counter.h: directly include required headers
[barvinok.git] / volume.c
blobc07fa3a679d79a1a158137b631afd8c25f0f1ab4
1 #include <assert.h>
2 #include <barvinok/polylib.h>
3 #include <barvinok/barvinok.h>
4 #include <barvinok/options.h>
5 #include <barvinok/util.h>
6 #include "reduce_domain.h"
7 #include "param_util.h"
8 #include "volume.h"
9 #include "scale.h"
11 #define ALLOC(type) (type*)malloc(sizeof(type))
12 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
14 /* Computes an evalue representation of a coordinate
15 * in a ParamVertices.
17 static evalue *vertex2evalue(Value *vertex, int nparam)
19 return affine2evalue(vertex, vertex[nparam+1], nparam);
22 static void matrix_print(evalue ***matrix, int dim, int *cols,
23 const char **param_names) __attribute__((unused));
24 static void matrix_print(evalue ***matrix, int dim, int *cols,
25 const char **param_names)
27 int i, j;
29 for (i = 0; i < dim; ++i)
30 for (j = 0; j < dim; ++j) {
31 int k = cols ? cols[j] : j;
32 fprintf(stderr, "%d %d: ", i, j);
33 print_evalue(stderr, matrix[i][k], param_names);
34 fprintf(stderr, "\n");
38 /* Compute determinant using Laplace's formula.
39 * In particular, the determinant is expanded along the last row.
40 * The cols array is a list of columns that remain in the currect submatrix.
42 static evalue *determinant_cols(evalue ***matrix, int dim, int *cols)
44 evalue *det, *tmp;
45 evalue mone;
46 int j;
47 int *newcols;
49 if (dim == 1) {
50 det = ALLOC(evalue);
51 value_init(det->d);
52 evalue_copy(det, matrix[0][cols[0]]);
53 return det;
56 value_init(mone.d);
57 evalue_set_si(&mone, -1, 1);
58 det = NULL;
59 newcols = ALLOCN(int, dim-1);
60 for (j = 1; j < dim; ++j)
61 newcols[j-1] = cols[j];
62 for (j = 0; j < dim; ++j) {
63 if (j != 0)
64 newcols[j-1] = cols[j-1];
65 tmp = determinant_cols(matrix, dim-1, newcols);
66 emul(matrix[dim-1][cols[j]], tmp);
67 if ((dim+j)%2 == 0)
68 emul(&mone, tmp);
69 if (!det)
70 det = tmp;
71 else {
72 eadd(tmp, det);
73 evalue_free(tmp);
76 free(newcols);
77 free_evalue_refs(&mone);
79 return det;
82 static evalue *determinant(evalue ***matrix, int dim)
84 int i;
85 int *cols = ALLOCN(int, dim);
86 evalue *det;
88 for (i = 0; i < dim; ++i)
89 cols[i] = i;
91 det = determinant_cols(matrix, dim, cols);
93 free(cols);
95 return det;
98 /* Compute the facet of P that saturates constraint c.
100 static Polyhedron *facet(Polyhedron *P, int c, unsigned MaxRays)
102 Polyhedron *F;
103 Vector *row = Vector_Alloc(1+P->Dimension+1);
104 Vector_Copy(P->Constraint[c]+1, row->p+1, P->Dimension+1);
105 F = AddConstraints(row->p, 1, P, MaxRays);
106 Vector_Free(row);
107 return F;
110 /* Substitute parameters by the corresponding element in subs
112 static evalue *evalue_substitute_new(evalue *e, evalue **subs)
114 evalue *res = NULL;
115 evalue *c;
116 int i;
118 if (value_notzero_p(e->d)) {
119 res = ALLOC(evalue);
120 value_init(res->d);
121 evalue_copy(res, e);
122 return res;
124 assert(e->x.p->type == polynomial);
126 res = evalue_zero();
127 for (i = e->x.p->size-1; i > 0; --i) {
128 c = evalue_substitute_new(&e->x.p->arr[i], subs);
129 eadd(c, res);
130 evalue_free(c);
131 emul(subs[e->x.p->pos-1], res);
133 c = evalue_substitute_new(&e->x.p->arr[0], subs);
134 eadd(c, res);
135 evalue_free(c);
137 return res;
140 struct parameter_point {
141 Vector *coord;
142 evalue **e;
145 struct parameter_point *parameter_point_new(unsigned nparam)
147 struct parameter_point *point = ALLOC(struct parameter_point);
148 point->coord = Vector_Alloc(nparam+1);
149 point->e = NULL;
150 return point;
153 evalue **parameter_point_evalue(struct parameter_point *point)
155 int j;
156 unsigned nparam = point->coord->Size-1;
158 if (point->e)
159 return point->e;
161 point->e = ALLOCN(evalue *, nparam);
162 for (j = 0; j < nparam; ++j) {
163 point->e[j] = ALLOC(evalue);
164 value_init(point->e[j]->d);
165 evalue_set(point->e[j], point->coord->p[j], point->coord->p[nparam]);
168 return point->e;
171 void parameter_point_free(struct parameter_point *point)
173 int i;
174 unsigned nparam = point->coord->Size-1;
176 Vector_Free(point->coord);
178 if (point->e) {
179 for (i = 0; i < nparam; ++i)
180 evalue_free(point->e[i]);
181 free(point->e);
183 free(point);
186 /* Computes point in pameter space where polyhedron is non-empty.
188 static struct parameter_point *non_empty_point(Param_Domain *D)
190 unsigned nparam = D->Domain->Dimension;
191 struct parameter_point *point;
192 Vector *v;
194 v = inner_point(D->Domain);
195 point = parameter_point_new(nparam);
196 Vector_Copy(v->p+1, point->coord->p, nparam+1);
197 Vector_Free(v);
199 return point;
202 static Matrix *barycenter(Param_Polyhedron *PP, Param_Domain *D)
204 int nbV;
205 Matrix *center = NULL;
206 Value denom;
207 Value fc, fv;
208 unsigned nparam;
209 int i;
210 Param_Vertices *V;
212 value_init(fc);
213 value_init(fv);
214 nbV = 0;
215 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
216 ++nbV;
217 if (!center) {
218 center = Matrix_Copy(V->Vertex);
219 nparam = center->NbColumns - 2;
220 } else {
221 for (i = 0; i < center->NbRows; ++i) {
222 value_assign(fc, center->p[i][nparam+1]);
223 value_lcm(center->p[i][nparam+1],
224 fc, V->Vertex->p[i][nparam+1]);
225 value_division(fc, center->p[i][nparam+1], fc);
226 value_division(fv, center->p[i][nparam+1],
227 V->Vertex->p[i][nparam+1]);
228 Vector_Combine(center->p[i], V->Vertex->p[i], center->p[i],
229 fc, fv, nparam+1);
232 END_FORALL_PVertex_in_ParamPolyhedron;
233 value_clear(fc);
234 value_clear(fv);
236 value_init(denom);
237 value_set_si(denom, nbV);
238 for (i = 0; i < center->NbRows; ++i) {
239 value_multiply(center->p[i][nparam+1], center->p[i][nparam+1], denom);
240 Vector_Normalize(center->p[i], nparam+2);
242 value_clear(denom);
244 return center;
247 static Matrix *triangulation_vertex(Param_Polyhedron *PP, Param_Domain *D,
248 Polyhedron *F)
250 Param_Vertices *V;
252 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
253 return V->Vertex;
254 END_FORALL_PVertex_in_ParamPolyhedron;
256 assert(0);
257 return NULL;
260 /* Compute dim! times the volume of polyhedron F in Param_Domain D.
261 * If F is a simplex, then the volume is computed of a recursive pyramid
262 * over F with the points already in matrix.
263 * Otherwise, the barycenter of F is added to matrix and the function
264 * is called recursively on the facets of F.
266 * The first row of matrix contain the _negative_ of the first point.
267 * The remaining rows of matrix contain the distance of the corresponding
268 * point to the first point.
270 static evalue *volume_in_domain(Param_Polyhedron *PP, Param_Domain *D,
271 unsigned dim, evalue ***matrix,
272 struct parameter_point *point,
273 int row, Polyhedron *F,
274 struct barvinok_options *options);
276 static evalue *volume_triangulate(Param_Polyhedron *PP, Param_Domain *D,
277 unsigned dim, evalue ***matrix,
278 struct parameter_point *point,
279 int row, Polyhedron *F,
280 struct barvinok_options *options)
282 int j;
283 evalue *tmp;
284 evalue *vol;
285 evalue mone;
286 Matrix *center;
287 unsigned cut_MaxRays = options->MaxRays;
288 unsigned nparam = PP->V->Vertex->NbColumns-2;
289 Vector *v = NULL;
291 POL_UNSET(cut_MaxRays, POL_INTEGER);
293 value_init(mone.d);
294 evalue_set_si(&mone, -1, 1);
296 if (options->approx->volume_triangulate == BV_VOL_BARYCENTER)
297 center = barycenter(PP, D);
298 else
299 center = triangulation_vertex(PP, D, F);
300 for (j = 0; j < dim; ++j)
301 matrix[row][j] = vertex2evalue(center->p[j], center->NbColumns - 2);
302 if (options->approx->volume_triangulate == BV_VOL_BARYCENTER)
303 Matrix_Free(center);
304 else
305 v = Vector_Alloc(1+nparam+1);
307 if (row == 0) {
308 for (j = 0; j < dim; ++j)
309 emul(&mone, matrix[row][j]);
310 } else {
311 for (j = 0; j < dim; ++j)
312 eadd(matrix[0][j], matrix[row][j]);
315 vol = NULL;
316 POL_ENSURE_FACETS(F);
317 for (j = F->NbEq; j < F->NbConstraints; ++j) {
318 Polyhedron *FF;
319 Param_Domain *FD;
320 if (First_Non_Zero(F->Constraint[j]+1, dim) == -1)
321 continue;
322 if (options->approx->volume_triangulate != BV_VOL_BARYCENTER) {
323 Param_Inner_Product(F->Constraint[j], center, v->p);
324 if (First_Non_Zero(v->p+1, nparam+1) == -1)
325 continue;
327 FF = facet(F, j, options->MaxRays);
328 FD = Param_Polyhedron_Facet(PP, D, F->Constraint[j]);
329 tmp = volume_in_domain(PP, FD, dim, matrix, point,
330 row+1, FF, options);
331 if (!vol)
332 vol = tmp;
333 else {
334 eadd(tmp, vol);
335 evalue_free(tmp);
337 Polyhedron_Free(FF);
338 Param_Domain_Free(FD);
341 if (options->approx->volume_triangulate != BV_VOL_BARYCENTER)
342 Vector_Free(v);
344 for (j = 0; j < dim; ++j)
345 evalue_free(matrix[row][j]);
347 free_evalue_refs(&mone);
348 return vol;
351 static evalue *volume_simplex(Param_Polyhedron *PP, Param_Domain *D,
352 unsigned dim, evalue ***matrix,
353 struct parameter_point *point,
354 int row, struct barvinok_options *options)
356 evalue mone;
357 Param_Vertices *V;
358 evalue *vol, *val;
359 int i, j;
361 options->stats->volume_simplices++;
363 value_init(mone.d);
364 evalue_set_si(&mone, -1, 1);
366 i = row;
367 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal counters */
368 for (j = 0; j < dim; ++j) {
369 matrix[i][j] = vertex2evalue(V->Vertex->p[j],
370 V->Vertex->NbColumns - 2);
371 if (i == 0)
372 emul(&mone, matrix[i][j]);
373 else
374 eadd(matrix[0][j], matrix[i][j]);
376 ++i;
377 END_FORALL_PVertex_in_ParamPolyhedron;
379 vol = determinant(matrix+1, dim);
381 val = evalue_substitute_new(vol, parameter_point_evalue(point));
383 assert(value_notzero_p(val->d));
384 assert(value_notzero_p(val->x.n));
385 if (value_neg_p(val->x.n))
386 emul(&mone, vol);
388 evalue_free(val);
390 for (i = row; i < dim+1; ++i)
391 for (j = 0; j < dim; ++j)
392 evalue_free(matrix[i][j]);
394 free_evalue_refs(&mone);
396 return vol;
399 static evalue *volume_triangulate_lift(Param_Polyhedron *PP, Param_Domain *D,
400 unsigned dim, evalue ***matrix,
401 struct parameter_point *point,
402 int row, struct barvinok_options *options)
404 const static int MAX_TRY=10;
405 Param_Vertices *V;
406 int nbV, nv;
407 int i;
408 int t = 0;
409 Matrix *FixedRays, *M;
410 Polyhedron *L;
411 Param_Domain SD;
412 Value tmp;
413 evalue *s, *vol;
415 SD.Domain = 0;
416 SD.next = 0;
417 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
418 SD.F = ALLOCN(unsigned, nv);
420 FixedRays = Matrix_Alloc(PP->nbV+1, 1+dim+2);
421 nbV = 0;
422 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
423 unsigned nparam = V->Vertex->NbColumns - 2;
424 Param_Vertex_Common_Denominator(V);
425 for (i = 0; i < V->Vertex->NbRows; ++i) {
426 value_multiply(FixedRays->p[nbV][1+i], V->Vertex->p[i][nparam],
427 point->coord->p[nparam]);
428 Inner_Product(V->Vertex->p[i], point->coord->p, nparam,
429 &FixedRays->p[nbV][1+dim]);
430 value_addto(FixedRays->p[nbV][1+i], FixedRays->p[nbV][1+i],
431 FixedRays->p[nbV][1+dim]);
433 value_multiply(FixedRays->p[nbV][1+dim+1], V->Vertex->p[0][nparam+1],
434 point->coord->p[nparam]);
435 value_set_si(FixedRays->p[nbV][0], 1);
436 ++nbV;
437 END_FORALL_PVertex_in_ParamPolyhedron;
438 value_set_si(FixedRays->p[nbV][0], 1);
439 value_set_si(FixedRays->p[nbV][1+dim], 1);
440 FixedRays->NbRows = nbV+1;
442 value_init(tmp);
443 if (0) {
444 try_again:
445 /* Usually vol should still be NULL */
446 if (vol)
447 evalue_free(vol);
448 Polyhedron_Free(L);
449 ++t;
451 assert(t <= MAX_TRY);
452 vol = NULL;
454 for (i = 0; i < nbV; ++i)
455 value_set_si(FixedRays->p[i][1+dim], random_int((t+1)*dim*nbV)+1);
457 M = Matrix_Copy(FixedRays);
458 L = Rays2Polyhedron(M, options->MaxRays);
459 Matrix_Free(M);
461 POL_ENSURE_FACETS(L);
462 for (i = 0; i < L->NbConstraints; ++i) {
463 int r;
464 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
465 if (value_negz_p(L->Constraint[i][1+dim]))
466 continue;
468 memset(SD.F, 0, nv * sizeof(unsigned));
469 nbV = 0;
470 r = 0;
471 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal */
472 Inner_Product(FixedRays->p[nbV]+1, L->Constraint[i]+1, dim+2, &tmp);
473 if (value_zero_p(tmp)) {
474 if (r > dim-row)
475 goto try_again;
476 SD.F[_ix] |= _bx;
477 ++r;
479 ++nbV;
480 END_FORALL_PVertex_in_ParamPolyhedron;
481 assert(r == (dim-row)+1);
483 s = volume_simplex(PP, &SD, dim, matrix, point, row, options);
484 if (!vol)
485 vol = s;
486 else {
487 eadd(s, vol);
488 evalue_free(s);
491 Polyhedron_Free(L);
492 Matrix_Free(FixedRays);
493 value_clear(tmp);
494 free(SD.F);
496 return vol;
499 static evalue *volume_in_domain(Param_Polyhedron *PP, Param_Domain *D,
500 unsigned dim, evalue ***matrix,
501 struct parameter_point *point,
502 int row, Polyhedron *F,
503 struct barvinok_options *options)
505 int nbV;
506 Param_Vertices *V;
507 evalue *vol;
509 assert(point);
511 nbV = 0;
512 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
513 ++nbV;
514 END_FORALL_PVertex_in_ParamPolyhedron;
516 if (nbV > (dim-row) + 1) {
517 if (options->approx->volume_triangulate == BV_VOL_LIFT)
518 vol = volume_triangulate_lift(PP, D, dim, matrix, point,
519 row, options);
520 else
521 vol = volume_triangulate(PP, D, dim, matrix, point,
522 row, F, options);
523 } else {
524 assert(nbV == (dim-row) + 1);
525 vol = volume_simplex(PP, D, dim, matrix, point, row, options);
528 return vol;
531 evalue* Param_Polyhedron_Volume(Polyhedron *P, Polyhedron* C,
532 struct barvinok_options *options)
534 evalue ***matrix;
535 unsigned nparam = C->Dimension;
536 unsigned nvar = P->Dimension - C->Dimension;
537 Param_Polyhedron *PP;
538 unsigned MaxRays;
539 int i;
540 Value fact;
541 evalue *vol;
542 int nd;
543 struct evalue_section *s;
544 Param_Domain *D;
545 Polyhedron *TC;
547 if (options->approx->approximation == BV_APPROX_SIGN_NONE)
548 return NULL;
550 if (options->approx->approximation != BV_APPROX_SIGN_APPROX) {
551 int pa = options->approx->approximation;
552 assert(pa == BV_APPROX_SIGN_UPPER || pa == BV_APPROX_SIGN_LOWER);
554 P = Polyhedron_Flate(P, nparam, pa == BV_APPROX_SIGN_UPPER,
555 options->MaxRays);
557 /* Don't deflate/inflate again (on this polytope) */
558 options->approx->approximation = BV_APPROX_SIGN_APPROX;
559 vol = barvinok_enumerate_with_options(P, C, options);
560 options->approx->approximation = pa;
562 Polyhedron_Free(P);
563 return vol;
566 TC = true_context(P, C, options->MaxRays);
568 MaxRays = options->MaxRays;
569 POL_UNSET(options->MaxRays, POL_INTEGER);
571 value_init(fact);
572 Factorial(nvar, &fact);
574 PP = Polyhedron2Param_Polyhedron(P, C, options);
576 for (nd = 0, D = PP->D; D; ++nd, D = D->next);
577 s = ALLOCN(struct evalue_section, nd);
579 matrix = ALLOCN(evalue **, nvar+1);
580 for (i = 0; i < nvar+1; ++i)
581 matrix[i] = ALLOCN(evalue *, nvar);
583 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, D, rVD)
584 Polyhedron *CA, *F;
585 struct parameter_point *point;
587 CA = align_context(D->Domain, P->Dimension, MaxRays);
588 F = DomainIntersection(P, CA, options->MaxRays);
589 Domain_Free(CA);
591 point = non_empty_point(D);
592 s[i].D = rVD;
593 s[i].E = volume_in_domain(PP, D, nvar, matrix, point, 0, F, options);
594 Domain_Free(F);
595 parameter_point_free(point);
596 evalue_div(s[i].E, fact);
597 END_FORALL_REDUCED_DOMAIN
598 options->MaxRays = MaxRays;
599 Polyhedron_Free(TC);
601 vol = evalue_from_section_array(s, nd);
602 free(s);
604 for (i = 0; i < nvar+1; ++i)
605 free(matrix[i]);
606 free(matrix);
607 Param_Polyhedron_Free(PP);
608 value_clear(fact);
610 return vol;