ai[\tt]{eadd} is of type \ai[\tt]{partition}
578 (unless the other argument is \verb+0+).
579 The addition and multiplication operations are described
580 in \citeN[Section~4.5.1]{Verdoolaege2005PhD}
581 and~\citeN[Section~4.5.2]{Verdoolaege2005PhD}
582 respectively.
584 The function \ai[\tt]{eadd} is an extension of the function
585 \ai[\tt]{new\_eadd} from \shortciteN{Seghir2002}.
586 Apart from supporting the additional types from Section~\ref{a:data},
587 the new version also additionally imposes an order on the nesting of
588 different \ai[\tt]{enode}s.
589 Without such an ordering, \ai[\tt]{evalue}s could be constructed
590 representing for example
592 (0 y^ 0 + ( 0 x^0 + 1 x^1 ) y^1 ) x^0 + (0 y^0 - 1 y^1) x^1
595 which is just a funny way of saying $0$.
597 \begin{verbatim}
598 void eor(evalue *e1, evalue *res);
599 \end{verbatim}
600 The function \ai[\tt]{eor} implements the \ai{union}
601 operation from \citeN[Section~4.5.3]{Verdoolaege2005PhD}. Both arguments
602 are assumed to correspond to indicator functions.
604 \begin{verbatim}
605 evalue *esum(evalue *E, int nvar);
606 evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);
607 \end{verbatim}
608 The function \ai[\tt]{esum} has been superseded by
609 \ai[\tt]{evalue\_sum}.
610 The function \ai[\tt]{evalue\_sum} performs the summation
611 operation from \citeN[Section~4.5.4]{Verdoolaege2005PhD}.
612 The piecewise step-polynomial represented by \verb+E+ is summated
613 over its first \verb+nvar+ variables.
614 Note that \verb+E+ must be zero or of type \ai[\tt]{partition}.
615 The function returns the result in a newly allocated
616 \ai[\tt]{evalue}.
617 Note also that \verb+E+ needs to have been converted
618 from \ai[\tt]{fractional}s to \ai[\tt]{flooring}s using
619 the function \ai[\tt]{evalue\_frac2floor}.
620 \begin{verbatim}
621 void evalue_frac2floor(evalue *e);
622 \end{verbatim}
623 This function also ensures that the arguments of the
624 \ai[\tt]{flooring}s are positive in the relevant chambers.
625 It currently assumes that the argument of each
626 \ai[\tt]{fractional} in the original \ai[\tt]{evalue}
627 has a minimum in the corresponding chamber.
629 \begin{verbatim}
630 double compute_evalue(const evalue *e, Value *list_args);
631 Value *compute_poly(Enumeration *en,Value *list_args);
632 evalue *evalue_eval(const evalue *e, Value *values);
633 \end{verbatim}
634 The functions \ai[\tt]{compute\_evalue},
635 \ai[\tt]{compute\_poly} and
636 \ai[\tt]{evalue\_eval}
637 evaluate a (piecewise) quasi-polynomial
638 at a certain point. The argument \verb+list_args+
639 points to an array of \ai[\tt]{Value}s that is assumed
640 to be long enough.
641 The \verb+double+ return value of \ai[\tt]{compute\_evalue}
642 is inherited from \PolyLib/.
644 \begin{verbatim}
645 void print_evalue(FILE *DST, const evalue *e, char **pname);
646 \end{verbatim}
647 The function \ai[\tt]{print\_evalue} dumps a human-readable
648 representation to the stream pointed to by \verb+DST+.
649 The argument \verb+pname+ points
650 to an array of character strings representing the parameter names.
651 The array is assumed to be long enough.
653 \begin{verbatim}
654 int eequal(const evalue *e1, const evalue *e2);
655 \end{verbatim}
656 The function \ai[\tt]{eequal} return true (\verb+1+) if its
657 two arguments are structurally identical.
658 I.e., it does {\em not\/} check whether the two
659 (piecewise) quasi-polynomial represent the same function.
661 \begin{verbatim}
662 void reduce_evalue (evalue *e);
663 \end{verbatim}
664 The function \ai[\tt]{reduce\_evalue} performs some
665 simplifications on \ai[\tt]{evalue}s.
666 Here, we only describe the simplifications that are directly
667 related to the internal representation.
668 Some other simplifications are explained in
669 \citeN[Section~4.7.2]{Verdoolaege2005PhD}.
670 If the highest order coefficients of a \ai[\tt]{polynomial},
671 \ai[\tt]{fractional} or \ai[\tt]{flooring} are zero (possibly
672 after some other simplifications), then the size of the array
673 is reduced. If only the constant term remains, i.e.,
674 the size is reduced to $1$ for \ai[\tt]{polynomial} or to $2$
675 for the other types, then the whole node is replaced by
676 the constant term.
677 Additionally, if the argument of a \ai[\tt]{fractional}
678 has been reduced to a constant, then the whole node
679 is replaced by its partial evaluation.
680 A \ai[\tt]{relation} is similarly reduced if its second
681 branch or both its branches are zero.
682 Chambers with zero associated quasi-polynomials are
683 discarded from a \ai[\tt]{partition}.
685 \subsection{Generating Functions}
687 The representation of \rgf/s uses
688 some basic types from the \ai[\tt]{NTL} library \shortcite{NTL}
689 for representing arbitrary precision integers
690 (\ai[\tt]{ZZ})
691 as well as vectors (\ai[\tt]{vec\_ZZ}) and matrices (\ai[\tt]{mat\_ZZ})
692 of such integers.
693 We further introduces a type \ai[\tt]{QQ} for representing a rational
694 number and use vectors (\ai[\tt]{vec\_QQ}) of such numbers.
695 \begin{verbatim}
696 struct QQ {
697 ZZ n;
698 ZZ d;
701 NTL_vector_decl(QQ,vec_QQ);
702 \end{verbatim}
704 Each term in a \rgf/ is represented by a \ai[\tt]{short\_rat}
705 structure.
706 \begin{verbatim}
707 struct short_rat {
708 struct {
709 /* rows: terms in numerator */
710 vec_QQ coeff;
711 mat_ZZ power;
712 } n;
713 struct {
714 /* rows: factors in denominator */
715 mat_ZZ power;
716 } d;
718 \end{verbatim}
719 The fields \ai[\tt]{n} and \ai[\tt]{d} represent the
720 numerator and the denominator respectively.
721 Note that in our implementation we combine terms
722 with the same denominator.
723 In the numerator, each element of \ai[\tt]{coeff} and each row of \ai[\tt]{power}
724 represents a single such term.
725 The vector \ai[\tt]{coeff} contains the rational coefficients
726 $\alpha_i$ of each term.
727 The columns of \ai[\tt]{power} correspond to the powers
728 of the variables.
729 In the denominator, each row of \ai[\tt]{power}
730 corresponds to the power $\vec b_{ij}$ of a
731 factor in the denominator.
733 \begin{example}
734 Figure~\ref{fig:rat}
735 shows the internal representation of
737 \frac{\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}}
738 { (1 - x_0 x_1^{-3}) (1 - x_1^2)}
742 \begin{figure}
743 \begin{center}
744 \begin{minipage}{0cm}
745 \begin{xy}
746 *\hbox{
748 \begin{tabular}{|c|c|c|}
749 \hline
750 n.coeff & 3 & 2 \\
751 \cline{2-3}
752 & 2 & 1 \\
753 \hline
754 n.power & 2 & 3 \\
755 \cline{2-3}
756 & 5 & -7 \\
757 \hline
758 d.power & 1 & -3 \\
759 \cline{2-3}
760 & 0 & 2 \\
761 \hline
762 \end{tabular}
763 }+UC*++!D\hbox{\tt short\_rat}
764 \end{xy}
765 \end{minipage}
766 \end{center}
767 \caption{Representation of
769 \left(\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}\right)
770 / \left( (1 - x_0 x_1^{-3}) (1 - x_1^2)\right)
772 \label{fig:rat}
773 \end{figure}
775 \end{example}
777 The whole \rgf/ is represented by a \ai[\tt]{gen\_fun}
778 structure.
779 \begin{verbatim}
780 typedef std::set<short_rat *,
781 short_rat_lex_smaller_denominator > short_rat_list;
783 struct gen_fun {
784 short_rat_list term;
785 Polyhedron *context;
787 void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
788 void add(short_rat *r);
789 void add(const QQ& c, const gen_fun *gf,
790 barvinok_options *options);
791 void substitute(Matrix *CP);
792 gen_fun *Hadamard_product(const gen_fun *gf,
793 barvinok_options *options);
794 void print(std::ostream& os,
795 unsigned int nparam, char **param_name) const;
796 operator evalue *() const;
797 ZZ coefficient(Value* params, barvinok_options *options) const;
798 void coefficient(Value* params, Value* c) const;
800 gen_fun(Polyhedron *C);
801 gen_fun(Value c);
802 gen_fun(const gen_fun *gf);
803 ~gen_fun();
805 \end{verbatim}
806 A new \ai[\tt]{gen\_fun} can be constructed either as empty \rgf/ (possibly
807 with a given context \verb+C+), as a copy of an existing \rgf/ \verb+gf+, or as
808 constant \rgf/ with value for the constant term specified by \verb+c+.
810 The first \ai[\tt]{gen\_fun::add} method adds a new term to the \rgf/,
811 described by the coefficient \verb+c+, the numerator \verb+num+ and the
812 denominator \verb+den+.
813 It makes all powers in the denominator lexico-positive,
814 orders them in lexicographical order and inserts the new
815 term in \ai[\tt]{term} according to the lexicographical
816 order of the combined powers in the denominator.
817 The second \ai[\tt]{gen\_fun::add} method adds \verb+c+ times \verb+gf+
818 to the \rgf/.
820 The method \ai[\tt]{gen\_fun::operator evalue *} performs
821 the conversion from \rgf/ to \psp/ explained in
822 \citeN[Section~4.5.5]{Verdoolaege2005PhD}.
823 The \ai[\tt]{Polyhedron} \ai[\tt]{context} is the superset
824 of all points where the enumerator is non-zero used during this conversion,
825 i.e., it is the set $Q$ from \citeN[Equation~4.31]{Verdoolaege2005PhD}.
826 If \ai[\tt]{context} is \verb+NULL+ the maximal
827 allowed context is assumed, i.e., the maximal
828 region with lexico-positive rays.
830 The method \ai[\tt]{gen\_fun::coefficient} computes the coefficient
831 of the term with power given by \verb+params+ and stores the result
832 in \verb+c+.
833 This method performs essentially the same computations as
834 \ai[\tt]{gen\_fun::operator evalue *}, except that it adds extra
835 equality constraints based on the specified values for the power.
837 The method \ai[\tt]{gen\_fun::substitute} performs the
838 \ai{monomial substitution} specified by the homogeneous matrix \verb+CP+
839 that maps a set of ``\ai{compressed parameter}s'' \shortcite{Meister2004PhD}
840 to the original set of parameters.
841 That is, if we are given a \rgf/ $G(\vec z)$ that encodes the
842 explicit function $g(\vec i')$, where $\vec i'$ are the coordinates of
843 the transformed space, and \verb+CP+ represents the map
844 $\vec i = A \vec i' + \vec a$ back to the original space with coordinates $\vec i$,
845 then this method transforms the \rgf/ to $F(\vec x)$ encoding the
846 same explicit function $f(\vec i)$, i.e.,
847 $$f(\vec i) = f(A \vec i' + \vec a) = g(\vec i ').$$
848 This means that the coefficient of the term
849 $\vec x^{\vec i} = \vec x^{A \vec i' + \vec a}$ in $F(\vec x)$ should be equal to the
850 coefficient of the term $\vec z^{\vec i'}$ in $G(\vec z)$.
851 In other words, if
853 G(\vec z) =
854 \sum_i \epsilon_i \frac{\vec z^{\vec v_i}}{\prod_j (1-\vec z^{\vec b_{ij}})}
856 then
858 F(\vec x) =
859 \sum_i \epsilon_i \frac{\vec x^{A \vec v_i + \vec a}}
860 {\prod_j (1-\vec x^{A \vec b_{ij}})}
864 The method \ai[\tt]{gen\_fun::Hadamard\_product} computes the
865 \ai{Hadamard product} of the current \rgf/ with the \rgf/ \verb+gf+,
866 as explained in \citeN[Section~4.5.2]{Verdoolaege2005PhD}.
868 \subsection{Counting Functions}
869 \label{a:counting:functions}
871 Our library provides essentially three different counting functions:
872 one for non-parametric polytopes, one for parametric polytopes
873 and one for parametric sets with existential variables.
874 The old versions of these functions have a ``\ai[\tt]{MaxRays}''
875 argument, while the new versions have a more general
876 \ai[\tt]{barvinok\_options} argument.
877 For more information on \ai[\tt]{barvinok\_options}, see Section~\ref{a:options}.
879 \begin{verbatim}
880 void barvinok_count(Polyhedron *P, Value* result,
881 unsigned NbMaxCons);
882 void barvinok_count_with_options(Polyhedron *P, Value* result,
883 struct barvinok_options *options);
884 \end{verbatim}
885 The function \ai[\tt]{barvinok\_count} or
886 \ai[\tt]{barvinok\_count\_with\_options} enumerates the non-parametric
887 polytope \verb+P+ and returns the result in the \ai[\tt]{Value}
888 pointed to by \verb+result+, which needs to have been allocated
889 and initialized.
890 If \verb+P+ is a union, then only the first set in the union will
891 be taken into account.
892 For the meaning of the argument \verb+NbMaxCons+, see
893 the discussion on \ai[\tt]{MaxRays} in Section~\ref{a:options}.
895 The function \ai[\tt]{barvinok\_enumerate} for enumerating
896 parametric polytopes was meant to be
897 a drop-in replacement of \PolyLib/'s \ai[\tt]{Polyhedron\_Enumerate}
898 function.
899 Unfortunately, the latter has been changed to
900 accept an extra argument in recent versions of \PolyLib/ as shown below.
901 \begin{verbatim}
902 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
903 unsigned MaxRays);
904 extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
905 Polyhedron *C, unsigned MAXRAYS, char **pname);
906 \end{verbatim}
907 The argument \verb+MaxRays+ has the same meaning as the argument
908 \verb+NbMaxCons+ above.
909 The argument \verb+P+ refers to the $(d+n)$-dimensional
910 polyhedron defining the parametric polytope.
911 The argument \verb+C+ is an $n$-dimensional polyhedron containing
912 extra constraints on the parameter space.
913 Its primary use is to indicate how many of the dimensions
914 in \verb+P+ refer to parameters as any constraint in \verb+C+
915 could equally well have been added to \verb+P+ itself.
916 Note that the dimensions referring to the parameters should
917 appear {\em last}.
918 If either \verb+P+ or \verb+C+ is a union,
919 then only the first set in the union will be taken into account.
920 The result is a newly allocated \ai[\tt]{Enumeration}.
921 As an alternative we also provide a function
922 (\ai[\tt]{barvinok\_enumerate\_ev} or
923 \ai[\tt]{barvinok\_enumerate\_with\_options}) that returns
924 an \ai[\tt]{evalue}.
925 \begin{verbatim}
926 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
927 unsigned MaxRays);
928 evalue* barvinok_enumerate_with_options(Polyhedron *P,
929 Polyhedron* C, struct barvinok_options *options);
930 \end{verbatim}
932 For enumerating parametric sets with existentially quantified variables,
933 we provide two functions:
934 \ai[\tt]{barvinok\_enumerate\_e}
936 \ai[\tt]{barvinok\_enumerate\_pip}.
937 \begin{verbatim}
938 evalue* barvinok_enumerate_e(Polyhedron *P,
939 unsigned exist, unsigned nparam, unsigned MaxRays);
940 evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
941 unsigned exist, unsigned nparam,
942 struct barvinok_options *options);
943 evalue *barvinok_enumerate_pip(Polyhedron *P,
944 unsigned exist, unsigned nparam, unsigned MaxRays);
945 evalue* barvinok_enumerate_pip_with_options(Polyhedron *P,
946 unsigned exist, unsigned nparam,
947 struct barvinok_options *options);
948 evalue *barvinok_enumerate_scarf(Polyhedron *P,
949 unsigned exist, unsigned nparam,
950 struct barvinok_options *options);
951 \end{verbatim}
952 The first function tries the simplification rules from
953 \citeN[Section~4.6.2]{Verdoolaege2005PhD} before resorting to the method
954 based on \indac{PIP} from \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
955 The second function immediately applies the technique from
956 \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
957 The argument \verb+exist+ refers to the number of existential variables,
958 whereas
959 the argument \verb+nparam+ refers to the number of parameters.
960 The order of the dimensions in \verb+P+ is:
961 counted variables first, then existential variables and finally
962 the parameters.
963 The function \ai[\tt]{barvinok\_enumerate\_scarf} performs the same
964 computation as the function \ai[\tt]{barvinok\_enumerate\_scarf\_series}
965 below, but produces an explicit representation instead of a generating function.
967 \begin{verbatim}
968 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
969 unsigned MaxRays);
970 gen_fun * barvinok_series_with_options(Polyhedron *P,
971 Polyhedron* C, barvinok_options *options);
972 gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
973 unsigned exist, unsigned nparam,
974 barvinok_options *options);
975 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
976 unsigned exist, unsigned nparam,
977 barvinok_options *options);
978 \end{verbatim}
979 The function
980 \ai[\tt]{barvinok\_series} or
981 \ai[\tt]{barvinok\_series\_with\_options} enumerates parametric polytopes
982 in the form of a \rgf/.
983 The polyhedron \verb+P+ is assumed to have only
984 revlex-positive rays.
986 The function \ai[\tt]{barvinok\_enumerate\_e\_series} computes a
987 generating function for the number of point in the parametric set
988 defined by \verb+P+ with \verb+exist+ existentially quantified
989 variables using the \ai{projection theorem}, as explained
990 in \autoref{s:projection}.
991 The function \ai[\tt]{barvinok\_enumerate\_scarf\_series} computes a
992 generating function for the number of point in the parametric set
993 defined by \verb+P+ with \verb+exist+ existentially quantified
994 variables, which is assumed to be 2.
995 This function implements the technique of
996 \shortciteN{Scarf2006Neighborhood} using the \ai{neighborhood complex}
997 description of \shortciteN{Scarf1981indivisibilities:II}.
998 It is currently restricted to problems with 3 or 4 constraints involving
999 the existentially quantified variables.
1001 \subsection{Auxiliary Functions}
1003 In this section we briefly mention some auxiliary functions
1004 available in the \barvinok/ library.
1006 \begin{verbatim}
1007 void Polyhedron_Polarize(Polyhedron *P);
1008 \end{verbatim}
1009 The function \ai[\tt]{Polyhedron\_Polarize}
1010 polarizes its argument and is explained
1011 in \citeN[Section~4.4.2]{Verdoolaege2005PhD}.
1013 \begin{verbatim}
1014 int unimodular_complete(Matrix *M, int row);
1015 \end{verbatim}
1016 The function \ai[\tt]{unimodular\_complete} extends
1017 the first \verb+row+ rows of
1018 \verb+M+ with an integral basis of the orthogonal complement
1019 as explained in Section~\ref{s:completion}.
1020 Returns non-zero
1021 if the resulting matrix is unimodular\index{unimodular matrix}.
1023 \begin{verbatim}
1024 int DomainIncludes(Polyhedron *D1, Polyhedron *D2);
1025 \end{verbatim}
1026 The function \ai[\tt]{DomainIncludes} extends
1027 the function \ai[\tt]{PolyhedronIncludes}
1028 provided by \PolyLib/
1029 to unions of polyhedra.
1030 It checks whether every polyhedron in the union {\tt D2}
1031 is included in some polyhedron of {\tt D1}.
1033 \begin{verbatim}
1034 Polyhedron *DomainConstraintSimplify(Polyhedron *P,
1035 unsigned MaxRays);
1036 \end{verbatim}
1037 The value returned by
1038 \ai[\tt]{DomainConstraintSimplify} is a pointer to
1039 a newly allocated \ai[\tt]{Polyhedron} that contains the
1040 same integer points as its first argument but possibly
1041 has simpler constraints.
1042 Each constraint $ g \sp a x \ge c $
1043 is replaced by $ \sp a x \ge \ceil{ \frac c g } $,
1044 where $g$ is the \ac{gcd} of the coefficients in the original
1045 constraint.
1046 The \ai[\tt]{Polyhedron} pointed to by \verb+P+ is destroyed.
1048 \begin{verbatim}
1049 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);
1050 \end{verbatim}
1051 The function \ai[\tt]{Polyhedron\_Project} projects
1052 \verb+P+ onto its last \verb+dim+ dimensions.
1054 \begin{verbatim}
1055 Matrix *left_inverse(Matrix *M, Matrix **Eq);
1056 \end{verbatim}
1057 The \ai[\tt]{left\_inverse} function computes the left inverse
1058 of \verb+M+ as explained in Section~\ref{s:inverse}.
1060 \sindex{reduced}{basis}
1061 \sindex{generalized}{reduced basis}
1062 \begin{verbatim}
1063 Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
1064 struct barvinok_options *options);
1065 \end{verbatim}
1066 \ai[\tt]{Polyhedron\_Reduced\_Basis} computes
1067 a \ai{generalized reduced basis} of {\tt P}, which
1068 is assumed to be a polytope, using the algorithm
1069 of~\shortciteN{Cook1993implementation}.
1070 See \autoref{s:feasibility} for more information.
1071 The basis vectors are stored in the rows of the matrix returned.
1073 \begin{verbatim}
1074 Vector *Polyhedron_Sample(Polyhedron *P,
1075 struct barvinok_options *options);
1076 \end{verbatim}
1077 \ai[\tt]{Polyhedron\_Sample} returns an \ai{integer point} of {\tt P}
1078 or {\tt NULL} if {\tt P} contains no integer points.
1079 The integer point is found using the algorithm
1080 of~\shortciteN{Cook1993implementation} and uses
1081 \ai[\tt]{Polyhedron\_Reduced\_Basis} to compute the reduced bases.
1082 See \autoref{s:feasibility} for more information.
1084 \subsection{\protect\ai[\tt]{bernstein} Data Structures and Functions}
1086 The \bernstein/ library used \ai[\tt]{GiNaC} data structures to
1087 represent the data it manipulates.
1088 In particular, a polynomial is stored in a \ai[\tt]{GiNaC::ex},
1089 a list of variable or parameter names is stored in a \ai[\tt]{GiNaC::exvector},
1090 while the parametric vertices or generators are stored in a \ai[\tt]{GiNaC::matrix},
1091 where the rows refer to the generators and the columns to the coordinates
1092 of each generator.
1094 \begin{verbatim}
1095 namespace bernstein {
1096 GiNaC::exvector constructParameterVector(
1097 const char * const *param_names, unsigned nbParams);
1098 GiNaC::exvector constructVariableVector(unsigned nbVariables,
1099 const char *prefix);
1101 \end{verbatim}
1102 The functions \ai[\tt]{constructParameterVector}
1103 and \ai[\tt]{constructVariableVector} construct a list of variable
1104 names either from a list of {\tt char *}s or
1105 by suffixing {\tt prefix} with a number starting from 0.
1106 Such lists are needed for the functions
1107 \ai[\tt]{domainVertices}, \ai[\tt]{bernsteinExpansion}
1108 and \ai[\tt]{evalue\_bernstein\_coefficients}.
1110 \begin{verbatim}
1111 namespace bernstein {
1112 GiNaC::matrix domainVertices(Param_Polyhedron *PP, Param_Domain *Q,
1113 const GiNaC::exvector& params);
1115 \end{verbatim}
1116 The function \ai[\tt]{domainVertices} constructs a matrix representing the
1117 generators (in this case vertices) of the \ai[\tt]{Param\_Polyhedron} {\tt PP}
1118 for the \ai[\tt]{Param\_Domain} {\tt Q}, to be used
1119 in a call to \ai[\tt]{bernsteinExpansion}.
1120 The elements of {\tt params} are used in the resulting matrix
1121 to refer to the parameters.
1123 \begin{verbatim}
1124 namespace bernstein {
1125 GiNaC::lst bernsteinExpansion(const GiNaC::matrix& vert,
1126 const GiNaC::ex& poly,
1127 const GiNaC::exvector& vars,
1128 const GiNaC::exvector& params);
1130 \end{verbatim}
1131 The function \ai[\tt]{bernsteinExpansion} computes the
1132 \ai{Bernstein coefficient}s of the polynomial \verb+poly+
1133 over the \ai{parametric polytope} that is the \ai{convex hull}
1134 of the rows in \verb+vert+. The vectors \verb+vars+
1135 and \verb+params+ identify the variables (i.e., the coordinates
1136 of the space in which the parametric polytope lives) and
1137 the parameters, respectively.
1139 \begin{verbatim}
1140 namespace bernstein {
1142 typedef std::pair< Polyhedron *, GiNaC::lst > guarded_lst;
1144 struct piecewise_lst {
1145 const GiNaC::exvector vars;
1146 std::vector<guarded_lst> list;
1147 /* 0: just collect terms
1148 * 1: remove obviously smaller terms (maximize)
1149 * -1: remove obviously bigger terms (minimize)
1151 int sign;
1153 piecewise_lst(const GiNaC::exvector& vars);
1154 piecewise_lst& combine(const piecewise_lst& other);
1155 void maximize();
1156 void simplify_domains(Polyhedron *ctx, unsigned MaxRays);
1157 GiNaC::numeric evaluate(const GiNaC::exvector& values);
1158 void add(const GiNaC::ex& poly);
1162 \end{verbatim}
1163 A \ai[\tt]{piecewise\_list} structure represents a list of (disjoint)
1164 polyhedral domains, each with an associated \ai[\tt]{GiNaC::lst}
1165 of polynomials.
1166 The \ai[\tt]{vars} member contains the variable names of the
1167 dimensions of the polyhedral domains.
1169 \ai[\tt]{piecewise\_lst::combine} computes the \ai{common refinement}
1170 of the polyhedral domains in \verb+this+ and \verb+other+ and associates
1171 to each of the resulting subdomains the union of the sets of polynomials
1172 associated to the domains from \verb+this+ and \verb+other+ that contain
1173 the subdomain.
1174 If the \verb+sign+s of the \ai[\tt]{piecewise\_list}s are not zero,
1175 then the (obviously) redundant elements of these sets are removed
1176 from the union.
1177 The result is stored in \verb+this+.
1179 \ai[\tt]{piecewise\_lst::maximize} removes polynomials from domains that evaluate
1180 to a value that is smaller than or equal to the value of some
1181 other polynomial associated to the same domain for each point in the domain.
1183 \ai[\tt]{piecewise\_lst::evaluate} ``evaluates'' the \ai[\tt]{piecewise\_list}
1184 by looking for the domain (if any) that contains the point given by
1185 \verb+values+ and computing the maximal value attained by any of the
1186 associated polynomials evaluated at that point.
1188 \ai[\tt]{piecewise\_lst::add} adds the polynomial \verb+poly+
1189 to each of the polynomial associated to each of the domains.
1191 \ai[\tt]{piecewise\_lst::simplify\_domains} ``simplifies'' the domains
1192 by removing the constraints that are implied by the constraints
1193 in \verb+ctx+, basically by calling \PolyLib/'s
1194 \ai[\tt]{DomainSimplify}. Note that you should only do this
1195 at the end of your computation. In particular, you do not
1196 want to call this method before calling
1197 \ai[\tt]{piecewise\_lst::maximize}, since this method will then
1198 have less information on the domains to exploit.
1201 \begin{verbatim}
1202 namespace barvinok {
1203 bernstein::piecewise_lst *evalue_bernstein_coefficients(
1204 bernstein::piecewise_lst *pl_all, evalue *e,
1205 Polyhedron *ctx, const GiNaC::exvector& params);
1206 bernstein::piecewise_lst *evalue_bernstein_coefficients(
1207 bernstein::piecewise_lst *pl_all, evalue *e,
1208 Polyhedron *ctx, const GiNaC::exvector& params,
1209 barvinok_options *options);
1211 \end{verbatim}
1212 The \ai[\tt]{evalue\_bernstein\_coefficients} function will compute the
1213 \ai{Bernstein coefficient}s of the piecewise parametric polynomial stored in the
1214 \ai[\tt]{evalue} \verb+e+.
1215 The \verb+params+ vector specifies the names to be used for the parameters,
1216 while the context \ai[\tt]{Polyhedron} \verb+ctx+ specifies extra constraints
1217 on the parameters.
1218 The dimension of \verb+ctx+ needs to be the same as the length of \verb+params+.
1219 The \ai[\tt]{evalue} \verb+e+ is assumed to be of type \ai[\tt]{partition}
1220 and each of the domains in this \ai[\tt]{partition} is interpreted
1221 as a parametric polytope in the given parameters. The procedure
1222 will compute the \ai{Bernstein coefficient}s of the associated polynomial
1223 over each such parametric polytope.
1224 The resulting \ai[\tt]{bernstein::piecewise\_lst} collects the
1225 Bernstein coefficients over all parametric polytopes in \verb+e+.
1226 If \verb+pl_all+ is not \verb+NULL+ then this list will be combined
1227 with the list computed by calling \ai[\tt]{piecewise\_lst::combine}.
1228 If \ai[\tt]{bernstein\_optimize} is set to \ai[\tt]{BV\_BERNSTEIN\_MAX}
1229 in \verb+options+, then this combination will remove obviously
1230 redundant Bernstein coefficients with respect to upper bound computation
1231 and similarly for \ai[\tt]{BV\_BERNSTEIN\_MIN}.
1232 The default (\ai[\tt]{BV\_BERNSTEIN\_NONE}) is to only remove duplicate
1233 Bernstein coefficients.