2 #include <barvinok/barvinok.h>
3 #include <barvinok/util.h>
4 #include <barvinok/options.h>
6 #include "reduce_domain.h"
7 #include "param_util.h"
9 #define ALLOC(type) (type*)malloc(sizeof(type))
10 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
12 /* If a vertex is described by A x + B p + c = 0, then
13 * M = [A B] and we want to compute a linear transformation L such
14 * that H L = A and H \Z contains both A \Z and B \Z.
16 * [ A B ] = [ H 0 ] [ U_11 U_12 ]
19 * U_11 is the required linear transformation.
20 * Note that this also works if M has more rows than there are variables,
21 * i.e., if some rows in M are linear combinations of other rows.
22 * These extra rows only affect and H and not U.
24 static Lattice
*extract_lattice(Matrix
*M
, unsigned nvar
)
27 Matrix
*H
, *Q
, *U
, *Li
;
31 left_hermite(M
, &H
, &Q
, &U
);
34 Li
= Matrix_Alloc(nvar
+1, nvar
+1);
35 L
= Matrix_Alloc(nvar
+1, nvar
+1);
36 value_set_si(Li
->p
[nvar
][nvar
], 1);
38 for (row
= 0; row
< nvar
; ++row
)
39 Vector_Copy(Q
->p
[row
], Li
->p
[row
], nvar
);
43 ok
= Matrix_Inverse(Li
, L
);
50 /* Returns the smallest (wrt inclusion) lattice that contains both X and Y */
51 static Lattice
*LatticeJoin(Lattice
*X
, Lattice
*Y
)
54 int dim
= X
->NbRows
-1;
58 Matrix
*M
, *H
, *U
, *Q
;
60 assert(X
->NbColumns
-1 == dim
);
61 assert(Y
->NbRows
-1 == dim
);
62 assert(Y
->NbColumns
-1 == dim
);
67 M
= Matrix_Alloc(dim
, 2*dim
);
68 value_lcm(lcm
, X
->p
[dim
][dim
], Y
->p
[dim
][dim
]);
70 value_division(tmp
, lcm
, X
->p
[dim
][dim
]);
71 for (i
= 0; i
< dim
; ++i
)
72 Vector_Scale(X
->p
[i
], M
->p
[i
], tmp
, dim
);
73 value_division(tmp
, lcm
, Y
->p
[dim
][dim
]);
74 for (i
= 0; i
< dim
; ++i
)
75 Vector_Scale(Y
->p
[i
], M
->p
[i
]+dim
, tmp
, dim
);
77 left_hermite(M
, &H
, &Q
, &U
);
82 L
= Matrix_Alloc(dim
+1, dim
+1);
83 value_assign(L
->p
[dim
][dim
], lcm
);
84 for (i
= 0; i
< dim
; ++i
)
85 Vector_Copy(H
->p
[i
], L
->p
[i
], dim
);
93 static void Param_Vertex_Image(Param_Vertices
*V
, Matrix
*T
)
95 unsigned nvar
= V
->Vertex
->NbRows
;
96 unsigned nparam
= V
->Vertex
->NbColumns
- 2;
100 Param_Vertex_Common_Denominator(V
);
101 Vertex
= Matrix_Alloc(V
->Vertex
->NbRows
, V
->Vertex
->NbColumns
);
102 Matrix_Product(T
, V
->Vertex
, Vertex
);
103 for (i
= 0; i
< nvar
; ++i
) {
104 value_assign(Vertex
->p
[i
][nparam
+1], V
->Vertex
->p
[i
][nparam
+1]);
105 Vector_Normalize(Vertex
->p
[i
], nparam
+2);
107 Matrix_Free(V
->Vertex
);
111 static void apply_expansion(Param_Polyhedron
*PP
, Polyhedron
**P
,
112 Matrix
*expansion
, unsigned MaxRays
)
115 unsigned nparam
= PP
->V
->Vertex
->NbColumns
- 2;
116 unsigned nvar
= PP
->V
->Vertex
->NbRows
;
119 constraint
= Vector_Alloc(nvar
+nparam
+1);
120 for (i
= 0; i
< PP
->Constraints
->NbRows
; ++i
) {
121 Vector_Matrix_Product(PP
->Constraints
->p
[i
]+1, expansion
, constraint
->p
);
122 Vector_Copy(constraint
->p
, PP
->Constraints
->p
[i
]+1, nvar
+nparam
+1);
123 Vector_Normalize(PP
->Constraints
->p
[i
]+1, nvar
+nparam
+1);
125 Vector_Free(constraint
);
127 *P
= Polyhedron_Preimage(*P
, expansion
, MaxRays
);
130 /* Scales the parametric polyhedron with constraints *P and vertices PP
131 * such that the number of integer points can be represented by a polynomial.
132 * Both *P and P->Vertex are adapted according to the scaling.
133 * The scaling factor is returned in *det.
134 * The transformation that maps the new coordinates to the original
135 * coordinates is returned in *Lat (if Lat != NULL).
136 * The enumerator of the scaled parametric polyhedron should be divided
137 * by this number to obtain an approximation of the enumerator of the
138 * original parametric polyhedron.
140 * The algorithm is described in "Approximating Ehrhart Polynomials using
141 * affine transformations" by B. Meister.
143 void Param_Polyhedron_Scale_Integer_Slow(Param_Polyhedron
*PP
, Polyhedron
**P
,
145 Value
*det
, unsigned MaxRays
)
148 unsigned dim
= (*P
)->Dimension
;
151 Lattice
*L
= NULL
, *Li
;
160 nparam
= PP
->V
->Vertex
->NbColumns
- 2;
163 for (V
= PP
->V
; V
; V
= V
->next
) {
167 unsigned *supporting
;
171 supporting
= supporting_constraints(PP
->Constraints
, V
, &n
);
172 M
= Matrix_Alloc(n
, PP
->Constraints
->NbColumns
-2);
173 for (i
= 0, j
= 0, ix
= 0, bx
= MSB
; i
< PP
->Constraints
->NbRows
; ++i
) {
174 if (supporting
[ix
] & bx
)
175 Vector_Copy(PP
->Constraints
->p
[i
]+1, M
->p
[j
++],
176 PP
->Constraints
->NbColumns
-2);
180 L2
= extract_lattice(M
, nvar
);
186 Lattice
*L3
= LatticeJoin(L
, L2
);
194 *Lat
= Matrix_Copy(L
);
196 /* apply the variable expansion to the polyhedron (constraints) */
197 expansion
= Matrix_Alloc(nvar
+ nparam
+ 1, nvar
+ nparam
+ 1);
198 for (i
= 0; i
< nvar
; ++i
)
199 Vector_Copy(L
->p
[i
], expansion
->p
[i
], nvar
);
200 for (i
= nvar
; i
< nvar
+nparam
+1; ++i
)
201 value_assign(expansion
->p
[i
][i
], L
->p
[nvar
][nvar
]);
203 apply_expansion(PP
, P
, expansion
, MaxRays
);
204 Matrix_Free(expansion
);
206 /* apply the variable expansion to the parametric vertices */
207 Li
= Matrix_Alloc(nvar
+1, nvar
+1);
208 ok
= Matrix_Inverse(L
, Li
);
211 assert(value_one_p(Li
->p
[nvar
][nvar
]));
212 T
= Matrix_Alloc(nvar
, nvar
);
213 value_set_si(*det
, 1);
214 for (i
= 0; i
< nvar
; ++i
) {
215 value_multiply(*det
, *det
, Li
->p
[i
][i
]);
216 Vector_Copy(Li
->p
[i
], T
->p
[i
], nvar
);
219 for (V
= PP
->V
; V
; V
= V
->next
)
220 Param_Vertex_Image(V
, T
);
224 /* Scales the parametric polyhedron with constraints *P and vertices PP
225 * such that the number of integer points can be represented by a polynomial.
226 * Both *P and P->Vertex are adapted according to the scaling.
227 * The scaling factor is returned in *det.
228 * The transformation that maps the new coordinates to the original
229 * coordinates is returned in *Lat (if Lat != NULL).
230 * The enumerator of the scaled parametric polyhedron should be divided
231 * by this number to obtain an approximation of the enumerator of the
232 * original parametric polyhedron.
234 * The algorithm is described in "Approximating Ehrhart Polynomials using
235 * affine transformations" by B. Meister.
237 void Param_Polyhedron_Scale_Integer_Fast(Param_Polyhedron
*PP
, Polyhedron
**P
,
239 Value
*det
, unsigned MaxRays
)
242 int nb_param
, nb_vars
;
245 Value global_var_lcm
;
249 value_set_si(*det
, 1);
253 nb_param
= PP
->D
->Domain
->Dimension
;
254 nb_vars
= PP
->V
->Vertex
->NbRows
;
256 /* Scan the vertices and make an orthogonal expansion of the variable
258 /* a- prepare the array of common denominators */
259 denoms
= Vector_Alloc(nb_vars
);
260 value_init(global_var_lcm
);
263 /* b- scan the vertices and compute the variables' global lcms */
264 for (V
= PP
->V
; V
; V
= V
->next
) {
265 for (i
= 0; i
< nb_vars
; i
++) {
266 Vector_Gcd(V
->Vertex
->p
[i
], nb_param
, &tmp
);
267 value_gcd(tmp
, tmp
, V
->Vertex
->p
[i
][nb_param
+1]);
268 value_division(tmp
, V
->Vertex
->p
[i
][nb_param
+1], tmp
);
269 Lcm3(denoms
->p
[i
], tmp
, &denoms
->p
[i
]);
274 value_set_si(global_var_lcm
, 1);
275 for (i
= 0; i
< nb_vars
; i
++) {
276 value_multiply(*det
, *det
, denoms
->p
[i
]);
277 Lcm3(global_var_lcm
, denoms
->p
[i
], &global_var_lcm
);
281 for (V
= PP
->V
; V
; V
= V
->next
)
282 for (i
= 0; i
< nb_vars
; i
++) {
283 Vector_Scale(V
->Vertex
->p
[i
], V
->Vertex
->p
[i
], denoms
->p
[i
], nb_param
+1);
284 Vector_Normalize(V
->Vertex
->p
[i
], nb_param
+2);
287 /* the expansion can be actually writen as global_var_lcm.L^{-1} */
288 /* this is equivalent to multiply the rows of P by denoms_det */
289 for (i
= 0; i
< nb_vars
; i
++)
290 value_division(denoms
->p
[i
], global_var_lcm
, denoms
->p
[i
]);
292 /* OPT : we could use a vector instead of a diagonal matrix here (c- and d-).*/
293 /* c- make the quick expansion matrix */
294 expansion
= Matrix_Alloc(nb_vars
+nb_param
+1, nb_vars
+nb_param
+1);
295 for (i
= 0; i
< nb_vars
; i
++)
296 value_assign(expansion
->p
[i
][i
], denoms
->p
[i
]);
297 for (i
= nb_vars
; i
< nb_vars
+nb_param
+1; i
++)
298 value_assign(expansion
->p
[i
][i
], global_var_lcm
);
300 /* d- apply the variable expansion to the polyhedron */
301 apply_expansion(PP
, P
, expansion
, MaxRays
);
304 Lattice
*L
= Matrix_Alloc(nb_vars
+1, nb_vars
+1);
305 for (i
= 0; i
< nb_vars
; ++i
)
306 value_assign(L
->p
[i
][i
], denoms
->p
[i
]);
307 value_assign(L
->p
[nb_vars
][nb_vars
], global_var_lcm
);
311 Matrix_Free(expansion
);
312 value_clear(global_var_lcm
);
316 /* Compute negated sum of all positive or negative coefficients in a row */
317 static void negated_sum(Value
*v
, int len
, int negative
, Value
*sum
)
321 value_set_si(*sum
, 0);
322 for (j
= 0; j
< len
; ++j
)
323 if (negative
? value_neg_p(v
[j
]) : value_pos_p(v
[j
]))
324 value_subtract(*sum
, *sum
, v
[j
]);
327 /* adapted from mpolyhedron_inflate in PolyLib */
328 Polyhedron
*Polyhedron_Flate(Polyhedron
*P
, unsigned nparam
, int inflate
,
332 int nvar
= P
->Dimension
- nparam
;
333 Matrix
*C
= Polyhedron2Constraints(P
);
338 /* subtract the sum of the negative coefficients of each inequality */
339 for (i
= 0; i
< C
->NbRows
; ++i
) {
340 negated_sum(C
->p
[i
]+1, nvar
, inflate
, &sum
);
341 value_addto(C
->p
[i
][1+P
->Dimension
], C
->p
[i
][1+P
->Dimension
], sum
);
344 P2
= Constraints2Polyhedron(C
, MaxRays
);
349 C
= Polyhedron_Project(P
, nparam
);
350 CA
= align_context(C
, P
->Dimension
, MaxRays
);
352 P2
= DomainIntersection(P
, CA
, MaxRays
);
361 static Polyhedron
*flate_narrow2(Polyhedron
*P
, Lattice
*L
,
362 unsigned nparam
, int inflate
,
366 unsigned nvar
= P
->Dimension
- nparam
;
372 expansion
= Matrix_Alloc(nvar
+ nparam
+ 1, nvar
+ nparam
+ 1);
373 for (i
= 0; i
< nvar
; ++i
)
374 Vector_Copy(L
->p
[i
], expansion
->p
[i
], nvar
);
375 for (i
= nvar
; i
< nvar
+nparam
+1; ++i
)
376 value_assign(expansion
->p
[i
][i
], L
->p
[nvar
][nvar
]);
378 C
= Matrix_Alloc(P
->NbConstraints
+1, 1+P
->Dimension
+1);
380 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
381 negated_sum(P
->Constraint
[i
]+1, nvar
, inflate
, &sum
);
382 value_assign(C
->p
[i
][0], P
->Constraint
[i
][0]);
383 Vector_Matrix_Product(P
->Constraint
[i
]+1, expansion
, C
->p
[i
]+1);
384 if (value_zero_p(sum
))
386 Vector_Copy(C
->p
[i
]+1, C
->p
[i
+1]+1, P
->Dimension
+1);
387 value_addmul(C
->p
[i
][1+P
->Dimension
], sum
, L
->p
[nvar
][nvar
]);
388 ConstraintSimplify(C
->p
[i
], C
->p
[i
], P
->Dimension
+2, &sum
);
389 ConstraintSimplify(C
->p
[i
+1], C
->p
[i
+1], P
->Dimension
+2, &sum
);
390 if (value_ne(C
->p
[i
][1+P
->Dimension
], C
->p
[i
+1][1+P
->Dimension
])) {
392 value_decrement(C
->p
[i
][1+P
->Dimension
], C
->p
[i
][1+P
->Dimension
]);
394 value_increment(C
->p
[i
][1+P
->Dimension
], C
->p
[i
][1+P
->Dimension
]);
399 P2
= Constraints2Polyhedron(C
, MaxRays
);
402 Matrix_Free(expansion
);
406 C
= Polyhedron_Project(P
, nparam
);
407 CA
= align_context(C
, P
->Dimension
, MaxRays
);
409 P2
= DomainIntersection(P
, CA
, MaxRays
);
418 static void linear_min(Polyhedron
*D
, Value
*obj
, Value
*min
)
423 POL_ENSURE_VERTICES(D
);
424 for (i
= 0; i
< D
->NbRays
; ++i
) {
425 Inner_Product(obj
, D
->Ray
[i
]+1, D
->Dimension
, &tmp
);
426 mpz_cdiv_q(tmp
, tmp
, D
->Ray
[i
][1+D
->Dimension
]);
427 if (!i
|| value_lt(tmp
, *min
))
428 value_assign(*min
, tmp
);
433 static Polyhedron
*inflate_deflate_domain(Lattice
*L
, unsigned MaxRays
)
435 unsigned nvar
= L
->NbRows
-1;
440 M
= Matrix_Alloc(2*nvar
, 1+nvar
+1);
441 for (i
= 0; i
< nvar
; ++i
) {
442 value_set_si(M
->p
[2*i
][0], 1);
443 Vector_Copy(L
->p
[i
], M
->p
[2*i
]+1, nvar
);
444 Vector_Normalize(M
->p
[2*i
]+1, nvar
);
446 value_set_si(M
->p
[2*i
+1][0], 1);
447 Vector_Oppose(L
->p
[i
], M
->p
[2*i
+1]+1, nvar
);
448 value_assign(M
->p
[2*i
+1][1+nvar
], L
->p
[nvar
][nvar
]);
449 Vector_Normalize(M
->p
[2*i
+1]+1, nvar
+1);
450 value_decrement(M
->p
[2*i
+1][1+nvar
], M
->p
[2*i
+1][1+nvar
]);
452 D
= Constraints2Polyhedron(M
, MaxRays
);
458 static Polyhedron
*flate_narrow(Polyhedron
*P
, Lattice
*L
,
459 unsigned nparam
, int inflate
, unsigned MaxRays
)
462 unsigned nvar
= P
->Dimension
- nparam
;
469 D
= inflate_deflate_domain(L
, MaxRays
);
471 obj
= Vector_Alloc(nvar
);
472 C
= Polyhedron2Constraints(P
);
474 for (i
= 0; i
< C
->NbRows
; ++i
) {
476 Vector_Copy(C
->p
[i
]+1, obj
->p
, nvar
);
478 Vector_Oppose(C
->p
[i
]+1, obj
->p
, nvar
);
479 linear_min(D
, obj
->p
, &min
);
481 value_subtract(C
->p
[i
][1+P
->Dimension
], C
->p
[i
][1+P
->Dimension
], min
);
483 value_addto(C
->p
[i
][1+P
->Dimension
], C
->p
[i
][1+P
->Dimension
], min
);
487 P2
= Constraints2Polyhedron(C
, MaxRays
);
494 C
= Polyhedron_Project(P
, nparam
);
495 CA
= align_context(C
, P
->Dimension
, MaxRays
);
497 P2
= DomainIntersection(P
, CA
, MaxRays
);
506 static Polyhedron
*flate(Polyhedron
*P
, Lattice
*L
,
507 unsigned nparam
, int inflate
,
508 struct barvinok_options
*options
)
510 if (options
->scale_flags
& BV_APPROX_SCALE_NARROW2
)
511 return flate_narrow2(P
, L
, nparam
, inflate
, options
->MaxRays
);
512 else if (options
->scale_flags
& BV_APPROX_SCALE_NARROW
)
513 return flate_narrow(P
, L
, nparam
, inflate
, options
->MaxRays
);
515 return Polyhedron_Flate(P
, nparam
, inflate
, options
->MaxRays
);
518 static void Param_Polyhedron_Scale(Param_Polyhedron
*PP
, Polyhedron
**P
,
520 Value
*det
, struct barvinok_options
*options
)
522 if (options
->scale_flags
& BV_APPROX_SCALE_FAST
)
523 Param_Polyhedron_Scale_Integer_Fast(PP
, P
, L
, det
, options
->MaxRays
);
525 Param_Polyhedron_Scale_Integer_Slow(PP
, P
, L
, det
, options
->MaxRays
);
528 static evalue
*enumerate_flated(Polyhedron
*P
, Polyhedron
*C
, Lattice
*L
,
529 struct barvinok_options
*options
)
531 unsigned nparam
= C
->Dimension
;
533 int save_approximation
= options
->polynomial_approximation
;
535 if (options
->polynomial_approximation
== BV_APPROX_SIGN_UPPER
)
536 P
= flate(P
, L
, nparam
, 1, options
);
537 if (options
->polynomial_approximation
== BV_APPROX_SIGN_LOWER
)
538 P
= flate(P
, L
, nparam
, 0, options
);
540 /* Don't deflate/inflate again (on this polytope) */
541 options
->polynomial_approximation
= BV_APPROX_SIGN_NONE
;
542 eres
= barvinok_enumerate_with_options(P
, C
, options
);
543 options
->polynomial_approximation
= save_approximation
;
549 static evalue
*PP_enumerate_narrow_flated(Param_Polyhedron
*PP
,
550 Polyhedron
*P
, Polyhedron
*C
,
551 struct barvinok_options
*options
)
553 Polyhedron
*Porig
= P
;
554 int scale_narrow2
= options
->scale_flags
& BV_APPROX_SCALE_NARROW2
;
560 value_set_si(det
, 1);
562 Param_Polyhedron_Scale(PP
, &P
, &L
, &det
, options
);
563 Param_Polyhedron_Free(PP
);
568 /* Don't scale again (on this polytope) */
569 options
->approximation_method
= BV_APPROX_NONE
;
570 eres
= enumerate_flated(P
, C
, L
, options
);
571 options
->approximation_method
= BV_APPROX_SCALE
;
575 if (value_notone_p(det
))
576 evalue_div(eres
, det
);
581 #define INT_BITS (sizeof(unsigned) * 8)
583 static Param_Polyhedron
*Param_Polyhedron_Domain(Param_Polyhedron
*PP
,
588 Param_Polyhedron
*PP_D
;
591 Param_Vertices
**next
, *V
;
592 int facet_len
= (PP
->Constraints
->NbRows
+INT_BITS
-1)/INT_BITS
;
594 PP_D
= ALLOC(Param_Polyhedron
);
595 PP_D
->D
= ALLOC(Param_Domain
);
596 PP_D
->D
->next
= NULL
;
597 PP_D
->D
->Domain
= Domain_Copy(rVD
);
599 PP_D
->Constraints
= Matrix_Copy(PP
->Constraints
);
602 nv
= (PP
->nbV
- 1)/(8*sizeof(int)) + 1;
603 PP_D
->D
->F
= ALLOCN(unsigned, nv
);
604 memset(PP_D
->D
->F
, 0, nv
* sizeof(unsigned));
610 FORALL_PVertex_in_ParamPolyhedron(V
, D
, PP
)
611 Param_Vertices
*V2
= ALLOC(Param_Vertices
);
612 V2
->Vertex
= Matrix_Copy(V
->Vertex
);
615 V2
->Facets
= ALLOCN(unsigned, facet_len
);
616 memcpy(V2
->Facets
, V
->Facets
, facet_len
* sizeof(unsigned));
619 PP_D
->D
->F
[ix
] |= bx
;
622 END_FORALL_PVertex_in_ParamPolyhedron
;
628 static evalue
*enumerate_narrow_flated(Polyhedron
*P
, Polyhedron
*C
,
629 struct barvinok_options
*options
)
631 unsigned Rat_MaxRays
= options
->MaxRays
;
632 Param_Polyhedron
*PP
;
633 PP
= Polyhedron2Param_Polyhedron(P
, C
, options
);
634 POL_UNSET(Rat_MaxRays
, POL_INTEGER
);
636 if ((options
->scale_flags
& BV_APPROX_SCALE_CHAMBER
) && PP
->D
->next
) {
638 evalue
*tmp
, *eres
= NULL
;
639 Polyhedron
*TC
= true_context(P
, C
, options
->MaxRays
);
641 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
, i
, D
, rVD
)
643 Param_Polyhedron
*PP_D
;
644 /* Intersect with D->Domain, so we only have the relevant constraints
645 * left. Don't use rVD, though, since we still want to recognize
646 * the defining constraints of the parametric vertices.
648 CA
= align_context(D
->Domain
, P
->Dimension
, options
->MaxRays
);
649 P2
= DomainIntersection(P
, CA
, Rat_MaxRays
);
650 POL_ENSURE_VERTICES(P2
);
652 /* Use rVD for context, to avoid overlapping domains in
653 * results of computations in different chambers.
655 PP_D
= Param_Polyhedron_Domain(PP
, D
, rVD
);
656 tmp
= PP_enumerate_narrow_flated(PP_D
, P2
, rVD
, options
);
662 free_evalue_refs(tmp
);
665 Polyhedron_Free(rVD
);
666 END_FORALL_REDUCED_DOMAIN
667 Param_Polyhedron_Free(PP
);
669 eres
= evalue_zero();
673 return PP_enumerate_narrow_flated(PP
, P
, C
, options
);
676 /* If scaling is to be performed in combination with deflation/inflation,
677 * do both and return the result.
678 * Otherwise return NULL.
680 evalue
*scale_bound(Polyhedron
*P
, Polyhedron
*C
,
681 struct barvinok_options
*options
)
683 int scale_narrow
= options
->scale_flags
& BV_APPROX_SCALE_NARROW
;
684 int scale_narrow2
= options
->scale_flags
& BV_APPROX_SCALE_NARROW2
;
686 if (options
->polynomial_approximation
== BV_APPROX_SIGN_NONE
||
687 options
->polynomial_approximation
== BV_APPROX_SIGN_APPROX
)
690 if (scale_narrow
|| scale_narrow2
)
691 return enumerate_narrow_flated(P
, C
, options
);
693 return enumerate_flated(P
, C
, NULL
, options
);
696 evalue
*scale(Param_Polyhedron
*PP
, Polyhedron
*P
, Polyhedron
*C
,
697 struct barvinok_options
*options
)
704 if ((options
->scale_flags
& BV_APPROX_SCALE_CHAMBER
) && PP
->D
->next
) {
707 Polyhedron
*TC
= true_context(P
, C
, options
->MaxRays
);
709 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
, i
, D
, rVD
)
710 Param_Polyhedron
*PP_D
= Param_Polyhedron_Domain(PP
, D
, rVD
);
711 tmp
= scale(PP_D
, P
, rVD
, options
);
716 free_evalue_refs(tmp
);
719 Param_Polyhedron_Free(PP_D
);
720 Polyhedron_Free(rVD
);
721 END_FORALL_REDUCED_DOMAIN
723 eres
= evalue_zero();
729 value_set_si(det
, 1);
731 MaxRays
= options
->MaxRays
;
732 POL_UNSET(options
->MaxRays
, POL_INTEGER
);
733 Param_Polyhedron_Scale(PP
, &T
, NULL
, &det
, options
);
734 options
->MaxRays
= MaxRays
;
736 eres
= Param_Polyhedron_Enumerate(PP
, T
, C
, options
);
740 if (value_notone_p(det
))
741 evalue_div(eres
, det
);