reduce leading coefficient
[barvinok.git] / barvinok.cc
blob09f061267059db9002520086a7d95190bbdcdafc
1 #include <assert.h>
2 #include <iostream>
3 #include <vector>
4 #include <deque>
5 #include <string>
6 #include <sstream>
7 #include <gmp.h>
8 #include <NTL/mat_ZZ.h>
9 #include <NTL/LLL.h>
10 #include <util.h>
11 extern "C" {
12 #include <polylib/polylibgmp.h>
13 #include "ev_operations.h"
15 #include "config.h"
16 #include <barvinok.h>
18 #ifdef NTL_STD_CXX
19 using namespace NTL;
20 #endif
21 using std::cout;
22 using std::endl;
23 using std::vector;
24 using std::deque;
25 using std::string;
26 using std::ostringstream;
28 #define ALLOC(p) (((long *) (p))[0])
29 #define SIZE(p) (((long *) (p))[1])
30 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
32 static void value2zz(Value v, ZZ& z)
34 int sa = v[0]._mp_size;
35 int abs_sa = sa < 0 ? -sa : sa;
37 _ntl_gsetlength(&z.rep, abs_sa);
38 mp_limb_t * adata = DATA(z.rep);
39 for (int i = 0; i < abs_sa; ++i)
40 adata[i] = v[0]._mp_d[i];
41 SIZE(z.rep) = sa;
44 static void zz2value(ZZ& z, Value& v)
46 if (!z.rep) {
47 value_set_si(v, 0);
48 return;
51 int sa = SIZE(z.rep);
52 int abs_sa = sa < 0 ? -sa : sa;
54 mp_limb_t * adata = DATA(z.rep);
55 mpz_realloc2(v, __GMP_BITS_PER_MP_LIMB * abs_sa);
56 for (int i = 0; i < abs_sa; ++i)
57 v[0]._mp_d[i] = adata[i];
58 v[0]._mp_size = sa;
61 #undef ALLOC
62 #define ALLOC(p) p = (typeof(p))malloc(sizeof(*p))
65 * We just ignore the last column and row
66 * If the final element is not equal to one
67 * then the result will actually be a multiple of the input
69 static void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
71 m.SetDims(nr, nc);
73 for (int i = 0; i < nr; ++i) {
74 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
75 for (int j = 0; j < nc; ++j) {
76 value2zz(M->p[i][j], m[i][j]);
81 static void values2zz(Value *p, vec_ZZ& v, int len)
83 v.SetLength(len);
85 for (int i = 0; i < len; ++i) {
86 value2zz(p[i], v[i]);
92 static void zz2values(vec_ZZ& v, Value *p)
94 for (int i = 0; i < v.length(); ++i)
95 zz2value(v[i], p[i]);
98 static void rays(mat_ZZ& r, Polyhedron *C)
100 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
101 assert(C->NbRays - 1 == C->Dimension);
102 r.SetDims(dim, dim);
103 ZZ tmp;
105 int i, c;
106 for (i = 0, c = 0; i < dim; ++i)
107 if (value_zero_p(C->Ray[i][dim+1])) {
108 for (int j = 0; j < dim; ++j) {
109 value2zz(C->Ray[i][j+1], tmp);
110 r[j][c] = tmp;
112 ++c;
116 static Matrix * rays(Polyhedron *C)
118 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
119 assert(C->NbRays - 1 == C->Dimension);
121 Matrix *M = Matrix_Alloc(dim+1, dim+1);
122 assert(M);
124 int i, c;
125 for (i = 0, c = 0; i <= dim && c < dim; ++i)
126 if (value_zero_p(C->Ray[i][dim+1])) {
127 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
128 value_set_si(M->p[c++][dim], 0);
130 assert(c == dim);
131 value_set_si(M->p[dim][dim], 1);
133 return M;
136 static Matrix * rays2(Polyhedron *C)
138 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
139 assert(C->NbRays - 1 == C->Dimension);
141 Matrix *M = Matrix_Alloc(dim, dim);
142 assert(M);
144 int i, c;
145 for (i = 0, c = 0; i <= dim && c < dim; ++i)
146 if (value_zero_p(C->Ray[i][dim+1]))
147 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
148 assert(c == dim);
150 return M;
154 * Returns the largest absolute value in the vector
156 static ZZ max(vec_ZZ& v)
158 ZZ max = abs(v[0]);
159 for (int i = 1; i < v.length(); ++i)
160 if (abs(v[i]) > max)
161 max = abs(v[i]);
162 return max;
165 class cone {
166 public:
167 cone(Matrix *M) {
168 Cone = 0;
169 Rays = Matrix_Copy(M);
170 set_det();
172 cone(Polyhedron *C) {
173 Cone = Polyhedron_Copy(C);
174 Rays = rays(C);
175 set_det();
177 void set_det() {
178 mat_ZZ A;
179 matrix2zz(Rays, A, Rays->NbRows - 1, Rays->NbColumns - 1);
180 det = determinant(A);
181 Value v;
182 value_init(v);
183 zz2value(det, v);
184 value_clear(v);
187 Vector* short_vector(vec_ZZ& lambda) {
188 Matrix *M = Matrix_Copy(Rays);
189 Matrix *inv = Matrix_Alloc(M->NbRows, M->NbColumns);
190 int ok = Matrix_Inverse(M, inv);
191 assert(ok);
192 Matrix_Free(M);
194 ZZ det2;
195 mat_ZZ B;
196 mat_ZZ U;
197 matrix2zz(inv, B, inv->NbRows - 1, inv->NbColumns - 1);
198 long r = LLL(det2, B, U);
200 ZZ min = max(B[0]);
201 int index = 0;
202 for (int i = 1; i < B.NumRows(); ++i) {
203 ZZ tmp = max(B[i]);
204 if (tmp < min) {
205 min = tmp;
206 index = i;
210 Matrix_Free(inv);
212 lambda = B[index];
214 Vector *z = Vector_Alloc(U[index].length()+1);
215 assert(z);
216 zz2values(U[index], z->p);
217 value_set_si(z->p[U[index].length()], 0);
219 Value tmp;
220 value_init(tmp);
221 Polyhedron *C = poly();
222 int i;
223 for (i = 0; i < C->NbConstraints; ++i) {
224 Inner_Product(z->p, C->Constraint[i]+1, z->Size-1, &tmp);
225 if (value_pos_p(tmp))
226 break;
228 if (i == C->NbConstraints) {
229 value_set_si(tmp, -1);
230 Vector_Scale(z->p, z->p, tmp, z->Size-1);
232 value_clear(tmp);
233 return z;
236 ~cone() {
237 Polyhedron_Free(Cone);
238 Matrix_Free(Rays);
241 Polyhedron *poly() {
242 if (!Cone) {
243 Matrix *M = Matrix_Alloc(Rays->NbRows+1, Rays->NbColumns+1);
244 for (int i = 0; i < Rays->NbRows; ++i) {
245 Vector_Copy(Rays->p[i], M->p[i]+1, Rays->NbColumns);
246 value_set_si(M->p[i][0], 1);
248 Vector_Set(M->p[Rays->NbRows]+1, 0, Rays->NbColumns-1);
249 value_set_si(M->p[Rays->NbRows][0], 1);
250 value_set_si(M->p[Rays->NbRows][Rays->NbColumns], 1);
251 Cone = Rays2Polyhedron(M, M->NbRows+1);
252 assert(Cone->NbConstraints == Cone->NbRays);
253 Matrix_Free(M);
255 return Cone;
258 ZZ det;
259 Polyhedron *Cone;
260 Matrix *Rays;
263 class dpoly {
264 public:
265 vec_ZZ coeff;
266 dpoly(int d, ZZ& degree, int offset = 0) {
267 coeff.SetLength(d+1);
269 int min = d + offset;
270 if (degree < ZZ(INIT_VAL, min))
271 min = to_int(degree);
273 ZZ c = ZZ(INIT_VAL, 1);
274 if (!offset)
275 coeff[0] = c;
276 for (int i = 1; i <= min; ++i) {
277 c *= (degree -i + 1);
278 c /= i;
279 coeff[i-offset] = c;
282 void operator *= (dpoly& f) {
283 assert(coeff.length() == f.coeff.length());
284 vec_ZZ old = coeff;
285 coeff = f.coeff[0] * coeff;
286 for (int i = 1; i < coeff.length(); ++i)
287 for (int j = 0; i+j < coeff.length(); ++j)
288 coeff[i+j] += f.coeff[i] * old[j];
290 void div(dpoly& d, mpq_t count, ZZ& sign) {
291 int len = coeff.length();
292 Value tmp;
293 value_init(tmp);
294 mpq_t* c = new mpq_t[coeff.length()];
295 mpq_t qtmp;
296 mpq_init(qtmp);
297 for (int i = 0; i < len; ++i) {
298 mpq_init(c[i]);
299 zz2value(coeff[i], tmp);
300 mpq_set_z(c[i], tmp);
302 for (int j = 1; j <= i; ++j) {
303 zz2value(d.coeff[j], tmp);
304 mpq_set_z(qtmp, tmp);
305 mpq_mul(qtmp, qtmp, c[i-j]);
306 mpq_sub(c[i], c[i], qtmp);
309 zz2value(d.coeff[0], tmp);
310 mpq_set_z(qtmp, tmp);
311 mpq_div(c[i], c[i], qtmp);
313 if (sign == -1)
314 mpq_sub(count, count, c[len-1]);
315 else
316 mpq_add(count, count, c[len-1]);
318 value_clear(tmp);
319 mpq_clear(qtmp);
320 for (int i = 0; i < len; ++i)
321 mpq_clear(c[i]);
322 delete [] c;
326 class dpoly_n {
327 public:
328 Matrix *coeff;
329 ~dpoly_n() {
330 Matrix_Free(coeff);
332 dpoly_n(int d, ZZ& degree_0, ZZ& degree_1, int offset = 0) {
333 Value d0, d1;
334 value_init(d0);
335 value_init(d1);
336 zz2value(degree_0, d0);
337 zz2value(degree_1, d1);
338 coeff = Matrix_Alloc(d+1, d+1+1);
339 value_set_si(coeff->p[0][0], 1);
340 value_set_si(coeff->p[0][d+1], 1);
341 for (int i = 1; i <= d; ++i) {
342 value_multiply(coeff->p[i][0], coeff->p[i-1][0], d0);
343 Vector_Combine(coeff->p[i-1], coeff->p[i-1]+1, coeff->p[i]+1,
344 d1, d0, i);
345 value_set_si(coeff->p[i][d+1], i);
346 value_multiply(coeff->p[i][d+1], coeff->p[i][d+1], coeff->p[i-1][d+1]);
347 value_decrement(d0, d0);
349 value_clear(d0);
350 value_clear(d1);
352 void div(dpoly& d, Vector *count, ZZ& sign) {
353 int len = coeff->NbRows;
354 Matrix * c = Matrix_Alloc(coeff->NbRows, coeff->NbColumns);
355 Value tmp;
356 value_init(tmp);
357 for (int i = 0; i < len; ++i) {
358 Vector_Copy(coeff->p[i], c->p[i], len+1);
359 for (int j = 1; j <= i; ++j) {
360 zz2value(d.coeff[j], tmp);
361 value_multiply(tmp, tmp, c->p[i][len]);
362 value_oppose(tmp, tmp);
363 Vector_Combine(c->p[i], c->p[i-j], c->p[i],
364 c->p[i-j][len], tmp, len);
365 value_multiply(c->p[i][len], c->p[i][len], c->p[i-j][len]);
367 zz2value(d.coeff[0], tmp);
368 value_multiply(c->p[i][len], c->p[i][len], tmp);
370 if (sign == -1) {
371 value_set_si(tmp, -1);
372 Vector_Scale(c->p[len-1], count->p, tmp, len);
373 value_assign(count->p[len], c->p[len-1][len]);
374 } else
375 Vector_Copy(c->p[len-1], count->p, len+1);
376 Vector_Normalize(count->p, len+1);
377 value_clear(tmp);
378 Matrix_Free(c);
383 * Barvinok's Decomposition of a simplicial cone
385 * Returns two lists of polyhedra
387 void barvinok_decompose(Polyhedron *C, Polyhedron **ppos, Polyhedron **pneg)
389 Polyhedron *pos = *ppos, *neg = *pneg;
390 vector<cone *> nonuni;
391 cone * c = new cone(C);
392 ZZ det = c->det;
393 int s = sign(det);
394 assert(det != 0);
395 if (abs(det) > 1) {
396 nonuni.push_back(c);
397 } else {
398 Polyhedron *p = Polyhedron_Copy(c->Cone);
399 p->next = pos;
400 pos = p;
401 delete c;
403 vec_ZZ lambda;
404 while (!nonuni.empty()) {
405 c = nonuni.back();
406 nonuni.pop_back();
407 Vector* v = c->short_vector(lambda);
408 for (int i = 0; i < c->Rays->NbRows - 1; ++i) {
409 if (lambda[i] == 0)
410 continue;
411 Matrix* M = Matrix_Copy(c->Rays);
412 Vector_Copy(v->p, M->p[i], v->Size);
413 cone * pc = new cone(M);
414 assert (pc->det != 0);
415 if (abs(pc->det) > 1) {
416 assert(abs(pc->det) < abs(c->det));
417 nonuni.push_back(pc);
418 } else {
419 Polyhedron *p = pc->poly();
420 pc->Cone = 0;
421 if (sign(pc->det) == s) {
422 p->next = pos;
423 pos = p;
424 } else {
425 p->next = neg;
426 neg = p;
428 delete pc;
430 Matrix_Free(M);
432 Vector_Free(v);
433 delete c;
435 *ppos = pos;
436 *pneg = neg;
440 * Returns a single list of npos "positive" cones followed by nneg
441 * "negative" cones.
442 * The input cone is freed
444 void decompose(Polyhedron *cone, Polyhedron **parts, int *npos, int *nneg, unsigned MaxRays)
446 Polyhedron_Polarize(cone);
447 if (cone->NbRays - 1 != cone->Dimension) {
448 Polyhedron *tmp = cone;
449 cone = triangularize_cone(cone, MaxRays);
450 Polyhedron_Free(tmp);
452 Polyhedron *polpos = NULL, *polneg = NULL;
453 *npos = 0; *nneg = 0;
454 for (Polyhedron *Polar = cone; Polar; Polar = Polar->next)
455 barvinok_decompose(Polar, &polpos, &polneg);
457 Polyhedron *last;
458 for (Polyhedron *i = polpos; i; i = i->next) {
459 Polyhedron_Polarize(i);
460 ++*npos;
461 last = i;
463 for (Polyhedron *i = polneg; i; i = i->next) {
464 Polyhedron_Polarize(i);
465 ++*nneg;
467 if (last) {
468 last->next = polneg;
469 *parts = polpos;
470 } else
471 *parts = polneg;
472 Domain_Free(cone);
475 const int MAX_TRY=10;
477 * Searches for a vector that is not othogonal to any
478 * of the rays in rays.
480 static void nonorthog(mat_ZZ& rays, vec_ZZ& lambda)
482 int dim = rays.NumCols();
483 bool found = false;
484 lambda.SetLength(dim);
485 for (int i = 2; !found && i <= 50*dim; i+=4) {
486 for (int j = 0; j < MAX_TRY; ++j) {
487 for (int k = 0; k < dim; ++k) {
488 int r = random_int(i)+2;
489 int v = (2*(r%2)-1) * (r >> 1);
490 lambda[k] = v;
492 int k = 0;
493 for (; k < rays.NumRows(); ++k)
494 if (lambda * rays[k] == 0)
495 break;
496 if (k == rays.NumRows()) {
497 found = true;
498 break;
502 assert(found);
505 static void add_rays(mat_ZZ& rays, Polyhedron *i, int *r)
507 unsigned dim = i->Dimension;
508 for (int k = 0; k < i->NbRays; ++k) {
509 if (!value_zero_p(i->Ray[k][dim+1]))
510 continue;
511 values2zz(i->Ray[k]+1, rays[(*r)++], dim);
515 void lattice_point(Value* values, Polyhedron *i, vec_ZZ& lambda, ZZ& num)
517 vec_ZZ vertex;
518 unsigned dim = i->Dimension;
519 if(!value_one_p(values[dim])) {
520 Matrix* Rays = rays(i);
521 Matrix *inv = Matrix_Alloc(Rays->NbRows, Rays->NbColumns);
522 int ok = Matrix_Inverse(Rays, inv);
523 assert(ok);
524 Matrix_Free(Rays);
525 Rays = rays(i);
526 Vector *lambda = Vector_Alloc(dim+1);
527 Vector_Matrix_Product(values, inv, lambda->p);
528 Matrix_Free(inv);
529 for (int j = 0; j < dim; ++j)
530 mpz_cdiv_q(lambda->p[j], lambda->p[j], lambda->p[dim]);
531 value_set_si(lambda->p[dim], 1);
532 Vector *A = Vector_Alloc(dim+1);
533 Vector_Matrix_Product(lambda->p, Rays, A->p);
534 Vector_Free(lambda);
535 Matrix_Free(Rays);
536 values2zz(A->p, vertex, dim);
537 Vector_Free(A);
538 } else
539 values2zz(values, vertex, dim);
541 num = vertex * lambda;
544 static evalue *term(int param, ZZ& c, Value *den = NULL)
546 evalue *EP = new evalue();
547 value_init(EP->d);
548 value_set_si(EP->d,0);
549 EP->x.p = new_enode(polynomial, 2, param + 1);
550 evalue_set_si(&EP->x.p->arr[0], 0, 1);
551 value_init(EP->x.p->arr[1].x.n);
552 if (den == NULL)
553 value_set_si(EP->x.p->arr[1].d, 1);
554 else
555 value_assign(EP->x.p->arr[1].d, *den);
556 zz2value(c, EP->x.p->arr[1].x.n);
557 return EP;
560 static void vertex_period(
561 Polyhedron *i, vec_ZZ& lambda, Matrix *T,
562 Value lcm, int p, Vector *val,
563 evalue *E, evalue* ev,
564 ZZ& offset)
566 unsigned nparam = T->NbRows - 1;
567 unsigned dim = i->Dimension;
568 Value tmp;
569 ZZ nump;
571 if (p == nparam) {
572 ZZ num, l;
573 Vector * values = Vector_Alloc(dim + 1);
574 Vector_Matrix_Product(val->p, T, values->p);
575 value_assign(values->p[dim], lcm);
576 lattice_point(values->p, i, lambda, num);
577 value2zz(lcm, l);
578 num *= l;
579 num += offset;
580 value_init(ev->x.n);
581 zz2value(num, ev->x.n);
582 value_assign(ev->d, lcm);
583 Vector_Free(values);
584 return;
587 value_init(tmp);
588 vec_ZZ vertex;
589 values2zz(T->p[p], vertex, dim);
590 nump = vertex * lambda;
591 if (First_Non_Zero(val->p, p) == -1) {
592 value_assign(tmp, lcm);
593 evalue *ET = term(p, nump, &tmp);
594 eadd(ET, E);
595 free_evalue_refs(ET);
596 delete ET;
599 value_assign(tmp, lcm);
600 if (First_Non_Zero(T->p[p], dim) != -1)
601 Vector_Gcd(T->p[p], dim, &tmp);
602 Gcd(tmp, lcm, &tmp);
603 if (value_lt(tmp, lcm)) {
604 ZZ count;
606 value_division(tmp, lcm, tmp);
607 value_set_si(ev->d, 0);
608 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
609 value2zz(tmp, count);
610 do {
611 value_decrement(tmp, tmp);
612 --count;
613 ZZ new_offset = offset - count * nump;
614 value_assign(val->p[p], tmp);
615 vertex_period(i, lambda, T, lcm, p+1, val, E,
616 &ev->x.p->arr[VALUE_TO_INT(tmp)], new_offset);
617 } while (value_pos_p(tmp));
618 } else
619 vertex_period(i, lambda, T, lcm, p+1, val, E, ev, offset);
620 value_clear(tmp);
623 static void mask_r(Matrix *f, int nr, Vector *lcm, int p, Vector *val, evalue *ev)
625 unsigned nparam = lcm->Size;
627 if (p == nparam) {
628 Vector * prod = Vector_Alloc(f->NbRows);
629 Matrix_Vector_Product(f, val->p, prod->p);
630 int isint = 1;
631 for (int i = 0; i < nr; ++i) {
632 value_modulus(prod->p[i], prod->p[i], f->p[i][nparam+1]);
633 isint &= value_zero_p(prod->p[i]);
635 value_set_si(ev->d, 1);
636 value_init(ev->x.n);
637 value_set_si(ev->x.n, isint);
638 Vector_Free(prod);
639 return;
642 Value tmp;
643 value_init(tmp);
644 if (value_one_p(lcm->p[p]))
645 mask_r(f, nr, lcm, p+1, val, ev);
646 else {
647 value_assign(tmp, lcm->p[p]);
648 value_set_si(ev->d, 0);
649 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
650 do {
651 value_decrement(tmp, tmp);
652 value_assign(val->p[p], tmp);
653 mask_r(f, nr, lcm, p+1, val, &ev->x.p->arr[VALUE_TO_INT(tmp)]);
654 } while (value_pos_p(tmp));
656 value_clear(tmp);
659 static evalue *multi_monom(vec_ZZ& p)
661 evalue *X = new evalue();
662 value_init(X->d);
663 value_init(X->x.n);
664 unsigned nparam = p.length()-1;
665 zz2value(p[nparam], X->x.n);
666 value_set_si(X->d, 1);
667 for (int i = 0; i < nparam; ++i) {
668 if (p[i] == 0)
669 continue;
670 evalue *T = term(i, p[i]);
671 eadd(T, X);
672 free_evalue_refs(T);
673 delete T;
675 return X;
679 * Check whether mapping polyhedron P on the affine combination
680 * num yields a range that has a fixed quotient on integer
681 * division by d
682 * If zero is true, then we are only interested in the quotient
683 * for the cases where the remainder is zero.
684 * Returns NULL if false and a newly allocated value if true.
686 static Value *fixed_quotient(Polyhedron *P, vec_ZZ& num, Value d, bool zero)
688 Value* ret = NULL;
689 int len = num.length();
690 Matrix *T = Matrix_Alloc(2, len);
691 zz2values(num, T->p[0]);
692 value_set_si(T->p[1][len-1], 1);
693 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
694 Matrix_Free(T);
696 int i;
697 for (i = 0; i < I->NbRays; ++i)
698 if (value_zero_p(I->Ray[i][2])) {
699 Polyhedron_Free(I);
700 return NULL;
703 Value min, max;
704 value_init(min);
705 value_init(max);
706 for (i = 0; i < I->NbConstraints; ++i) {
707 value_oppose(I->Constraint[i][2], I->Constraint[i][2]);
708 if (value_pos_p(I->Constraint[i][1]))
709 mpz_cdiv_q(min, I->Constraint[i][2], I->Constraint[i][1]);
710 else
711 mpz_fdiv_q(max, I->Constraint[i][2], I->Constraint[i][1]);
713 Polyhedron_Free(I);
715 if (zero)
716 mpz_cdiv_q(min, min, d);
717 else
718 mpz_fdiv_q(min, min, d);
719 mpz_fdiv_q(max, max, d);
720 if (value_eq(min, max)) {
721 ALLOC(ret);
722 value_init(*ret);
723 value_assign(*ret, min);
725 value_clear(min);
726 value_clear(max);
727 return ret;
731 * Project on final dim dimensions
733 static Polyhedron* Polyhedron_Project(Polyhedron *P, int dim)
735 if (P->Dimension == dim)
736 return Polyhedron_Copy(P);
738 int remove = P->Dimension - dim;
739 Matrix *T = Matrix_Alloc(dim+1, P->Dimension+1);
740 for (int i = 0; i < dim+1; ++i)
741 value_set_si(T->p[i][i+remove], 1);
742 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
743 Matrix_Free(T);
744 return I;
748 * Normalize linear expression coef modulo m
749 * Removes common factor and reduces coefficients
750 * Returns index of first non-zero coefficient or len
752 static int normal_mod(Value *coef, int len, Value *m)
754 Value gcd;
755 value_init(gcd);
757 Vector_Gcd(coef, len, &gcd);
758 Gcd(gcd, *m, &gcd);
759 Vector_AntiScale(coef, coef, gcd, len);
761 value_division(*m, *m, gcd);
762 value_clear(gcd);
764 if (value_one_p(*m))
765 return len;
767 int j;
768 for (j = 0; j < len; ++j)
769 mpz_fdiv_r(coef[j], coef[j], *m);
770 for (j = 0; j < len; ++j)
771 if (value_notzero_p(coef[j]))
772 break;
774 return j;
777 #ifdef USE_MODULO
778 static void mask(Matrix *f, evalue *factor)
780 int nr = f->NbRows, nc = f->NbColumns;
781 int n;
782 bool found = false;
783 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
784 if (value_notone_p(f->p[n][nc-1]) &&
785 value_notmone_p(f->p[n][nc-1]))
786 found = true;
787 if (!found)
788 return;
790 evalue EP;
791 nr = n;
793 Value m;
794 value_init(m);
796 for (n = 0; n < nr; ++n) {
797 value_assign(m, f->p[n][nc-1]);
798 if (value_one_p(m) || value_mone_p(m))
799 continue;
801 int j = normal_mod(f->p[n], nc-1, &m);
802 if (j == nc-1) {
803 free_evalue_refs(factor);
804 value_init(factor->d);
805 evalue_set_si(factor, 0, 1);
806 break;
808 vec_ZZ row;
809 values2zz(f->p[n], row, nc-1);
810 ZZ g;
811 value2zz(m, g);
812 if (j < (nc-1)-1 && row[j] > g/2) {
813 for (int k = j; k < (nc-1); ++k)
814 if (row[k] != 0)
815 row[k] = g - row[k];
818 value_init(EP.d);
819 value_set_si(EP.d, 0);
820 EP.x.p = new_enode(relation, 2, 0);
821 value_clear(EP.x.p->arr[1].d);
822 EP.x.p->arr[1] = *factor;
823 evalue *ev = &EP.x.p->arr[0];
824 value_set_si(ev->d, 0);
825 ev->x.p = new_enode(modulo, 3, VALUE_TO_INT(m));
826 evalue_set_si(&ev->x.p->arr[1], 0, 1);
827 evalue_set_si(&ev->x.p->arr[2], 1, 1);
828 evalue *E = multi_monom(row);
829 value_clear(ev->x.p->arr[0].d);
830 ev->x.p->arr[0] = *E;
831 delete E;
832 *factor = EP;
835 value_clear(m);
837 #else
841 static void mask(Matrix *f, evalue *factor)
843 int nr = f->NbRows, nc = f->NbColumns;
844 int n;
845 bool found = false;
846 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
847 if (value_notone_p(f->p[n][nc-1]) &&
848 value_notmone_p(f->p[n][nc-1]))
849 found = true;
850 if (!found)
851 return;
853 Value tmp;
854 value_init(tmp);
855 nr = n;
856 unsigned np = nc - 2;
857 Vector *lcm = Vector_Alloc(np);
858 Vector *val = Vector_Alloc(nc);
859 Vector_Set(val->p, 0, nc);
860 value_set_si(val->p[np], 1);
861 Vector_Set(lcm->p, 1, np);
862 for (n = 0; n < nr; ++n) {
863 if (value_one_p(f->p[n][nc-1]) ||
864 value_mone_p(f->p[n][nc-1]))
865 continue;
866 for (int j = 0; j < np; ++j)
867 if (value_notzero_p(f->p[n][j])) {
868 Gcd(f->p[n][j], f->p[n][nc-1], &tmp);
869 value_division(tmp, f->p[n][nc-1], tmp);
870 value_lcm(tmp, lcm->p[j], &lcm->p[j]);
873 evalue EP;
874 value_init(EP.d);
875 mask_r(f, nr, lcm, 0, val, &EP);
876 value_clear(tmp);
877 Vector_Free(val);
878 Vector_Free(lcm);
879 emul(&EP,factor);
880 free_evalue_refs(&EP);
882 #endif
884 struct term_info {
885 evalue *E;
886 ZZ constant;
887 ZZ coeff;
888 int pos;
891 static bool mod_needed(Polyhedron *PD, vec_ZZ& num, Value d, evalue *E)
893 Value *q = fixed_quotient(PD, num, d, false);
895 if (!q)
896 return true;
898 value_oppose(*q, *q);
899 evalue EV;
900 value_init(EV.d);
901 value_set_si(EV.d, 1);
902 value_init(EV.x.n);
903 value_multiply(EV.x.n, *q, d);
904 eadd(&EV, E);
905 free_evalue_refs(&EV);
906 value_clear(*q);
907 free(q);
908 return false;
911 static void ceil_mod(Value *coef, int len, Value d, ZZ& f, evalue *EP, Polyhedron *PD)
913 Value m;
914 value_init(m);
915 value_set_si(m, -1);
917 Vector_Scale(coef, coef, m, len);
919 value_assign(m, d);
920 int j = normal_mod(coef, len, &m);
922 if (j == len) {
923 value_clear(m);
924 return;
927 vec_ZZ num;
928 values2zz(coef, num, len);
930 ZZ g;
931 value2zz(m, g);
933 evalue tmp;
934 value_init(tmp.d);
935 evalue_set_si(&tmp, 0, 1);
937 if (j < len-1 && num[j] > g/2) {
938 for (int k = j; k < len-1; ++k)
939 if (num[k] != 0)
940 num[k] = g - num[k];
941 num[len-1] = g - 1 - num[len-1];
942 value_assign(tmp.d, m);
943 ZZ t = f*(g-1);
944 zz2value(t, tmp.x.n);
945 eadd(&tmp, EP);
946 f = -f;
949 if (j >= len-1) {
950 ZZ t = num[len-1] * f;
951 zz2value(t, tmp.x.n);
952 value_assign(tmp.d, m);
953 eadd(&tmp, EP);
954 } else {
955 evalue *E = multi_monom(num);
956 evalue EV;
957 value_init(EV.d);
959 if (PD && !mod_needed(PD, num, m, E)) {
960 value_init(EV.x.n);
961 zz2value(f, EV.x.n);
962 value_assign(EV.d, m);
963 emul(&EV, E);
964 eadd(E, EP);
965 } else {
966 value_set_si(EV.d, 0);
967 EV.x.p = new_enode(modulo, 3, VALUE_TO_INT(m));
968 evalue_copy(&EV.x.p->arr[0], E);
969 evalue_set_si(&EV.x.p->arr[1], 0, 1);
970 value_init(EV.x.p->arr[2].x.n);
971 zz2value(f, EV.x.p->arr[2].x.n);
972 value_assign(EV.x.p->arr[2].d, m);
974 eadd(&EV, EP);
977 free_evalue_refs(&EV);
978 free_evalue_refs(E);
979 delete E;
982 free_evalue_refs(&tmp);
984 out:
985 value_clear(m);
988 evalue* bv_ceil3(Value *coef, int len, Value d)
990 Vector *val = Vector_Alloc(len);
992 Value t;
993 value_init(t);
994 value_set_si(t, -1);
995 Vector_Scale(coef, val->p, t, len);
996 value_absolute(t, d);
998 vec_ZZ num;
999 values2zz(val->p, num, len);
1000 evalue *EP = multi_monom(num);
1002 evalue tmp;
1003 value_init(tmp.d);
1004 value_init(tmp.x.n);
1005 value_set_si(tmp.x.n, 1);
1006 value_assign(tmp.d, t);
1008 emul(&tmp, EP);
1010 ZZ one;
1011 one = 1;
1012 ceil_mod(val->p, len, t, one, EP, NULL);
1013 value_clear(t);
1015 /* copy EP to malloc'ed evalue */
1016 evalue *E;
1017 ALLOC(E);
1018 *E = *EP;
1019 delete EP;
1021 free_evalue_refs(&tmp);
1022 Vector_Free(val);
1024 return E;
1027 #ifdef USE_MODULO
1028 evalue* lattice_point(
1029 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1031 unsigned nparam = W->NbColumns - 1;
1033 Matrix* Rays = rays2(i);
1034 Matrix *T = Transpose(Rays);
1035 Matrix *T2 = Matrix_Copy(T);
1036 Matrix *inv = Matrix_Alloc(T2->NbRows, T2->NbColumns);
1037 int ok = Matrix_Inverse(T2, inv);
1038 assert(ok);
1039 Matrix_Free(Rays);
1040 Matrix_Free(T2);
1041 mat_ZZ vertex;
1042 matrix2zz(W, vertex, W->NbRows, W->NbColumns);
1044 vec_ZZ num;
1045 num = lambda * vertex;
1047 evalue *EP = multi_monom(num);
1049 evalue tmp;
1050 value_init(tmp.d);
1051 value_init(tmp.x.n);
1052 value_set_si(tmp.x.n, 1);
1053 value_assign(tmp.d, lcm);
1055 emul(&tmp, EP);
1057 Matrix *L = Matrix_Alloc(inv->NbRows, W->NbColumns);
1058 Matrix_Product(inv, W, L);
1060 mat_ZZ RT;
1061 matrix2zz(T, RT, T->NbRows, T->NbColumns);
1062 Matrix_Free(T);
1064 vec_ZZ p = lambda * RT;
1066 for (int i = 0; i < L->NbRows; ++i) {
1067 ceil_mod(L->p[i], nparam+1, lcm, p[i], EP, PD);
1070 Matrix_Free(L);
1072 Matrix_Free(inv);
1073 free_evalue_refs(&tmp);
1074 return EP;
1076 #else
1077 evalue* lattice_point(
1078 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1080 Matrix *T = Transpose(W);
1081 unsigned nparam = T->NbRows - 1;
1083 evalue *EP = new evalue();
1084 value_init(EP->d);
1085 evalue_set_si(EP, 0, 1);
1087 evalue ev;
1088 Vector *val = Vector_Alloc(nparam+1);
1089 value_set_si(val->p[nparam], 1);
1090 ZZ offset(INIT_VAL, 0);
1091 value_init(ev.d);
1092 vertex_period(i, lambda, T, lcm, 0, val, EP, &ev, offset);
1093 Vector_Free(val);
1094 eadd(&ev, EP);
1095 free_evalue_refs(&ev);
1097 Matrix_Free(T);
1099 reduce_evalue(EP);
1101 return EP;
1103 #endif
1105 void lattice_point(
1106 Param_Vertices* V, Polyhedron *i, vec_ZZ& lambda, term_info* term,
1107 Polyhedron *PD)
1109 unsigned nparam = V->Vertex->NbColumns - 2;
1110 unsigned dim = i->Dimension;
1111 mat_ZZ vertex;
1112 vertex.SetDims(V->Vertex->NbRows, nparam+1);
1113 Value lcm, tmp;
1114 value_init(lcm);
1115 value_init(tmp);
1116 value_set_si(lcm, 1);
1117 for (int j = 0; j < V->Vertex->NbRows; ++j) {
1118 value_lcm(lcm, V->Vertex->p[j][nparam+1], &lcm);
1120 if (value_notone_p(lcm)) {
1121 Matrix * mv = Matrix_Alloc(dim, nparam+1);
1122 for (int j = 0 ; j < dim; ++j) {
1123 value_division(tmp, lcm, V->Vertex->p[j][nparam+1]);
1124 Vector_Scale(V->Vertex->p[j], mv->p[j], tmp, nparam+1);
1127 term->E = lattice_point(i, lambda, mv, lcm, PD);
1128 term->constant = 0;
1130 Matrix_Free(mv);
1131 value_clear(lcm);
1132 value_clear(tmp);
1133 return;
1135 for (int i = 0; i < V->Vertex->NbRows; ++i) {
1136 assert(value_one_p(V->Vertex->p[i][nparam+1])); // for now
1137 values2zz(V->Vertex->p[i], vertex[i], nparam+1);
1140 vec_ZZ num;
1141 num = lambda * vertex;
1143 int p = -1;
1144 int nn = 0;
1145 for (int j = 0; j < nparam; ++j)
1146 if (num[j] != 0) {
1147 ++nn;
1148 p = j;
1150 if (nn >= 2) {
1151 term->E = multi_monom(num);
1152 term->constant = 0;
1153 } else {
1154 term->E = NULL;
1155 term->constant = num[nparam];
1156 term->pos = p;
1157 if (p != -1)
1158 term->coeff = num[p];
1161 value_clear(lcm);
1162 value_clear(tmp);
1165 void normalize(Polyhedron *i, vec_ZZ& lambda, ZZ& sign, ZZ& num, vec_ZZ& den)
1167 unsigned dim = i->Dimension;
1169 int r = 0;
1170 mat_ZZ rays;
1171 rays.SetDims(dim, dim);
1172 add_rays(rays, i, &r);
1173 den = rays * lambda;
1174 int change = 0;
1176 for (int j = 0; j < den.length(); ++j) {
1177 if (den[j] > 0)
1178 change ^= 1;
1179 else {
1180 den[j] = abs(den[j]);
1181 num += den[j];
1184 if (change)
1185 sign = -sign;
1188 void barvinok_count(Polyhedron *P, Value* result, unsigned NbMaxCons)
1190 Polyhedron ** vcone;
1191 vec_ZZ sign;
1192 int ncone = 0;
1193 sign.SetLength(ncone);
1194 unsigned dim;
1195 int allocated = 0;
1196 Value factor;
1197 Polyhedron *Q;
1198 int r = 0;
1200 if (emptyQ(P)) {
1201 value_set_si(*result, 0);
1202 return;
1204 if (P->NbBid == 0)
1205 for (; r < P->NbRays; ++r)
1206 if (value_zero_p(P->Ray[r][P->Dimension+1]))
1207 break;
1208 if (P->NbBid !=0 || r < P->NbRays) {
1209 value_set_si(*result, -1);
1210 return;
1212 if (P->NbEq != 0) {
1213 P = remove_equalities(P);
1214 if (emptyQ(P)) {
1215 Polyhedron_Free(P);
1216 value_set_si(*result, 0);
1217 return;
1219 allocated = 1;
1221 value_init(factor);
1222 value_set_si(factor, 1);
1223 Q = Polyhedron_Reduce(P, &factor);
1224 if (Q) {
1225 if (allocated)
1226 Polyhedron_Free(P);
1227 P = Q;
1228 allocated = 1;
1230 if (P->Dimension == 0) {
1231 value_assign(*result, factor);
1232 if (allocated)
1233 Polyhedron_Free(P);
1234 value_clear(factor);
1235 return;
1238 dim = P->Dimension;
1239 vcone = new (Polyhedron *)[P->NbRays];
1241 for (int j = 0; j < P->NbRays; ++j) {
1242 int npos, nneg;
1243 Polyhedron *C = supporting_cone(P, j);
1244 decompose(C, &vcone[j], &npos, &nneg, NbMaxCons);
1245 ncone += npos + nneg;
1246 sign.SetLength(ncone);
1247 for (int k = 0; k < npos; ++k)
1248 sign[ncone-nneg-k-1] = 1;
1249 for (int k = 0; k < nneg; ++k)
1250 sign[ncone-k-1] = -1;
1253 mat_ZZ rays;
1254 rays.SetDims(ncone * dim, dim);
1255 r = 0;
1256 for (int j = 0; j < P->NbRays; ++j) {
1257 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1258 assert(i->NbRays-1 == dim);
1259 add_rays(rays, i, &r);
1262 vec_ZZ lambda;
1263 nonorthog(rays, lambda);
1265 vec_ZZ num;
1266 mat_ZZ den;
1267 num.SetLength(ncone);
1268 den.SetDims(ncone,dim);
1270 int f = 0;
1271 for (int j = 0; j < P->NbRays; ++j) {
1272 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1273 lattice_point(P->Ray[j]+1, i, lambda, num[f]);
1274 normalize(i, lambda, sign[f], num[f], den[f]);
1275 ++f;
1278 ZZ min = num[0];
1279 for (int j = 1; j < num.length(); ++j)
1280 if (num[j] < min)
1281 min = num[j];
1282 for (int j = 0; j < num.length(); ++j)
1283 num[j] -= min;
1285 f = 0;
1286 mpq_t count;
1287 mpq_init(count);
1288 for (int j = 0; j < P->NbRays; ++j) {
1289 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1290 dpoly d(dim, num[f]);
1291 dpoly n(dim, den[f][0], 1);
1292 for (int k = 1; k < dim; ++k) {
1293 dpoly fact(dim, den[f][k], 1);
1294 n *= fact;
1296 d.div(n, count, sign[f]);
1297 ++f;
1300 assert(value_one_p(&count[0]._mp_den));
1301 value_multiply(*result, &count[0]._mp_num, factor);
1302 mpq_clear(count);
1304 for (int j = 0; j < P->NbRays; ++j)
1305 Domain_Free(vcone[j]);
1307 delete [] vcone;
1309 if (allocated)
1310 Polyhedron_Free(P);
1311 value_clear(factor);
1314 static void uni_polynom(int param, Vector *c, evalue *EP)
1316 unsigned dim = c->Size-2;
1317 value_init(EP->d);
1318 value_set_si(EP->d,0);
1319 EP->x.p = new_enode(polynomial, dim+1, param+1);
1320 for (int j = 0; j <= dim; ++j)
1321 evalue_set(&EP->x.p->arr[j], c->p[j], c->p[dim+1]);
1324 static void multi_polynom(Vector *c, evalue* X, evalue *EP)
1326 unsigned dim = c->Size-2;
1327 evalue EC;
1329 value_init(EC.d);
1330 evalue_set(&EC, c->p[dim], c->p[dim+1]);
1332 value_init(EP->d);
1333 evalue_set(EP, c->p[dim], c->p[dim+1]);
1335 for (int i = dim-1; i >= 0; --i) {
1336 emul(X, EP);
1337 value_assign(EC.x.n, c->p[i]);
1338 eadd(&EC, EP);
1340 free_evalue_refs(&EC);
1344 * Replaces constraint a x >= c by x >= ceil(c/a)
1345 * where "a" is a common factor in the coefficients
1346 * Destroys P and returns a newly allocated Polyhedron
1347 * or just returns P in case no changes were made
1349 static Polyhedron *simplify_constraints(Polyhedron *P, unsigned MaxRays)
1351 Polyhedron *T, *R = P;
1352 int len = P->Dimension+2;
1353 Vector *row = Vector_Alloc(len);
1354 value_set_si(row->p[0], 1);
1355 Value g;
1356 value_init(g);
1358 /* Also look at equalities.
1359 * If an equality can be "simplified" then there
1360 * are no integer solutions anyway and the following loop
1361 * will add a conflicting constraint
1363 for (int r = 0; r < P->NbConstraints; ++r) {
1364 Vector_Gcd(P->Constraint[r]+1, len - 2, &g);
1365 if (value_notone_p(g)) {
1366 Vector_AntiScale(P->Constraint[r]+1, row->p+1, g, len-2);
1367 mpz_fdiv_q(row->p[len-1], P->Constraint[r][len-1], g);
1368 T = R;
1369 R = AddConstraints(row->p, 1, R, MaxRays);
1370 if (T != P)
1371 Polyhedron_Free(T);
1374 value_clear(g);
1375 Vector_Free(row);
1376 if (R != P)
1377 Polyhedron_Free(P);
1378 return R;
1382 Polyhedron *unfringe (Polyhedron *P, unsigned MaxRays)
1384 int len = P->Dimension+2;
1385 Polyhedron *T, *R = P;
1386 Value g;
1387 value_init(g);
1388 puts("in");
1389 Polyhedron_Print(stdout, P_VALUE_FMT, P);
1390 Vector *row = Vector_Alloc(len);
1391 value_set_si(row->p[0], 1);
1393 R = simplify_constraints(Polyhedron_Copy(P), MaxRays);
1395 Matrix *M = Matrix_Alloc(2, len-1);
1396 value_set_si(M->p[1][len-2], 1);
1397 for (int v = 0; v < P->Dimension; ++v) {
1398 value_set_si(M->p[0][v], 1);
1399 Polyhedron *I = Polyhedron_Image(P, M, 2+1);
1400 Polyhedron_Print(stdout, P_VALUE_FMT, I);
1401 value_set_si(M->p[0][v], 0);
1402 for (int r = 0; r < I->NbConstraints; ++r) {
1403 if (value_zero_p(I->Constraint[r][0]))
1404 continue;
1405 if (value_zero_p(I->Constraint[r][1]))
1406 continue;
1407 if (value_one_p(I->Constraint[r][1]))
1408 continue;
1409 if (value_mone_p(I->Constraint[r][1]))
1410 continue;
1411 value_absolute(g, I->Constraint[r][1]);
1412 Vector_Set(row->p+1, 0, len-2);
1413 value_division(row->p[1+v], I->Constraint[r][1], g);
1414 mpz_fdiv_q(row->p[len-1], I->Constraint[r][2], g);
1415 puts("row");
1416 Vector_Print(stdout, P_VALUE_FMT, row);
1417 T = R;
1418 R = AddConstraints(row->p, 1, R, MaxRays);
1419 if (T != P)
1420 Polyhedron_Free(T);
1423 puts("out");
1424 Polyhedron_Print(stdout, P_VALUE_FMT, R);
1425 value_clear(g);
1426 return R;
1429 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1431 //P = unfringe(P, MaxRays);
1432 Polyhedron *CEq = NULL, *rVD, *pVD, *CA;
1433 Matrix *CT = NULL;
1434 Param_Polyhedron *PP = NULL;
1435 Param_Domain *D, *next;
1436 Param_Vertices *V;
1437 int r = 0;
1438 unsigned nparam = C->Dimension;
1439 evalue *eres = new evalue;
1440 value_init(eres->d);
1441 value_set_si(eres->d, 0);
1443 evalue factor;
1444 value_init(factor.d);
1445 evalue_set_si(&factor, 1, 1);
1447 CA = align_context(C, P->Dimension, MaxRays);
1448 P = DomainIntersection(P, CA, MaxRays);
1449 Polyhedron_Free(CA);
1451 if (C->Dimension == 0 || emptyQ(P)) {
1452 constant:
1453 eres->x.p = new_enode(partition, 2, -1);
1454 EVALUE_SET_DOMAIN(eres->x.p->arr[0],
1455 simplify_constraints(CEq ? CEq : Polyhedron_Copy(C), MaxRays));
1456 value_set_si(eres->x.p->arr[1].d, 1);
1457 value_init(eres->x.p->arr[1].x.n);
1458 if (emptyQ(P))
1459 value_set_si(eres->x.p->arr[1].x.n, 0);
1460 else
1461 barvinok_count(P, &eres->x.p->arr[1].x.n, MaxRays);
1462 emul(&factor, eres);
1463 out:
1464 free_evalue_refs(&factor);
1465 Polyhedron_Free(P);
1466 if (CT)
1467 Matrix_Free(CT);
1468 if (PP)
1469 Param_Polyhedron_Free(PP);
1471 return eres;
1473 for (r = 0; r < P->NbRays; ++r)
1474 if (value_zero_p(P->Ray[r][0]) ||
1475 value_zero_p(P->Ray[r][P->Dimension+1])) {
1476 int i;
1477 for (i = P->Dimension - nparam; i < P->Dimension; ++i)
1478 if (value_notzero_p(P->Ray[r][i+1]))
1479 break;
1480 if (i >= P->Dimension)
1481 break;
1483 if (r < P->NbRays)
1484 goto constant;
1486 if (P->NbEq != 0) {
1487 Matrix *f;
1488 P = remove_equalities_p(P, P->Dimension-nparam, &f);
1489 mask(f, &factor);
1490 Matrix_Free(f);
1491 if (P->Dimension == nparam) {
1492 CEq = P;
1493 P = Universe_Polyhedron(0);
1494 goto constant;
1498 Polyhedron *Q = ParamPolyhedron_Reduce(P, P->Dimension-nparam, &factor);
1499 if (Q) {
1500 Polyhedron_Free(P);
1501 if (Q->Dimension == nparam) {
1502 CEq = Q;
1503 P = Universe_Polyhedron(0);
1504 goto constant;
1506 P = Q;
1508 Polyhedron *oldP = P;
1509 PP = Polyhedron2Param_SimplifiedDomain(&P,C,MaxRays,&CEq,&CT);
1510 if (P != oldP)
1511 Polyhedron_Free(oldP);
1513 if (isIdentity(CT)) {
1514 Matrix_Free(CT);
1515 CT = NULL;
1516 } else {
1517 assert(CT->NbRows != CT->NbColumns);
1518 if (CT->NbRows == 1) // no more parameters
1519 goto constant;
1520 nparam = CT->NbRows - 1;
1523 unsigned dim = P->Dimension - nparam;
1524 Polyhedron ** vcone = new (Polyhedron *)[PP->nbV];
1525 int * npos = new int[PP->nbV];
1526 int * nneg = new int[PP->nbV];
1527 vec_ZZ sign;
1529 int i;
1530 for (i = 0, V = PP->V; V; ++i, V = V->next) {
1531 Polyhedron *C = supporting_cone_p(P, V);
1532 decompose(C, &vcone[i], &npos[i], &nneg[i], MaxRays);
1535 Vector *c = Vector_Alloc(dim+2);
1537 int nd;
1538 for (nd = 0, D=PP->D; D; ++nd, D=D->next);
1539 struct section { Polyhedron * D; evalue E; };
1540 section *s = new section[nd];
1542 for(nd = 0, D=PP->D; D; D=next) {
1543 next = D->next;
1544 D->Domain = simplify_constraints(D->Domain, MaxRays);
1545 if (!CEq) {
1546 pVD = rVD = D->Domain;
1547 D->Domain = NULL;
1548 } else {
1549 Polyhedron *Dt;
1550 Dt = CT ? DomainPreimage(D->Domain,CT,MaxRays) : D->Domain;
1551 rVD = DomainIntersection(Dt,CEq,MaxRays);
1553 /* if rVD is empty or too small in geometric dimension */
1554 if(!rVD || emptyQ(rVD) ||
1555 (rVD->Dimension-rVD->NbEq < Dt->Dimension-Dt->NbEq-CEq->NbEq)) {
1556 if(rVD)
1557 Domain_Free(rVD);
1558 if (CT)
1559 Domain_Free(Dt);
1560 continue; /* empty validity domain */
1562 if (CT)
1563 Domain_Free(Dt);
1564 pVD = CT ? DomainImage(rVD,CT,MaxRays) : rVD;
1565 for (Param_Domain *D2 = D->next; D2; D2=D2->next) {
1566 Polyhedron *T = D2->Domain;
1567 D2->Domain = DomainDifference(D2->Domain, D->Domain, MaxRays);
1568 Domain_Free(T);
1571 int ncone = 0;
1572 sign.SetLength(ncone);
1573 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1574 ncone += npos[_i] + nneg[_i];
1575 sign.SetLength(ncone);
1576 for (int k = 0; k < npos[_i]; ++k)
1577 sign[ncone-nneg[_i]-k-1] = 1;
1578 for (int k = 0; k < nneg[_i]; ++k)
1579 sign[ncone-k-1] = -1;
1580 END_FORALL_PVertex_in_ParamPolyhedron;
1582 mat_ZZ rays;
1583 rays.SetDims(ncone * dim, dim);
1584 r = 0;
1585 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1586 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1587 assert(i->NbRays-1 == dim);
1588 add_rays(rays, i, &r);
1590 END_FORALL_PVertex_in_ParamPolyhedron;
1591 vec_ZZ lambda;
1592 nonorthog(rays, lambda);
1594 mat_ZZ den;
1595 den.SetDims(ncone,dim);
1596 term_info *num = new term_info[ncone];
1598 int f = 0;
1599 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1600 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1601 lattice_point(V, i, lambda, &num[f], pVD);
1602 normalize(i, lambda, sign[f], num[f].constant, den[f]);
1603 ++f;
1605 END_FORALL_PVertex_in_ParamPolyhedron;
1606 ZZ min = num[0].constant;
1607 for (int j = 1; j < ncone; ++j)
1608 if (num[j].constant < min)
1609 min = num[j].constant;
1610 for (int j = 0; j < ncone; ++j)
1611 num[j].constant -= min;
1612 f = 0;
1613 value_init(s[nd].E.d);
1614 evalue_set_si(&s[nd].E, 0, 1);
1615 mpq_t count;
1616 mpq_init(count);
1617 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1618 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1619 dpoly n(dim, den[f][0], 1);
1620 for (int k = 1; k < dim; ++k) {
1621 dpoly fact(dim, den[f][k], 1);
1622 n *= fact;
1624 if (num[f].E != NULL) {
1625 ZZ one(INIT_VAL, 1);
1626 dpoly_n d(dim, num[f].constant, one);
1627 d.div(n, c, sign[f]);
1628 evalue EV;
1629 multi_polynom(c, num[f].E, &EV);
1630 eadd(&EV , &s[nd].E);
1631 free_evalue_refs(&EV);
1632 free_evalue_refs(num[f].E);
1633 delete num[f].E;
1634 } else if (num[f].pos != -1) {
1635 dpoly_n d(dim, num[f].constant, num[f].coeff);
1636 d.div(n, c, sign[f]);
1637 evalue EV;
1638 uni_polynom(num[f].pos, c, &EV);
1639 eadd(&EV , &s[nd].E);
1640 free_evalue_refs(&EV);
1641 } else {
1642 mpq_set_si(count, 0, 1);
1643 dpoly d(dim, num[f].constant);
1644 d.div(n, count, sign[f]);
1645 evalue EV;
1646 value_init(EV.d);
1647 evalue_set(&EV, &count[0]._mp_num, &count[0]._mp_den);
1648 eadd(&EV , &s[nd].E);
1649 free_evalue_refs(&EV);
1651 ++f;
1653 END_FORALL_PVertex_in_ParamPolyhedron;
1655 mpq_clear(count);
1656 delete [] num;
1658 if (CT)
1659 addeliminatedparams_evalue(&s[nd].E, CT);
1660 s[nd].D = rVD;
1661 ++nd;
1662 if (rVD != pVD)
1663 Domain_Free(pVD);
1666 eres->x.p = new_enode(partition, 2*nd, -1);
1667 for (int j = 0; j < nd; ++j) {
1668 EVALUE_SET_DOMAIN(eres->x.p->arr[2*j], s[j].D);
1669 value_clear(eres->x.p->arr[2*j+1].d);
1670 eres->x.p->arr[2*j+1] = s[j].E;
1672 delete [] s;
1674 emul(&factor, eres);
1675 reduce_evalue(eres);
1677 Vector_Free(c);
1679 for (int j = 0; j < PP->nbV; ++j)
1680 Domain_Free(vcone[j]);
1681 delete [] vcone;
1682 delete [] npos;
1683 delete [] nneg;
1685 if (CEq)
1686 Polyhedron_Free(CEq);
1688 goto out;
1691 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1693 Enumeration *en, *res = NULL;
1694 evalue *EP = barvinok_enumerate_ev(P, C, MaxRays);
1695 for (int i = 0; i < EP->x.p->size/2; ++i) {
1696 en = (Enumeration *)malloc(sizeof(Enumeration));
1697 en->next = res;
1698 res = en;
1699 res->ValidityDomain = EVALUE_DOMAIN(EP->x.p->arr[2*i]);
1700 value_clear(EP->x.p->arr[2*i].d);
1701 res->EP = EP->x.p->arr[2*i+1];
1703 free(EP->x.p);
1704 value_clear(EP->d);
1705 delete EP;
1706 return res;
1709 static void SwapColumns(Value **V, int n, int i, int j)
1711 for (int r = 0; r < n; ++r)
1712 value_swap(V[r][i], V[r][j]);
1715 static void SwapColumns(Polyhedron *P, int i, int j)
1717 SwapColumns(P->Constraint, P->NbConstraints, i, j);
1718 SwapColumns(P->Ray, P->NbRays, i, j);
1721 enum constraint {
1722 ALL_POS = 1 << 0,
1723 ONE_NEG = 1 << 1,
1724 INDEPENDENT = 1 << 2,
1727 evalue* barvinok_enumerate_e(Polyhedron *P,
1728 unsigned exist, unsigned nparam, unsigned MaxRays)
1730 //Polyhedron_Print(stderr, P_VALUE_FMT, P);
1731 if (exist == 0) {
1732 Polyhedron *U = Universe_Polyhedron(nparam);
1733 evalue *EP = barvinok_enumerate_ev(P, U, MaxRays);
1734 //char *param_name[] = {"P", "Q", "R", "S", "T" };
1735 //print_evalue(stdout, EP, param_name);
1736 Polyhedron_Free(U);
1737 return EP;
1740 int nvar = P->Dimension - exist - nparam;
1741 int len = P->Dimension + 2;
1743 //printf("%d %d %d\n", nvar, exist, nparam);
1745 int r;
1746 int first;
1747 for (r = 0; r < P->NbEq; ++r)
1748 if ((first = First_Non_Zero(P->Constraint[r]+1+nvar, exist)) != -1)
1749 break;
1750 if (r < P->NbEq) {
1751 if (First_Non_Zero(P->Constraint[r]+1+nvar+first+1,
1752 exist-first-1) != -1) {
1753 Value g;
1754 value_init(g);
1756 Vector *row = Vector_Alloc(exist);
1757 Vector_Copy(P->Constraint[r]+1+nvar, row->p, exist);
1758 Vector_Gcd(row->p, exist, &g);
1759 if (value_notone_p(g))
1760 Vector_AntiScale(row->p, row->p, g, exist);
1761 value_clear(g);
1763 Matrix *M = unimodular_complete(row);
1764 Matrix *M2 = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
1765 for (r = 0; r < nvar; ++r)
1766 value_set_si(M2->p[r][r], 1);
1767 for ( ; r < nvar+exist; ++r)
1768 Vector_Copy(M->p[r-nvar], M2->p[r]+nvar, exist);
1769 for ( ; r < P->Dimension+1; ++r)
1770 value_set_si(M2->p[r][r], 1);
1771 Polyhedron *T = Polyhedron_Image(P, M2, MaxRays);
1772 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
1773 Polyhedron_Free(T);
1774 Matrix_Free(M2);
1775 Matrix_Free(M);
1776 Vector_Free(row);
1777 return EP;
1778 } else {
1779 if (first == 0)
1780 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
1781 else {
1782 Polyhedron *T = Polyhedron_Copy(P);
1783 SwapColumns(T, nvar+1, nvar+1+first);
1784 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
1785 Polyhedron_Free(T);
1786 return EP;
1791 Vector *row = Vector_Alloc(len);
1792 value_set_si(row->p[0], 1);
1794 Value f;
1795 value_init(f);
1797 enum constraint info[exist];
1798 for (int i = 0; i < exist; ++i) {
1799 info[i] = ALL_POS;
1800 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
1801 if (value_negz_p(P->Constraint[l][nvar+i+1]))
1802 continue;
1803 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
1804 if (value_posz_p(P->Constraint[u][nvar+i+1]))
1805 continue;
1806 value_oppose(f, P->Constraint[u][nvar+i+1]);
1807 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1, row->p+1,
1808 f, P->Constraint[l][nvar+i+1], len-1);
1809 if (!(info[i] & INDEPENDENT)) {
1810 int j;
1811 for (j = 0; j < exist; ++j)
1812 if (j != i && value_notzero_p(row->p[nvar+j+1]))
1813 break;
1814 if (j == exist) {
1815 //printf("independent: i: %d, l: %d, u: %d\n", i, l, u);
1816 info[i] = (constraint)(info[i] | INDEPENDENT);
1819 if (info[i] & ALL_POS) {
1820 value_addto(row->p[len-1], row->p[len-1],
1821 P->Constraint[l][nvar+i+1]);
1822 value_addto(row->p[len-1], row->p[len-1], f);
1823 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
1824 value_substract(row->p[len-1], row->p[len-1], f);
1825 value_decrement(row->p[len-1], row->p[len-1]);
1826 Vector_Gcd(row->p+1, len - 2, &f);
1827 if (value_notone_p(f)) {
1828 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
1829 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
1831 value_set_si(f, -1);
1832 Vector_Scale(row->p+1, row->p+1, f, len-1);
1833 value_decrement(row->p[len-1], row->p[len-1]);
1834 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
1835 if (!emptyQ(T)) {
1836 //printf("not all_pos: i: %d, l: %d, u: %d\n", i, l, u);
1837 info[i] = (constraint)(info[i] ^ ALL_POS);
1839 //puts("pos remainder");
1840 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
1841 Polyhedron_Free(T);
1843 if (!(info[i] & ONE_NEG)) {
1844 int j;
1845 for (j = 0; j < exist; ++j)
1846 if (j != i &&
1847 (value_notzero_p(P->Constraint[l][nvar+j+1]) ||
1848 value_notzero_p(P->Constraint[u][nvar+j+1])))
1849 break;
1850 if (j == exist) {
1851 /* recalculate constant */
1852 /* We actually recalculate the whole row for
1853 * now, because it may have already been scaled
1855 value_oppose(f, P->Constraint[u][nvar+i+1]);
1856 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
1857 row->p+1,
1858 f, P->Constraint[l][nvar+i+1], len-1);
1860 Vector_Combine(P->Constraint[l]+len-1,
1861 P->Constraint[u]+len-1, row->p+len-1,
1862 f, P->Constraint[l][nvar+i+1], 1);
1864 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
1865 value_substract(row->p[len-1], row->p[len-1], f);
1866 value_set_si(f, -1);
1867 Vector_Scale(row->p+1, row->p+1, f, len-1);
1868 value_decrement(row->p[len-1], row->p[len-1]);
1869 Vector_Gcd(row->p+1, len - 2, &f);
1870 if (value_notone_p(f)) {
1871 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
1872 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
1874 value_set_si(f, -1);
1875 Vector_Scale(row->p+1, row->p+1, f, len-1);
1876 value_decrement(row->p[len-1], row->p[len-1]);
1877 //puts("row");
1878 //Vector_Print(stdout, P_VALUE_FMT, row);
1879 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
1880 if (emptyQ(T)) {
1881 //printf("one_neg i: %d, l: %d, u: %d\n", i, l, u);
1882 info[i] = (constraint)(info[i] | ONE_NEG);
1884 //puts("neg remainder");
1885 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
1886 Polyhedron_Free(T);
1889 if (!(info[i] & ALL_POS) && (info[i] & ONE_NEG))
1890 goto next;
1893 if (info[i] & ALL_POS)
1894 break;
1895 next:
1900 for (int i = 0; i < exist; ++i)
1901 printf("%i: %i\n", i, info[i]);
1903 for (int i = 0; i < exist; ++i)
1904 if (info[i] & ALL_POS) {
1905 // Eliminate
1906 // Maybe we should chew off some of the fat here
1907 Matrix *M = Matrix_Alloc(P->Dimension, P->Dimension+1);
1908 for (int j = 0; j < P->Dimension; ++j)
1909 value_set_si(M->p[j][j + (j >= i+nvar)], 1);
1910 Polyhedron *T = Polyhedron_Image(P, M, MaxRays);
1911 Matrix_Free(M);
1912 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
1913 Polyhedron_Free(T);
1914 return EP;
1916 for (int i = 0; i < exist; ++i)
1917 if (info[i] & ONE_NEG) {
1918 value_clear(f);
1919 if (i == 0)
1920 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
1921 else {
1922 Polyhedron *T = Polyhedron_Copy(P);
1923 SwapColumns(T, nvar+1, nvar+1+i);
1924 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
1925 Polyhedron_Free(T);
1926 return EP;
1929 for (int i = 0; i < exist; ++i)
1930 if (info[i] & INDEPENDENT) {
1931 /* Find constraint again and split off negative part */
1933 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
1934 if (value_negz_p(P->Constraint[l][nvar+i+1]))
1935 continue;
1936 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
1937 if (value_posz_p(P->Constraint[u][nvar+i+1]))
1938 continue;
1939 value_oppose(f, P->Constraint[u][nvar+i+1]);
1940 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
1941 row->p+1,
1942 f, P->Constraint[l][nvar+i+1], len-1);
1944 int j;
1945 for (j = 0; j < exist; ++j)
1946 if (j != i && value_notzero_p(row->p[nvar+j+1]))
1947 break;
1948 if (j != exist)
1949 continue;
1951 //printf("l: %d, u: %d\n", l, u);
1952 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
1953 value_substract(row->p[len-1], row->p[len-1], f);
1954 value_set_si(f, -1);
1955 Vector_Scale(row->p+1, row->p+1, f, len-1);
1956 value_decrement(row->p[len-1], row->p[len-1]);
1957 Vector_Gcd(row->p+1, len - 2, &f);
1958 if (value_notone_p(f)) {
1959 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
1960 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
1962 Polyhedron *neg = AddConstraints(row->p, 1, P, MaxRays);
1963 value_set_si(f, -1);
1964 Vector_Scale(row->p+1, row->p+1, f, len-1);
1965 value_decrement(row->p[len-1], row->p[len-1]);
1966 Polyhedron *pos = AddConstraints(row->p, 1, P, MaxRays);
1968 assert(i == 0); // for now
1969 evalue *EP =
1970 barvinok_enumerate_e(neg, exist-1, nparam, MaxRays);
1971 evalue *E =
1972 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
1973 eadd(E, EP);
1974 free_evalue_refs(E);
1975 free(E);
1976 Polyhedron_Free(neg);
1977 Polyhedron_Free(pos);
1978 value_clear(f);
1979 return EP;
1982 assert(0); // can't happen
1985 assert(0);