1 /*************************************************/
3 /* program to compare effective number of points */
4 /* in a polytope with the corresponding */
5 /* evaluation of the Ehrhart polynomial. */
6 /* Parameters vary in range -RANGE to RANGE */
7 /* (define below) by default. */
8 /* Can be overridden by specifying */
9 /* -r<RANGE>, or -m<min> and -M<max> */
11 /* written by Vincent Loechner (c) 2000. */
12 /* loechner@icps.u-strasbg.fr */
13 /*************************************************/
20 #include <barvinok/evalue.h>
21 #include <barvinok/barvinok.h>
22 #include "verif_ehrhart.h"
24 #undef CS /* for Solaris 10 */
26 struct check_poly_EP_data
{
27 struct check_poly_data cp
;
33 static int cp_EP(const struct check_poly_data
*data
, int nparam
, Value
*z
,
34 const struct verify_options
*options
)
39 int pa
= options
->barvinok
->polynomial_approximation
;
40 struct check_poly_EP_data
* EP_data
= (struct check_poly_EP_data
*) data
;
41 const evalue
*EP
= EP_data
->EP
;
42 int exist
= EP_data
->exist
;
43 Polyhedron
*S
= EP_data
->S
;
50 /* Computes the ehrhart polynomial */
51 if (!options
->exact
) {
52 double d
= compute_evalue(EP
, z
);
53 if (pa
== BV_APPROX_SIGN_LOWER
)
55 else if (pa
== BV_APPROX_SIGN_UPPER
)
57 value_set_double(c
, d
+.25);
59 evalue
*res
= evalue_eval(EP
, z
);
60 if (pa
== BV_APPROX_SIGN_LOWER
)
61 mpz_cdiv_q(c
, res
->x
.n
, res
->d
);
62 else if (pa
== BV_APPROX_SIGN_UPPER
)
63 mpz_fdiv_q(c
, res
->x
.n
, res
->d
);
65 mpz_tdiv_q(c
, res
->x
.n
, res
->d
);
69 /* Manually count the number of points */
70 count_points_e(1, S
, exist
, nparam
, data
->z
, &tmp
);
72 if (pa
== BV_APPROX_SIGN_APPROX
)
73 /* just accept everything */
75 else if (pa
== BV_APPROX_SIGN_LOWER
)
76 ok
= value_le(c
, tmp
);
77 else if (pa
== BV_APPROX_SIGN_UPPER
)
78 ok
= value_ge(c
, tmp
);
80 ok
= value_eq(c
, tmp
);
82 check_poly_print(ok
, nparam
, z
, tmp
, one
, c
, one
,
83 "EP", "count", "EP eval", options
);
86 print_evalue(stderr
, EP
, options
->params
);
87 if (value_zero_p(EP
->d
) && EP
->x
.p
->type
== partition
)
88 for (k
= 0; k
< EP
->x
.p
->size
/2; ++k
) {
89 Polyhedron
*D
= EVALUE_DOMAIN(EP
->x
.p
->arr
[2*k
]);
90 if (in_domain(D
, z
)) {
91 Print_Domain(stderr
, D
, options
->params
);
92 print_evalue(stderr
, &EP
->x
.p
->arr
[2*k
+1], options
->params
);
104 int check_poly_EP(Polyhedron
*S
, Polyhedron
*CS
, evalue
*EP
, int exist
,
105 int nparam
, int pos
, Value
*z
, const struct verify_options
*options
)
107 struct check_poly_EP_data data
;
109 data
.cp
.check
= cp_EP
;
113 return check_poly(CS
, &data
.cp
, nparam
, pos
, z
+S
->Dimension
-nparam
+1, options
);