Makefile.am: add dependencies for checks
[barvinok.git] / edomain.cc
blob671ba5dfc95e95195b18ee984b1e9beaeabff948
1 #include <sstream>
2 #include "fdstream.h"
3 #include <barvinok/util.h>
4 #include <barvinok/sample.h>
5 #include <barvinok/barvinok.h>
6 #include "edomain.h"
7 #include "evalue_util.h"
9 using std::vector;
10 using std::endl;
11 using std::ostream;
13 EDomain *EDomain::new_from_ge_constraint(ge_constraint *ge, int sign,
14 barvinok_options *options)
16 if (ge->simplified && sign == 0)
17 return NULL;
19 EDomain *ED;
20 Matrix *M2;
21 M2 = Matrix_Copy(ge->M);
22 if (sign == 1) {
23 if (!ge->simplified)
24 value_decrement(M2->p[M2->NbRows-1][M2->NbColumns-1],
25 M2->p[M2->NbRows-1][M2->NbColumns-1]);
26 } else if (sign == -1) {
27 Value mone;
28 value_init(mone);
29 value_set_si(mone, -1);
30 Vector_Scale(M2->p[M2->NbRows-1]+1, M2->p[M2->NbRows-1]+1,
31 mone, M2->NbColumns-1);
32 value_decrement(M2->p[M2->NbRows-1][M2->NbColumns-1],
33 M2->p[M2->NbRows-1][M2->NbColumns-1]);
34 value_clear(mone);
35 } else {
36 value_set_si(M2->p[M2->NbRows-1][0], 0);
38 Polyhedron *D2 = Constraints2Polyhedron(M2, options->MaxRays);
39 ED = new EDomain(D2, ge->D, ge->new_floors);
40 Polyhedron_Free(D2);
41 Matrix_Free(M2);
42 return ED;
45 static void print_term(ostream& os, Value v, int pos, int dim,
46 char **names, int *first)
48 if (value_zero_p(v)) {
49 if (first && *first && pos >= dim)
50 os << "0";
51 return;
54 if (first) {
55 if (!*first && value_pos_p(v))
56 os << "+";
57 *first = 0;
59 if (pos < dim) {
60 if (value_mone_p(v)) {
61 os << "-";
62 } else if (!value_one_p(v))
63 os << VALUE_TO_INT(v);
64 os << names[pos];
65 } else
66 os << VALUE_TO_INT(v);
69 void EDomain_floor::print(ostream& os, char **p) const
71 int first = 1;
72 os << "[";
73 os << "(";
74 for (int i = 0; i < v->Size-2; ++i)
75 print_term(os, v->p[1+i], i, v->Size-2, p, &first);
76 os << ")";
77 os << "/";
78 print_term(os, v->p[0], v->Size-2, v->Size-2, p, NULL);
79 os << "]";
82 void EDomain::print_constraints(ostream& os, char **p,
83 barvinok_options *options) const
85 Value tmp;
86 value_init(tmp);
88 Matrix *M = Matrix_Alloc(2*floors.size(), 1+D->Dimension+1);
89 value_set_si(tmp, -1);
90 for (int i = 0; i < floors.size(); ++i) {
91 value_set_si(M->p[2*i][0], 1);
92 Vector_Copy(floors[i]->v->p+1, M->p[2*i]+1, dimension());
93 value_assign(M->p[2*i][1+D->Dimension], floors[i]->v->p[1+dimension()]);
94 value_oppose(M->p[2*i][1+dimension()+i], floors[i]->v->p[0]);
96 Vector_Scale(M->p[2*i]+1, M->p[2*i+1]+1, tmp, D->Dimension+1);
97 value_addto(M->p[2*i+1][1+D->Dimension], M->p[2*i+1][1+D->Dimension],
98 M->p[2*i+1][1+dimension()+i]);
99 value_decrement(M->p[2*i+1][1+D->Dimension], M->p[2*i+1][1+D->Dimension]);
100 value_set_si(M->p[2*i+1][0], 1);
102 Polyhedron *E = Constraints2Polyhedron(M, options->MaxRays);
103 Matrix_Free(M);
104 Polyhedron *SD = DomainSimplify(D, E, options->MaxRays);
105 Polyhedron_Free(E);
107 char **names = p;
108 unsigned dim = dimension();
109 if (dim < SD->Dimension) {
110 names = new char * [SD->Dimension];
111 int i;
112 for (i = 0; i < dim; ++i)
113 names[i] = p[i];
114 for ( ; i < SD->Dimension; ++i) {
115 std::ostringstream strm;
116 floors[i-dim]->print(strm, p);
117 names[i] = strdup(strm.str().c_str());
121 for (int i = 0; i < SD->NbConstraints; ++i) {
122 int first = 1;
123 int v = First_Non_Zero(SD->Constraint[i]+1, SD->Dimension);
124 if (v == -1)
125 continue;
126 if (i)
127 os << " && ";
128 if (value_pos_p(SD->Constraint[i][v+1])) {
129 print_term(os, SD->Constraint[i][v+1], v, SD->Dimension,
130 names, NULL);
131 if (value_zero_p(SD->Constraint[i][0]))
132 os << " = ";
133 else
134 os << " >= ";
135 for (int j = v+1; j <= SD->Dimension; ++j) {
136 value_oppose(tmp, SD->Constraint[i][1+j]);
137 print_term(os, tmp, j, SD->Dimension,
138 names, &first);
140 } else {
141 value_oppose(tmp, SD->Constraint[i][1+v]);
142 print_term(os, tmp, v, SD->Dimension,
143 names, NULL);
144 if (value_zero_p(SD->Constraint[i][0]))
145 os << " = ";
146 else
147 os << " <= ";
148 for (int j = v+1; j <= SD->Dimension; ++j)
149 print_term(os, SD->Constraint[i][1+j], j, SD->Dimension,
150 names, &first);
153 value_clear(tmp);
154 Domain_Free(SD);
156 if (dim < D->Dimension) {
157 for (int i = dim; i < D->Dimension; ++i)
158 free(names[i]);
159 delete [] names;
163 void EDomain::print(FILE *out, char **p)
165 fdostream os(dup(fileno(out)));
166 for (int i = 0; i < floors.size(); ++i) {
167 os << "floor " << i << ": [";
168 evalue_print(os, floors[i]->e, p);
169 os << "]" << endl;
171 Polyhedron_Print(out, P_VALUE_FMT, D);
174 static int type_offset(enode *p)
176 return p->type == fractional ? 1 :
177 p->type == flooring ? 1 : 0;
180 static void add_coeff(Value *cons, int len, evalue *coeff, int pos)
182 Value tmp;
184 assert(value_notzero_p(coeff->d));
186 value_init(tmp);
188 value_lcm(cons[0], coeff->d, &tmp);
189 value_division(tmp, tmp, cons[0]);
190 Vector_Scale(cons, cons, tmp, len);
191 value_division(tmp, cons[0], coeff->d);
192 value_addmul(cons[pos], tmp, coeff->x.n);
194 value_clear(tmp);
197 static int evalue2constraint_r(EDomain *D, evalue *E, Value *cons, int len);
199 static void add_fract(evalue *e, Value *cons, int len, int pos)
201 evalue mone;
202 value_init(mone.d);
203 evalue_set_si(&mone, -1, 1);
205 /* contribution of alpha * fract(X) is
206 * alpha * X ...
208 assert(e->x.p->size == 3);
209 evalue argument;
210 value_init(argument.d);
211 evalue_copy(&argument, &e->x.p->arr[0]);
212 emul(&e->x.p->arr[2], &argument);
213 evalue2constraint_r(NULL, &argument, cons, len);
214 free_evalue_refs(&argument);
216 /* - alpha * floor(X) */
217 emul(&mone, &e->x.p->arr[2]);
218 add_coeff(cons, len, &e->x.p->arr[2], pos);
219 emul(&mone, &e->x.p->arr[2]);
221 free_evalue_refs(&mone);
224 static int evalue2constraint_r(EDomain *D, evalue *E, Value *cons, int len)
226 int r = 0;
227 if (value_zero_p(E->d) && E->x.p->type == fractional) {
228 int i;
229 assert(E->x.p->size == 3);
230 r = evalue2constraint_r(D, &E->x.p->arr[1], cons, len);
231 assert(value_notzero_p(E->x.p->arr[2].d));
232 if (D && (i = D->find_floor(&E->x.p->arr[0])) >= 0) {
233 add_fract(E, cons, len, 1+D->D->Dimension-D->floors.size()+i);
234 } else {
235 if (value_pos_p(E->x.p->arr[2].x.n)) {
236 evalue coeff;
237 value_init(coeff.d);
238 value_init(coeff.x.n);
239 value_set_si(coeff.d, 1);
240 evalue_denom(&E->x.p->arr[0], &coeff.d);
241 value_decrement(coeff.x.n, coeff.d);
242 emul(&E->x.p->arr[2], &coeff);
243 add_coeff(cons, len, &coeff, len-1);
244 free_evalue_refs(&coeff);
246 r = 1;
248 } else if (value_zero_p(E->d)) {
249 assert(E->x.p->type == polynomial);
250 assert(E->x.p->size == 2);
251 r = evalue2constraint_r(D, &E->x.p->arr[0], cons, len) || r;
252 add_coeff(cons, len, &E->x.p->arr[1], E->x.p->pos);
253 } else {
254 add_coeff(cons, len, E, len-1);
256 return r;
259 EDomain_floor::EDomain_floor(const evalue *f, int dim)
261 e = new evalue;
262 value_init(e->d);
263 evalue_copy(e, f);
264 v = Vector_Alloc(1+dim+1);
265 value_set_si(v->p[0], 1);
266 evalue2constraint_r(NULL, e, v->p, v->Size);
267 refcount = 1;
268 substituted = false;
271 void EDomain_floor::eval(Value *values, Value *res) const
273 Inner_Product(v->p+1, values, v->Size-2, res);
274 value_addto(*res, *res, v->p[v->Size-1]);
275 value_pdivision(*res, *res, v->p[0]);
278 int evalue2constraint(EDomain *D, evalue *E, Value *cons, int len)
280 Vector_Set(cons, 0, len);
281 value_set_si(cons[0], 1);
282 return evalue2constraint_r(D, E, cons, len);
285 bool EDomain::contains(Value *point, int len) const
287 assert(len <= D->Dimension);
288 if (len == D->Dimension)
289 return in_domain(D, point);
291 Vector *all_val = Vector_Alloc(D->Dimension);
292 Vector_Copy(point, all_val->p, len);
293 for (int i = len-dimension(); i < floors.size(); ++i)
294 floors[i]->eval(all_val->p, &all_val->p[dimension()+i]);
295 bool in = in_domain(D, all_val->p);
296 Vector_Free(all_val);
297 return in;
300 ge_constraint *EDomain::compute_ge_constraint(evalue *constraint) const
302 ge_constraint *ge = new ge_constraint(this);
303 evalue mone;
304 value_init(mone.d);
305 evalue_set_si(&mone, -1, 1);
306 int fract = 0;
307 for (evalue *e = constraint; value_zero_p(e->d);
308 e = &e->x.p->arr[type_offset(e->x.p)]) {
309 int i;
310 if (e->x.p->type != fractional)
311 continue;
312 if (find_floor(&e->x.p->arr[0]) == -1)
313 ++fract;
316 int rows = D->NbConstraints+2*fract+1;
317 int cols = 2+D->Dimension+fract;
318 ge->M = Matrix_Alloc(rows, cols);
319 for (int i = 0; i < D->NbConstraints; ++i) {
320 Vector_Copy(D->Constraint[i], ge->M->p[i], 1+D->Dimension);
321 value_assign(ge->M->p[i][1+D->Dimension+fract],
322 D->Constraint[i][1+D->Dimension]);
324 value_set_si(ge->M->p[rows-1][0], 1);
325 fract = 0;
326 evalue *e;
327 for (e = constraint; value_zero_p(e->d); e = &e->x.p->arr[type_offset(e->x.p)]) {
328 if (e->x.p->type == fractional) {
329 int i, pos;
331 i = find_floor(&e->x.p->arr[0]);
332 if (i >= 0)
333 pos = D->Dimension-floors.size()+i;
334 else
335 pos = D->Dimension+fract;
337 add_fract(e, ge->M->p[rows-1], cols, 1+pos);
339 if (pos < D->Dimension)
340 continue;
342 EDomain_floor *new_floor;
343 new_floor = new EDomain_floor(&e->x.p->arr[0], dimension());
345 /* constraints for the new floor */
346 int row = D->NbConstraints+2*fract;
347 Vector_Copy(new_floor->v->p+1, ge->M->p[row]+1, dimension());
348 value_assign(ge->M->p[row][cols-1], new_floor->v->p[1+dimension()]);
349 value_oppose(ge->M->p[row][1+D->Dimension+fract], new_floor->v->p[0]);
350 value_set_si(ge->M->p[row][0], 1);
351 assert(value_eq(ge->M->p[row][cols-1], new_floor->v->p[1+dimension()]));
352 assert(Vector_Equal(new_floor->v->p+1, ge->M->p[row]+1, dimension()));
354 Vector_Scale(ge->M->p[row]+1, ge->M->p[row+1]+1, mone.x.n, cols-1);
355 value_set_si(ge->M->p[row+1][0], 1);
356 value_addto(ge->M->p[row+1][cols-1], ge->M->p[row+1][cols-1],
357 ge->M->p[row+1][1+D->Dimension+fract]);
358 value_decrement(ge->M->p[row+1][cols-1], ge->M->p[row+1][cols-1]);
360 ge->new_floors.push_back(new_floor);
362 ++fract;
363 } else {
364 assert(e->x.p->type == polynomial);
365 assert(e->x.p->size == 2);
366 add_coeff(ge->M->p[rows-1], cols, &e->x.p->arr[1], e->x.p->pos);
369 add_coeff(ge->M->p[rows-1], cols, e, cols-1);
370 ge->simplified = ConstraintSimplify(ge->M->p[rows-1], ge->M->p[rows-1],
371 cols, &ge->M->p[rows-1][0]);
372 value_set_si(ge->M->p[rows-1][0], 1);
373 free_evalue_refs(&mone);
374 return ge;
377 /* "align" matrix to have nrows by inserting
378 * the necessary number of rows and an equal number of columns at the end
379 * right before the constant row/column
381 static Matrix *align_matrix_initial(Matrix *M, int nrows)
383 int i;
384 int newrows = nrows - M->NbRows;
385 Matrix *M2 = Matrix_Alloc(nrows, newrows + M->NbColumns);
386 for (i = 0; i < M->NbRows-1; ++i) {
387 Vector_Copy(M->p[i], M2->p[i], M->NbColumns-1);
388 value_assign(M2->p[i][M2->NbColumns-1], M->p[i][M->NbColumns-1]);
390 for (i = 0; i <= newrows; ++i)
391 value_assign(M2->p[M->NbRows-1+i][M->NbColumns-1+i],
392 M->p[M->NbRows-1][M->NbColumns-1]);
393 return M2;
396 static Matrix *InsertColumns(Matrix *M, int pos, int n)
398 Matrix *R;
399 int i;
401 R = Matrix_Alloc(M->NbRows, M->NbColumns+n);
402 for (i = 0; i < M->NbRows; ++i) {
403 Vector_Copy(M->p[i], R->p[i], pos);
404 Vector_Copy(M->p[i]+pos, R->p[i]+pos+n, M->NbColumns-pos);
406 return R;
409 void evalue_substitute(evalue *e, evalue **subs)
411 evalue *v;
413 if (value_notzero_p(e->d))
414 return;
416 enode *p = e->x.p;
417 for (int i = 0; i < p->size; ++i)
418 evalue_substitute(&p->arr[i], subs);
420 if (p->type == polynomial)
421 v = subs[p->pos-1];
422 else {
423 v = new evalue;
424 value_init(v->d);
425 value_set_si(v->d, 0);
426 v->x.p = new_enode(p->type, 3, -1);
427 value_clear(v->x.p->arr[0].d);
428 v->x.p->arr[0] = p->arr[0];
429 evalue_set_si(&v->x.p->arr[1], 0, 1);
430 evalue_set_si(&v->x.p->arr[2], 1, 1);
433 int offset = type_offset(p);
435 for (int i = p->size-1; i >= offset+1; i--) {
436 emul(v, &p->arr[i]);
437 eadd(&p->arr[i], &p->arr[i-1]);
438 free_evalue_refs(&(p->arr[i]));
441 if (p->type != polynomial) {
442 free_evalue_refs(v);
443 delete v;
446 value_clear(e->d);
447 *e = p->arr[offset];
448 free(p);
451 void EDomain_floor::substitute(evalue **subs, Matrix *T)
453 /* This is a hack. The EDomain_floor elements are possibly shared
454 * by many EDomain structures and we want to perform the substitution
455 * only once.
457 if (substituted)
458 return;
459 substituted = true;
461 evalue_substitute(e, subs);
463 assert(T->NbRows == v->Size-1);
464 Vector *tmp = Vector_Alloc(1+T->NbColumns);
465 Vector_Matrix_Product(v->p+1, T, tmp->p+1);
466 value_multiply(tmp->p[0], v->p[0], T->p[T->NbRows-1][T->NbColumns-1]);
467 Vector_Free(v);
468 v = tmp;
471 /* T is a homogeneous matrix that maps the original variables to the new variables.
472 * this has constraints in the new variables and this method
473 * transforms this to constraints in the original variables.
475 void EDomain::substitute(evalue **subs, Matrix *T, Matrix *Eq, unsigned MaxRays)
477 int nexist = floors.size();
478 Matrix *M = align_matrix_initial(T, T->NbRows+nexist);
479 Polyhedron *new_D = DomainPreimage(D, M, MaxRays);
480 Polyhedron_Free(D);
481 D = new_D;
482 Matrix_Free(M);
484 M = nexist ? InsertColumns(Eq, 1+dimension(), nexist) : Eq;
485 new_D = DomainAddConstraints(D, M, MaxRays);
486 Polyhedron_Free(D);
487 D = new_D;
488 if (nexist)
489 Matrix_Free(M);
490 for (int i = 0; i < floors.size(); ++i)
491 floors[i]->substitute(subs, T);
494 static Matrix *remove_equalities(Polyhedron **P, unsigned nparam, unsigned MaxRays)
496 /* Matrix "view" of equalities */
497 Matrix M;
498 M.NbRows = (*P)->NbEq;
499 M.NbColumns = (*P)->Dimension+2;
500 M.p_Init = (*P)->p_Init;
501 M.p = (*P)->Constraint;
503 Matrix *T = compress_variables(&M, nparam);
505 if (!T) {
506 *P = NULL;
507 return NULL;
509 if (isIdentity(T)) {
510 Matrix_Free(T);
511 T = NULL;
512 } else
513 *P = Polyhedron_Preimage(*P, T, MaxRays);
515 return T;
518 bool EDomain::not_empty(lexmin_options *options)
520 Polyhedron *P = D;
521 Polyhedron *Porig = P;
523 POL_ENSURE_VERTICES(P);
524 if (emptyQ2(P))
525 return false;
527 for (int i = 0; i < P->NbRays; ++i)
528 if (value_one_p(P->Ray[i][1+P->Dimension])) {
529 sample = Vector_Alloc(P->Dimension + 1);
530 Vector_Copy(P->Ray[i]+1, sample->p, P->Dimension+1);
531 return true;
534 if (options->emptiness_check == BV_LEXMIN_EMPTINESS_CHECK_COUNT) {
535 bool notzero;
536 Value cb;
537 value_init(cb);
538 barvinok_count_with_options(P, &cb, options->barvinok);
539 notzero = value_notzero_p(cb);
540 value_clear(cb);
541 return notzero;
544 Matrix *T = NULL;
545 while (P && !emptyQ2(P) && P->NbEq > 0) {
546 Polyhedron *Q = P;
547 Matrix *T2 = remove_equalities(&P, 0, options->barvinok->MaxRays);
548 if (!T)
549 T = T2;
550 else {
551 if (T2) {
552 Matrix *T3 = Matrix_Alloc(T->NbRows, T2->NbColumns);
553 Matrix_Product(T, T2, T3);
554 Matrix_Free(T);
555 Matrix_Free(T2);
556 T = T3;
558 if (Q != Porig)
559 Polyhedron_Free(Q);
562 if (P)
563 sample = Polyhedron_Sample(P, options->barvinok);
564 if (sample) {
565 if (T) {
566 Vector *P_sample = Vector_Alloc(Porig->Dimension + 1);
567 Matrix_Vector_Product(T, sample->p, P_sample->p);
568 Vector_Free(sample);
569 sample = P_sample;
572 if (T) {
573 Polyhedron_Free(P);
574 Matrix_Free(T);
577 if (sample)
578 assert(in_domain(Porig, sample->p));
580 return sample != NULL;