barvinok.cc: enumerator::handle: drop unused variable
[barvinok.git] / barvinok.cc
blob82069c3f392c474dc26dc4929ef9e353792d6f0f
1 #include <assert.h>
2 #include <iostream>
3 #include <vector>
4 #include <deque>
5 #include <string>
6 #include <sstream>
7 #include <gmp.h>
8 #include <NTL/mat_ZZ.h>
9 #include <NTL/LLL.h>
10 #include <isl/map.h>
11 #include <isl_set_polylib.h>
12 #include <barvinok/util.h>
13 #include <barvinok/evalue.h>
14 #include "config.h"
15 #include <barvinok/barvinok.h>
16 #include <barvinok/genfun.h>
17 #include <barvinok/options.h>
18 #include <barvinok/sample.h>
19 #include "bfcounter.h"
20 #include "conversion.h"
21 #include "counter.h"
22 #include "decomposer.h"
23 #include "euler.h"
24 #include "lattice_point.h"
25 #include "laurent.h"
26 #include "reduce_domain.h"
27 #include "remove_equalities.h"
28 #include "scale.h"
29 #include "volume.h"
30 #include "bernoulli.h"
31 #include "param_util.h"
32 #include "summate.h"
34 using namespace NTL;
35 using std::cerr;
36 using std::cout;
37 using std::endl;
38 using std::vector;
39 using std::deque;
40 using std::string;
41 using std::ostringstream;
43 #define ALLOC(t,p) p = (t*)malloc(sizeof(*p))
45 class dpoly_n {
46 public:
47 Matrix *coeff;
48 ~dpoly_n() {
49 Matrix_Free(coeff);
51 dpoly_n(int d) {
52 Value d0, one;
53 value_init(d0);
54 value_init(one);
55 value_set_si(one, 1);
56 coeff = Matrix_Alloc(d+1, d+1+1);
57 value_set_si(coeff->p[0][0], 1);
58 value_set_si(coeff->p[0][d+1], 1);
59 for (int i = 1; i <= d; ++i) {
60 value_multiply(coeff->p[i][0], coeff->p[i-1][0], d0);
61 Vector_Combine(coeff->p[i-1], coeff->p[i-1]+1, coeff->p[i]+1,
62 one, d0, i);
63 value_set_si(coeff->p[i][d+1], i);
64 value_multiply(coeff->p[i][d+1], coeff->p[i][d+1], coeff->p[i-1][d+1]);
65 value_decrement(d0, d0);
67 value_clear(d0);
68 value_clear(one);
70 void div(dpoly& d, Vector *count, int sign) {
71 int len = coeff->NbRows;
72 Matrix * c = Matrix_Alloc(coeff->NbRows, coeff->NbColumns);
73 Value tmp;
74 value_init(tmp);
75 for (int i = 0; i < len; ++i) {
76 Vector_Copy(coeff->p[i], c->p[i], len+1);
77 for (int j = 1; j <= i; ++j) {
78 value_multiply(tmp, d.coeff->p[j], c->p[i][len]);
79 value_oppose(tmp, tmp);
80 Vector_Combine(c->p[i], c->p[i-j], c->p[i],
81 c->p[i-j][len], tmp, len);
82 value_multiply(c->p[i][len], c->p[i][len], c->p[i-j][len]);
84 value_multiply(c->p[i][len], c->p[i][len], d.coeff->p[0]);
86 if (sign == -1) {
87 value_set_si(tmp, -1);
88 Vector_Scale(c->p[len-1], count->p, tmp, len);
89 value_assign(count->p[len], c->p[len-1][len]);
90 } else
91 Vector_Copy(c->p[len-1], count->p, len+1);
92 Vector_Normalize(count->p, len+1);
93 value_clear(tmp);
94 Matrix_Free(c);
98 struct bfe_term : public bfc_term_base {
99 vector<evalue *> factors;
101 bfe_term(int len) : bfc_term_base(len) {
104 ~bfe_term() {
105 for (int i = 0; i < factors.size(); ++i) {
106 if (!factors[i])
107 continue;
108 free_evalue_refs(factors[i]);
109 delete factors[i];
114 static void print_int_vector(int *v, int len, const char *name)
116 cerr << name << endl;
117 for (int j = 0; j < len; ++j) {
118 cerr << v[j] << " ";
120 cerr << endl;
123 static void print_bfc_terms(mat_ZZ& factors, bfc_vec& v)
125 cerr << endl;
126 cerr << "factors" << endl;
127 cerr << factors << endl;
128 for (int i = 0; i < v.size(); ++i) {
129 cerr << "term: " << i << endl;
130 print_int_vector(v[i]->powers, factors.NumRows(), "powers");
131 cerr << "terms" << endl;
132 cerr << v[i]->terms << endl;
133 bfc_term* bfct = static_cast<bfc_term *>(v[i]);
134 cerr << bfct->c << endl;
138 static void print_bfe_terms(mat_ZZ& factors, bfc_vec& v)
140 cerr << endl;
141 cerr << "factors" << endl;
142 cerr << factors << endl;
143 for (int i = 0; i < v.size(); ++i) {
144 cerr << "term: " << i << endl;
145 print_int_vector(v[i]->powers, factors.NumRows(), "powers");
146 cerr << "terms" << endl;
147 cerr << v[i]->terms << endl;
148 bfe_term* bfet = static_cast<bfe_term *>(v[i]);
149 for (int j = 0; j < v[i]->terms.NumRows(); ++j) {
150 const char * test[] = {"a", "b"};
151 print_evalue(stderr, bfet->factors[j], test);
152 fprintf(stderr, "\n");
157 struct bfcounter : public bfcounter_base {
158 mpq_t count;
159 Value tz;
161 bfcounter(unsigned dim) : bfcounter_base(dim) {
162 mpq_init(count);
163 lower = 1;
164 value_init(tz);
166 ~bfcounter() {
167 mpq_clear(count);
168 value_clear(tz);
170 virtual void base(mat_ZZ& factors, bfc_vec& v);
171 virtual void get_count(Value *result) {
172 assert(value_one_p(&count[0]._mp_den));
173 value_assign(*result, &count[0]._mp_num);
177 void bfcounter::base(mat_ZZ& factors, bfc_vec& v)
179 unsigned nf = factors.NumRows();
181 for (int i = 0; i < v.size(); ++i) {
182 bfc_term* bfct = static_cast<bfc_term *>(v[i]);
183 int total_power = 0;
184 // factor is always positive, so we always
185 // change signs
186 for (int k = 0; k < nf; ++k)
187 total_power += v[i]->powers[k];
189 int j;
190 for (j = 0; j < nf; ++j)
191 if (v[i]->powers[j] > 0)
192 break;
194 zz2value(factors[j][0], tz);
195 dpoly D(total_power, tz, 1);
196 for (int k = 1; k < v[i]->powers[j]; ++k) {
197 zz2value(factors[j][0], tz);
198 dpoly fact(total_power, tz, 1);
199 D *= fact;
201 for ( ; ++j < nf; )
202 for (int k = 0; k < v[i]->powers[j]; ++k) {
203 zz2value(factors[j][0], tz);
204 dpoly fact(total_power, tz, 1);
205 D *= fact;
208 for (int k = 0; k < v[i]->terms.NumRows(); ++k) {
209 zz2value(v[i]->terms[k][0], tz);
210 dpoly n(total_power, tz);
211 mpq_set_si(tcount, 0, 1);
212 n.div(D, tcount, 1);
213 if (total_power % 2)
214 bfct->c[k].n = -bfct->c[k].n;
215 zz2value(bfct->c[k].n, tn);
216 zz2value(bfct->c[k].d, td);
218 mpz_mul(mpq_numref(tcount), mpq_numref(tcount), tn);
219 mpz_mul(mpq_denref(tcount), mpq_denref(tcount), td);
220 mpq_canonicalize(tcount);
221 mpq_add(count, count, tcount);
223 delete v[i];
228 /* Check whether the polyhedron is unbounded and if so,
229 * check whether it has any (and therefore an infinite number of)
230 * integer points.
231 * If one of the vertices is integer, then we are done.
232 * Otherwise, transform the polyhedron such that one of the rays
233 * is the first unit vector and cut it off at a height that ensures
234 * that if the whole polyhedron has any points, then the remaining part
235 * has integer points. In particular we add the largest coefficient
236 * of a ray to the highest vertex (rounded up).
238 static bool Polyhedron_is_infinite(Polyhedron *P, Value* result,
239 barvinok_options *options)
241 int r = 0;
242 Matrix *M, *M2;
243 Value c, tmp;
244 Value g;
245 bool first;
246 Vector *v;
247 Value offset, size;
248 Polyhedron *R;
250 if (P->NbBid == 0)
251 for (; r < P->NbRays; ++r)
252 if (value_zero_p(P->Ray[r][P->Dimension+1]))
253 break;
254 if (P->NbBid == 0 && r == P->NbRays)
255 return false;
257 if (options->count_sample_infinite) {
258 Vector *sample;
260 sample = Polyhedron_Sample(P, options);
261 if (!sample)
262 value_set_si(*result, 0);
263 else {
264 value_set_si(*result, -1);
265 Vector_Free(sample);
267 return true;
270 for (int i = 0; i < P->NbRays; ++i)
271 if (value_one_p(P->Ray[i][1+P->Dimension])) {
272 value_set_si(*result, -1);
273 return true;
276 value_init(g);
277 M = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
278 Vector_Gcd(P->Ray[r]+1, P->Dimension, &g);
279 Vector_AntiScale(P->Ray[r]+1, M->p[0], g, P->Dimension+1);
280 int ok = unimodular_complete(M, 1);
281 assert(ok);
282 value_set_si(M->p[P->Dimension][P->Dimension], 1);
283 M2 = Transpose(M);
284 Matrix_Free(M);
285 P = Polyhedron_Preimage(P, M2, 0);
286 Matrix_Free(M2);
287 value_clear(g);
289 first = true;
290 value_init(offset);
291 value_init(size);
292 value_init(tmp);
293 value_set_si(size, 0);
295 for (int i = 0; i < P->NbBid; ++i) {
296 value_absolute(tmp, P->Ray[i][1]);
297 if (value_gt(tmp, size))
298 value_assign(size, tmp);
300 for (int i = P->NbBid; i < P->NbRays; ++i) {
301 if (value_zero_p(P->Ray[i][P->Dimension+1])) {
302 if (value_gt(P->Ray[i][1], size))
303 value_assign(size, P->Ray[i][1]);
304 continue;
306 mpz_cdiv_q(tmp, P->Ray[i][1], P->Ray[i][P->Dimension+1]);
307 if (first || value_gt(tmp, offset)) {
308 value_assign(offset, tmp);
309 first = false;
312 value_addto(offset, offset, size);
313 value_clear(size);
314 value_clear(tmp);
316 v = Vector_Alloc(P->Dimension+2);
317 value_set_si(v->p[0], 1);
318 value_set_si(v->p[1], -1);
319 value_assign(v->p[1+P->Dimension], offset);
320 R = AddConstraints(v->p, 1, P, options->MaxRays);
321 Polyhedron_Free(P);
322 P = R;
324 value_clear(offset);
325 Vector_Free(v);
327 value_init(c);
328 barvinok_count_with_options(P, &c, options);
329 Polyhedron_Free(P);
330 if (value_zero_p(c))
331 value_set_si(*result, 0);
332 else
333 value_set_si(*result, -1);
334 value_clear(c);
336 return true;
339 static void evalue2value(evalue *e, Value *v)
341 if (EVALUE_IS_ZERO(*e)) {
342 value_set_si(*v, 0);
343 return;
346 if (value_notzero_p(e->d)) {
347 assert(value_one_p(e->d));
348 value_assign(*v, e->x.n);
349 return;
352 assert(e->x.p->type == partition);
353 assert(e->x.p->size == 2);
354 assert(EVALUE_DOMAIN(e->x.p->arr[0])->Dimension == 0);
355 evalue2value(&e->x.p->arr[1], v);
358 static void barvinok_count_f(Polyhedron *P, Value* result,
359 barvinok_options *options);
361 void barvinok_count_with_options(Polyhedron *P, Value* result,
362 struct barvinok_options *options)
364 unsigned dim;
365 int allocated = 0;
366 Polyhedron *Q;
367 bool infinite = false;
369 if (P->next)
370 fprintf(stderr,
371 "barvinok_count: input is a union; only first polyhedron is counted\n");
373 if (emptyQ2(P)) {
374 value_set_si(*result, 0);
375 return;
377 if (P->NbEq != 0) {
378 Q = NULL;
379 do {
380 P = remove_equalities(P, options->MaxRays);
381 if (P)
382 P = DomainConstraintSimplify(P, options->MaxRays);
383 if (Q)
384 Polyhedron_Free(Q);
385 Q = P;
386 } while (P && !emptyQ(P) && P->NbEq != 0);
387 if (!P || emptyQ(P)) {
388 Polyhedron_Free(P);
389 value_set_si(*result, 0);
390 return;
392 allocated = 1;
394 if (Polyhedron_is_infinite(P, result, options)) {
395 if (allocated)
396 Polyhedron_Free(P);
397 return;
399 if (P->Dimension == 0) {
400 /* Test whether the constraints are satisfied */
401 POL_ENSURE_VERTICES(P);
402 value_set_si(*result, !emptyQ(P));
403 if (allocated)
404 Polyhedron_Free(P);
405 return;
407 if (options->summation == BV_SUM_BERNOULLI) {
408 Polyhedron *C = Universe_Polyhedron(0);
409 evalue *sum = barvinok_summate_unweighted(P, C, options);
410 Polyhedron_Free(C);
411 evalue2value(sum, result);
412 evalue_free(sum);
413 return;
415 Q = Polyhedron_Factor(P, 0, NULL, options->MaxRays);
416 if (Q) {
417 if (allocated)
418 Polyhedron_Free(P);
419 P = Q;
420 allocated = 1;
423 barvinok_count_f(P, result, options);
424 if (value_neg_p(*result))
425 infinite = true;
426 if (Q && P->next && value_notzero_p(*result)) {
427 Value factor;
428 value_init(factor);
430 for (Q = P->next; Q; Q = Q->next) {
431 barvinok_count_f(Q, &factor, options);
432 if (value_neg_p(factor)) {
433 infinite = true;
434 continue;
435 } else if (Q->next && value_zero_p(factor)) {
436 value_set_si(*result, 0);
437 break;
439 value_multiply(*result, *result, factor);
442 value_clear(factor);
445 if (allocated)
446 Domain_Free(P);
447 if (infinite)
448 value_set_si(*result, -1);
451 void barvinok_count(Polyhedron *P, Value* result, unsigned NbMaxCons)
453 barvinok_options *options = barvinok_options_new_with_defaults();
454 options->MaxRays = NbMaxCons;
455 barvinok_count_with_options(P, result, options);
456 barvinok_options_free(options);
459 static void barvinok_count_f(Polyhedron *P, Value* result,
460 barvinok_options *options)
462 if (emptyQ2(P)) {
463 value_set_si(*result, 0);
464 return;
467 if (P->Dimension == 1)
468 return Line_Length(P, result);
470 int c = P->NbConstraints;
471 POL_ENSURE_FACETS(P);
472 if (c != P->NbConstraints || P->NbEq != 0) {
473 Polyhedron *next = P->next;
474 P->next = NULL;
475 barvinok_count_with_options(P, result, options);
476 P->next = next;
477 return;
480 POL_ENSURE_VERTICES(P);
482 if (Polyhedron_is_infinite(P, result, options))
483 return;
485 np_base *cnt;
486 if (options->incremental_specialization == BV_SPECIALIZATION_BF)
487 cnt = new bfcounter(P->Dimension);
488 else if (options->incremental_specialization == BV_SPECIALIZATION_DF)
489 cnt = new icounter(P->Dimension);
490 else if (options->incremental_specialization == BV_SPECIALIZATION_TODD)
491 cnt = new tcounter(P->Dimension, options->max_index);
492 else
493 cnt = new counter(P->Dimension, options->max_index);
494 cnt->start(P, options);
496 cnt->get_count(result);
497 delete cnt;
500 typedef evalue * evalue_p;
502 struct enumerator_base {
503 unsigned dim;
504 evalue ** vE;
505 evalue mone;
506 vertex_decomposer *vpd;
508 enumerator_base(unsigned dim, vertex_decomposer *vpd)
510 this->dim = dim;
511 this->vpd = vpd;
513 vE = new evalue_p[vpd->PP->nbV];
514 for (int j = 0; j < vpd->PP->nbV; ++j)
515 vE[j] = 0;
517 value_init(mone.d);
518 evalue_set_si(&mone, -1, 1);
521 void decompose_at(Param_Vertices *V, int _i, barvinok_options *options) {
522 //this->pVD = pVD;
524 vE[_i] = new evalue;
525 value_init(vE[_i]->d);
526 evalue_set_si(vE[_i], 0, 1);
528 vpd->decompose_at_vertex(V, _i, options);
531 virtual ~enumerator_base() {
532 for (int j = 0; j < vpd->PP->nbV; ++j)
533 if (vE[j]) {
534 free_evalue_refs(vE[j]);
535 delete vE[j];
537 delete [] vE;
539 free_evalue_refs(&mone);
542 static enumerator_base *create(Polyhedron *P, unsigned dim,
543 Param_Polyhedron *PP,
544 barvinok_options *options);
547 struct enumerator : public signed_cone_consumer, public vertex_decomposer,
548 public enumerator_base {
549 vec_ZZ lambda;
550 vec_ZZ den;
551 term_info num;
552 Vector *c;
553 mpq_t count;
554 Value tz;
556 enumerator(Polyhedron *P, unsigned dim, Param_Polyhedron *PP) :
557 vertex_decomposer(PP, *this), enumerator_base(dim, this) {
558 randomvector(P, lambda, dim, 0);
559 den.SetLength(dim);
560 c = Vector_Alloc(dim+2);
562 mpq_init(count);
563 value_init(tz);
566 ~enumerator() {
567 mpq_clear(count);
568 Vector_Free(c);
569 value_clear(tz);
572 virtual void handle(const signed_cone& sc, barvinok_options *options);
575 void enumerator::handle(const signed_cone& sc, barvinok_options *options)
577 int sign = sc.sign;
578 assert(sc.rays.NumRows() == dim);
579 for (int k = 0; k < dim; ++k) {
580 if (lambda * sc.rays[k] == 0)
581 throw Orthogonal;
584 lattice_point(V, sc.rays, lambda, &num, sc.det, options);
585 den = sc.rays * lambda;
587 if (dim % 2)
588 sign = -sign;
590 zz2value(den[0], tz);
591 dpoly n(dim, tz, 1);
592 for (int k = 1; k < dim; ++k) {
593 zz2value(den[k], tz);
594 dpoly fact(dim, tz, 1);
595 n *= fact;
597 if (num.E != NULL) {
598 dpoly_n d(dim);
599 d.div(n, c, sign);
600 for (unsigned long i = 0; i < sc.det; ++i) {
601 evalue *EV = evalue_polynomial(c, num.E[i]);
602 eadd(EV, vE[vert]);
603 evalue_free(EV);
604 evalue_free(num.E[i]);
606 delete [] num.E;
607 } else {
608 mpq_set_si(count, 0, 1);
609 if (num.constant.length() == 1) {
610 zz2value(num.constant[0], tz);
611 dpoly d(dim, tz);
612 d.div(n, count, sign);
613 } else {
614 dpoly_n d(dim);
615 d.div(n, c, sign);
616 Value x, acc;
617 value_init(x);
618 value_init(acc);
619 for (unsigned long i = 0; i < sc.det; ++i) {
620 value_assign(acc, c->p[dim]);
621 zz2value(num.constant[i], x);
622 for (int j = dim-1; j >= 0; --j) {
623 value_multiply(acc, acc, x);
624 value_addto(acc, acc, c->p[j]);
626 value_addto(mpq_numref(count), mpq_numref(count), acc);
628 mpz_set(mpq_denref(count), c->p[dim+1]);
629 value_clear(acc);
630 value_clear(x);
632 evalue EV;
633 value_init(EV.d);
634 evalue_set(&EV, &count[0]._mp_num, &count[0]._mp_den);
635 eadd(&EV, vE[vert]);
636 free_evalue_refs(&EV);
640 struct ienumerator_base : enumerator_base {
641 evalue ** E_vertex;
643 ienumerator_base(unsigned dim, vertex_decomposer *vpd) :
644 enumerator_base(dim,vpd) {
645 E_vertex = new evalue_p[dim];
648 virtual ~ienumerator_base() {
649 delete [] E_vertex;
652 evalue *E_num(int i, int d) {
653 return E_vertex[i + (dim-d)];
657 struct cumulator {
658 evalue *factor;
659 evalue *v;
660 dpoly_r *r;
662 cumulator(evalue *factor, evalue *v, dpoly_r *r) :
663 factor(factor), v(v), r(r) {}
665 void cumulate(barvinok_options *options);
667 virtual void add_term(const vector<int>& powers, evalue *f2) = 0;
668 virtual ~cumulator() {}
671 void cumulator::cumulate(barvinok_options *options)
673 evalue cum; // factor * 1 * E_num[0]/1 * (E_num[0]-1)/2 *...
674 evalue f;
675 evalue t; // E_num[0] - (m-1)
676 evalue *cst;
677 evalue mone;
679 if (options->lookup_table) {
680 value_init(mone.d);
681 evalue_set_si(&mone, -1, 1);
684 value_init(cum.d);
685 evalue_copy(&cum, factor);
686 value_init(f.d);
687 value_init(f.x.n);
688 value_set_si(f.d, 1);
689 value_set_si(f.x.n, 1);
690 value_init(t.d);
691 evalue_copy(&t, v);
693 if (!options->lookup_table) {
694 for (cst = &t; value_zero_p(cst->d); ) {
695 if (cst->x.p->type == fractional)
696 cst = &cst->x.p->arr[1];
697 else
698 cst = &cst->x.p->arr[0];
702 for (int m = 0; m < r->len; ++m) {
703 if (m > 0) {
704 if (m > 1) {
705 value_set_si(f.d, m);
706 emul(&f, &cum);
707 if (!options->lookup_table)
708 value_subtract(cst->x.n, cst->x.n, cst->d);
709 else
710 eadd(&mone, &t);
712 emul(&t, &cum);
714 dpoly_r_term_list& current = r->c[r->len-1-m];
715 dpoly_r_term_list::iterator j;
716 for (j = current.begin(); j != current.end(); ++j) {
717 if ((*j)->coeff == 0)
718 continue;
719 evalue *f2 = new evalue;
720 value_init(f2->d);
721 value_init(f2->x.n);
722 zz2value((*j)->coeff, f2->x.n);
723 zz2value(r->denom, f2->d);
724 emul(&cum, f2);
726 add_term((*j)->powers, f2);
729 free_evalue_refs(&f);
730 free_evalue_refs(&t);
731 free_evalue_refs(&cum);
732 if (options->lookup_table)
733 free_evalue_refs(&mone);
736 struct E_poly_term {
737 vector<int> powers;
738 evalue *E;
741 struct ie_cum : public cumulator {
742 vector<E_poly_term *> terms;
744 ie_cum(evalue *factor, evalue *v, dpoly_r *r) : cumulator(factor, v, r) {}
746 virtual void add_term(const vector<int>& powers, evalue *f2);
749 void ie_cum::add_term(const vector<int>& powers, evalue *f2)
751 int k;
752 for (k = 0; k < terms.size(); ++k) {
753 if (terms[k]->powers == powers) {
754 eadd(f2, terms[k]->E);
755 free_evalue_refs(f2);
756 delete f2;
757 break;
760 if (k >= terms.size()) {
761 E_poly_term *ET = new E_poly_term;
762 ET->powers = powers;
763 ET->E = f2;
764 terms.push_back(ET);
768 struct ienumerator : public signed_cone_consumer, public vertex_decomposer,
769 public ienumerator_base {
770 mat_ZZ den;
771 mat_ZZ vertex;
772 mpq_t tcount;
773 Value tz;
775 ienumerator(Polyhedron *P, unsigned dim, Param_Polyhedron *PP) :
776 vertex_decomposer(PP, *this), ienumerator_base(dim, this) {
777 vertex.SetDims(1, dim);
779 den.SetDims(dim, dim);
780 mpq_init(tcount);
781 value_init(tz);
784 ~ienumerator() {
785 mpq_clear(tcount);
786 value_clear(tz);
789 virtual void handle(const signed_cone& sc, barvinok_options *options);
790 void reduce(evalue *factor, const mat_ZZ& num, const mat_ZZ& den_f,
791 barvinok_options *options);
794 void ienumerator::reduce(evalue *factor, const mat_ZZ& num, const mat_ZZ& den_f,
795 barvinok_options *options)
797 unsigned len = den_f.NumRows(); // number of factors in den
798 unsigned dim = num.NumCols();
799 assert(num.NumRows() == 1);
801 if (dim == 0) {
802 eadd(factor, vE[vert]);
803 return;
806 vec_ZZ den_s;
807 mat_ZZ den_r;
808 vec_ZZ num_s;
809 mat_ZZ num_p;
811 split_one(num, num_s, num_p, den_f, den_s, den_r);
813 vec_ZZ den_p;
814 den_p.SetLength(len);
816 ZZ one;
817 one = 1;
818 normalize(one, num_s, num_p, den_s, den_p, den_r);
819 if (one != 1)
820 emul(&mone, factor);
822 int only_param = 0;
823 int no_param = 0;
824 for (int k = 0; k < len; ++k) {
825 if (den_p[k] == 0)
826 ++no_param;
827 else if (den_s[k] == 0)
828 ++only_param;
830 if (no_param == 0) {
831 reduce(factor, num_p, den_r, options);
832 } else {
833 int k, l;
834 mat_ZZ pden;
835 pden.SetDims(only_param, dim-1);
837 for (k = 0, l = 0; k < len; ++k)
838 if (den_s[k] == 0)
839 pden[l++] = den_r[k];
841 for (k = 0; k < len; ++k)
842 if (den_p[k] == 0)
843 break;
845 zz2value(num_s[0], tz);
846 dpoly n(no_param, tz);
847 zz2value(den_s[k], tz);
848 dpoly D(no_param, tz, 1);
849 for ( ; ++k < len; )
850 if (den_p[k] == 0) {
851 zz2value(den_s[k], tz);
852 dpoly fact(no_param, tz, 1);
853 D *= fact;
856 dpoly_r * r = 0;
857 // if no_param + only_param == len then all powers
858 // below will be all zero
859 if (no_param + only_param == len) {
860 if (E_num(0, dim) != 0)
861 r = new dpoly_r(n, len);
862 else {
863 mpq_set_si(tcount, 0, 1);
864 one = 1;
865 n.div(D, tcount, 1);
867 if (value_notzero_p(mpq_numref(tcount))) {
868 evalue f;
869 value_init(f.d);
870 value_init(f.x.n);
871 value_assign(f.x.n, mpq_numref(tcount));
872 value_assign(f.d, mpq_denref(tcount));
873 emul(&f, factor);
874 reduce(factor, num_p, pden, options);
875 free_evalue_refs(&f);
877 return;
879 } else {
880 for (k = 0; k < len; ++k) {
881 if (den_s[k] == 0 || den_p[k] == 0)
882 continue;
884 zz2value(den_s[k], tz);
885 dpoly pd(no_param-1, tz, 1);
887 int l;
888 for (l = 0; l < k; ++l)
889 if (den_r[l] == den_r[k])
890 break;
892 if (r == 0)
893 r = new dpoly_r(n, pd, l, len);
894 else {
895 dpoly_r *nr = new dpoly_r(r, pd, l, len);
896 delete r;
897 r = nr;
901 dpoly_r *rc = r->div(D);
902 delete r;
903 r = rc;
904 if (E_num(0, dim) == 0) {
905 int common = pden.NumRows();
906 dpoly_r_term_list& final = r->c[r->len-1];
907 int rows;
908 evalue t;
909 evalue f;
910 value_init(f.d);
911 value_init(f.x.n);
912 zz2value(r->denom, f.d);
913 dpoly_r_term_list::iterator j;
914 for (j = final.begin(); j != final.end(); ++j) {
915 if ((*j)->coeff == 0)
916 continue;
917 rows = common;
918 for (int k = 0; k < r->dim; ++k) {
919 int n = (*j)->powers[k];
920 if (n == 0)
921 continue;
922 pden.SetDims(rows+n, pden.NumCols());
923 for (int l = 0; l < n; ++l)
924 pden[rows+l] = den_r[k];
925 rows += n;
927 value_init(t.d);
928 evalue_copy(&t, factor);
929 zz2value((*j)->coeff, f.x.n);
930 emul(&f, &t);
931 reduce(&t, num_p, pden, options);
932 free_evalue_refs(&t);
934 free_evalue_refs(&f);
935 } else {
936 ie_cum cum(factor, E_num(0, dim), r);
937 cum.cumulate(options);
939 int common = pden.NumRows();
940 int rows;
941 for (int j = 0; j < cum.terms.size(); ++j) {
942 rows = common;
943 pden.SetDims(rows, pden.NumCols());
944 for (int k = 0; k < r->dim; ++k) {
945 int n = cum.terms[j]->powers[k];
946 if (n == 0)
947 continue;
948 pden.SetDims(rows+n, pden.NumCols());
949 for (int l = 0; l < n; ++l)
950 pden[rows+l] = den_r[k];
951 rows += n;
953 reduce(cum.terms[j]->E, num_p, pden, options);
954 free_evalue_refs(cum.terms[j]->E);
955 delete cum.terms[j]->E;
956 delete cum.terms[j];
959 delete r;
963 void ienumerator::handle(const signed_cone& sc, barvinok_options *options)
965 assert(sc.det == 1);
966 assert(sc.rays.NumRows() == dim);
968 lattice_point(V, sc.rays, vertex[0], E_vertex, options);
970 den = sc.rays;
972 evalue one;
973 value_init(one.d);
974 evalue_set_si(&one, sc.sign, 1);
975 reduce(&one, vertex, den, options);
976 free_evalue_refs(&one);
978 for (int i = 0; i < dim; ++i)
979 if (E_vertex[i])
980 evalue_free(E_vertex[i]);
983 struct bfenumerator : public vertex_decomposer, public bf_base,
984 public ienumerator_base {
985 evalue *factor;
987 bfenumerator(Polyhedron *P, unsigned dim, Param_Polyhedron *PP) :
988 vertex_decomposer(PP, *this),
989 bf_base(dim), ienumerator_base(dim, this) {
990 lower = 0;
991 factor = NULL;
994 ~bfenumerator() {
997 virtual void handle(const signed_cone& sc, barvinok_options *options);
998 virtual void base(mat_ZZ& factors, bfc_vec& v);
1000 bfc_term_base* new_bf_term(int len) {
1001 bfe_term* t = new bfe_term(len);
1002 return t;
1005 virtual void set_factor(bfc_term_base *t, int k, int change) {
1006 bfe_term* bfet = static_cast<bfe_term *>(t);
1007 factor = bfet->factors[k];
1008 assert(factor != NULL);
1009 bfet->factors[k] = NULL;
1010 if (change)
1011 emul(&mone, factor);
1014 virtual void set_factor(bfc_term_base *t, int k, mpq_t &q, int change) {
1015 bfe_term* bfet = static_cast<bfe_term *>(t);
1016 factor = bfet->factors[k];
1017 assert(factor != NULL);
1018 bfet->factors[k] = NULL;
1020 evalue f;
1021 value_init(f.d);
1022 value_init(f.x.n);
1023 if (change)
1024 value_oppose(f.x.n, mpq_numref(q));
1025 else
1026 value_assign(f.x.n, mpq_numref(q));
1027 value_assign(f.d, mpq_denref(q));
1028 emul(&f, factor);
1029 free_evalue_refs(&f);
1032 virtual void set_factor(bfc_term_base *t, int k, const QQ& c, int change) {
1033 bfe_term* bfet = static_cast<bfe_term *>(t);
1035 factor = new evalue;
1037 evalue f;
1038 value_init(f.d);
1039 value_init(f.x.n);
1040 zz2value(c.n, f.x.n);
1041 if (change)
1042 value_oppose(f.x.n, f.x.n);
1043 zz2value(c.d, f.d);
1045 value_init(factor->d);
1046 evalue_copy(factor, bfet->factors[k]);
1047 emul(&f, factor);
1048 free_evalue_refs(&f);
1051 void set_factor(evalue *f, int change) {
1052 if (change)
1053 emul(&mone, f);
1054 factor = f;
1057 virtual void insert_term(bfc_term_base *t, int i) {
1058 bfe_term* bfet = static_cast<bfe_term *>(t);
1059 int len = t->terms.NumRows()-1; // already increased by one
1061 bfet->factors.resize(len+1);
1062 for (int j = len; j > i; --j) {
1063 bfet->factors[j] = bfet->factors[j-1];
1064 t->terms[j] = t->terms[j-1];
1066 bfet->factors[i] = factor;
1067 factor = NULL;
1070 virtual void update_term(bfc_term_base *t, int i) {
1071 bfe_term* bfet = static_cast<bfe_term *>(t);
1073 eadd(factor, bfet->factors[i]);
1074 free_evalue_refs(factor);
1075 delete factor;
1078 virtual bool constant_vertex(int dim) { return E_num(0, dim) == 0; }
1080 virtual void cum(bf_reducer *bfr, bfc_term_base *t, int k, dpoly_r *r,
1081 barvinok_options *options);
1084 enumerator_base *enumerator_base::create(Polyhedron *P, unsigned dim,
1085 Param_Polyhedron *PP,
1086 barvinok_options *options)
1088 enumerator_base *eb;
1090 if (options->incremental_specialization == BV_SPECIALIZATION_BF)
1091 eb = new bfenumerator(P, dim, PP);
1092 else if (options->incremental_specialization == BV_SPECIALIZATION_DF)
1093 eb = new ienumerator(P, dim, PP);
1094 else
1095 eb = new enumerator(P, dim, PP);
1097 return eb;
1100 struct bfe_cum : public cumulator {
1101 bfenumerator *bfe;
1102 bfc_term_base *told;
1103 int k;
1104 bf_reducer *bfr;
1106 bfe_cum(evalue *factor, evalue *v, dpoly_r *r, bf_reducer *bfr,
1107 bfc_term_base *t, int k, bfenumerator *e) :
1108 cumulator(factor, v, r), told(t), k(k),
1109 bfr(bfr), bfe(e) {
1112 virtual void add_term(const vector<int>& powers, evalue *f2);
1115 void bfe_cum::add_term(const vector<int>& powers, evalue *f2)
1117 bfr->update_powers(powers);
1119 bfc_term_base * t = bfe->find_bfc_term(bfr->vn, bfr->npowers, bfr->nnf);
1120 bfe->set_factor(f2, bfr->l_changes % 2);
1121 bfe->add_term(t, told->terms[k], bfr->l_extra_num);
1124 void bfenumerator::cum(bf_reducer *bfr, bfc_term_base *t, int k,
1125 dpoly_r *r, barvinok_options *options)
1127 bfe_term* bfet = static_cast<bfe_term *>(t);
1128 bfe_cum cum(bfet->factors[k], E_num(0, bfr->d), r, bfr, t, k, this);
1129 cum.cumulate(options);
1132 void bfenumerator::base(mat_ZZ& factors, bfc_vec& v)
1134 for (int i = 0; i < v.size(); ++i) {
1135 assert(v[i]->terms.NumRows() == 1);
1136 evalue *factor = static_cast<bfe_term *>(v[i])->factors[0];
1137 eadd(factor, vE[vert]);
1138 delete v[i];
1142 void bfenumerator::handle(const signed_cone& sc, barvinok_options *options)
1144 assert(sc.det == 1);
1145 assert(sc.rays.NumRows() == enumerator_base::dim);
1147 bfe_term* t = new bfe_term(enumerator_base::dim);
1148 vector< bfc_term_base * > v;
1149 v.push_back(t);
1151 t->factors.resize(1);
1153 t->terms.SetDims(1, enumerator_base::dim);
1154 lattice_point(V, sc.rays, t->terms[0], E_vertex, options);
1156 // the elements of factors are always lexpositive
1157 mat_ZZ factors;
1158 int s = setup_factors(sc.rays, factors, t, sc.sign);
1160 t->factors[0] = new evalue;
1161 value_init(t->factors[0]->d);
1162 evalue_set_si(t->factors[0], s, 1);
1163 reduce(factors, v, options);
1165 for (int i = 0; i < enumerator_base::dim; ++i)
1166 if (E_vertex[i])
1167 evalue_free(E_vertex[i]);
1170 static evalue* barvinok_enumerate_ev_f(Polyhedron *P, Polyhedron* C,
1171 barvinok_options *options);
1173 /* Destroys C */
1174 static evalue* barvinok_enumerate_cst(Polyhedron *P, Polyhedron* C,
1175 struct barvinok_options *options)
1177 evalue *eres;
1179 if (emptyQ2(C)) {
1180 Polyhedron_Free(C);
1181 return evalue_zero();
1184 ALLOC(evalue, eres);
1185 value_init(eres->d);
1186 value_set_si(eres->d, 0);
1187 eres->x.p = new_enode(partition, 2, C->Dimension);
1188 EVALUE_SET_DOMAIN(eres->x.p->arr[0],
1189 DomainConstraintSimplify(C, options->MaxRays));
1190 value_set_si(eres->x.p->arr[1].d, 1);
1191 value_init(eres->x.p->arr[1].x.n);
1192 if (emptyQ2(P))
1193 value_set_si(eres->x.p->arr[1].x.n, 0);
1194 else
1195 barvinok_count_with_options(P, &eres->x.p->arr[1].x.n, options);
1196 if (value_mone_p(eres->x.p->arr[1].x.n)) {
1197 value_clear(eres->x.p->arr[1].x.n);
1198 value_set_si(eres->x.p->arr[1].d, -2); /* NaN */
1201 return eres;
1204 static evalue* enumerate(Polyhedron *P, Polyhedron* C,
1205 struct barvinok_options *options)
1207 Polyhedron *next;
1208 Polyhedron *Porig = P;
1209 Polyhedron *Corig = C;
1210 Polyhedron *CEq = NULL;
1211 unsigned nparam = C->Dimension;
1212 evalue *eres;
1213 Matrix *CP = NULL;
1215 evalue factor;
1216 value_init(factor.d);
1217 evalue_set_si(&factor, 1, 1);
1219 /* for now */
1220 POL_ENSURE_FACETS(P);
1221 POL_ENSURE_VERTICES(P);
1222 POL_ENSURE_FACETS(C);
1223 POL_ENSURE_VERTICES(C);
1225 if (C->Dimension == 0 || emptyQ(P) || emptyQ(C)) {
1226 constant:
1227 if (CEq == Porig)
1228 CEq = Polyhedron_Copy(CEq);
1229 eres = barvinok_enumerate_cst(P, CEq ? CEq : Polyhedron_Copy(C), options);
1230 out:
1231 if (CP) {
1232 evalue_backsubstitute(eres, CP, options->MaxRays);
1233 Matrix_Free(CP);
1236 emul(&factor, eres);
1237 if (options->approx->method == BV_APPROX_DROP) {
1238 if (options->approx->approximation == BV_APPROX_SIGN_UPPER)
1239 evalue_frac2polynomial(eres, 1, options->MaxRays);
1240 if (options->approx->approximation == BV_APPROX_SIGN_LOWER)
1241 evalue_frac2polynomial(eres, -1, options->MaxRays);
1242 if (options->approx->approximation == BV_APPROX_SIGN_APPROX)
1243 evalue_frac2polynomial(eres, 0, options->MaxRays);
1245 reduce_evalue(eres);
1246 free_evalue_refs(&factor);
1247 if (P != Porig)
1248 Domain_Free(P);
1249 if (C != Corig)
1250 Polyhedron_Free(C);
1252 return eres;
1254 if (Polyhedron_is_unbounded(P, nparam, options->MaxRays))
1255 goto constant;
1257 if (P->Dimension == nparam) {
1258 CEq = DomainIntersection(P, C, options->MaxRays);
1259 P = Universe_Polyhedron(0);
1260 goto constant;
1262 if (P->NbEq != 0 || C->NbEq != 0) {
1263 Polyhedron *Q = P;
1264 Polyhedron *D = C;
1265 remove_all_equalities(&P, &C, &CP, NULL, nparam, options->MaxRays);
1266 if (C != D && D != Corig)
1267 Polyhedron_Free(D);
1268 if (P != Q && Q != Porig)
1269 Domain_Free(Q);
1270 eres = enumerate(P, C, options);
1271 goto out;
1274 Polyhedron *T = Polyhedron_Factor(P, nparam, NULL, options->MaxRays);
1275 if (T || (P->Dimension == nparam+1)) {
1276 Polyhedron *C2 = C;
1277 Polyhedron *FC = Factor_Context(T ? T : P, nparam, options->MaxRays);
1278 C = DomainIntersection(C, FC, options->MaxRays);
1279 if (C2 != Corig)
1280 Polyhedron_Free(C2);
1281 Polyhedron_Free(FC);
1283 if (T) {
1284 if (P != Porig)
1285 Polyhedron_Free(P);
1286 P = T;
1287 if (T->Dimension == C->Dimension) {
1288 P = T->next;
1289 T->next = NULL;
1290 Polyhedron_Free(T);
1294 next = P->next;
1295 P->next = NULL;
1296 eres = barvinok_enumerate_ev_f(P, C, options);
1297 P->next = next;
1299 if (P->next) {
1300 Polyhedron *Q;
1301 evalue *f;
1303 for (Q = P->next; Q; Q = Q->next) {
1304 Polyhedron *next = Q->next;
1305 Q->next = NULL;
1307 f = barvinok_enumerate_ev_f(Q, C, options);
1308 emul(f, eres);
1309 evalue_free(f);
1311 Q->next = next;
1315 goto out;
1318 evalue* barvinok_enumerate_with_options(Polyhedron *P, Polyhedron* C,
1319 struct barvinok_options *options)
1321 Polyhedron *next, *Cnext, *C1;
1322 Polyhedron *Corig = C;
1323 evalue *eres;
1325 if (P->next)
1326 fprintf(stderr,
1327 "barvinok_enumerate: input is a union; only first polyhedron is enumerated\n");
1329 if (C->next)
1330 fprintf(stderr,
1331 "barvinok_enumerate: context is a union; only first polyhedron is considered\n");
1333 Cnext = C->next;
1334 C->next = NULL;
1335 C1 = Polyhedron_Project(P, C->Dimension);
1336 C = DomainIntersection(C, C1, options->MaxRays);
1337 Polyhedron_Free(C1);
1338 next = P->next;
1339 P->next = NULL;
1341 if (options->approx->method == BV_APPROX_BERNOULLI ||
1342 options->summation == BV_SUM_BERNOULLI) {
1343 int summation = options->summation;
1344 options->summation = BV_SUM_BERNOULLI;
1345 eres = barvinok_summate_unweighted(P, C, options);
1346 options->summation = summation;
1347 } else
1348 eres = enumerate(P, C, options);
1349 Domain_Free(C);
1351 P->next= next;
1352 Corig->next = Cnext;
1354 return eres;
1357 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1359 evalue *E;
1360 barvinok_options *options = barvinok_options_new_with_defaults();
1361 options->MaxRays = MaxRays;
1362 E = barvinok_enumerate_with_options(P, C, options);
1363 barvinok_options_free(options);
1364 return E;
1367 evalue *Param_Polyhedron_Enumerate(Param_Polyhedron *PP, Polyhedron *P,
1368 Polyhedron *C,
1369 struct barvinok_options *options)
1371 evalue *eres;
1372 Param_Domain *D;
1373 unsigned nparam = C->Dimension;
1374 unsigned dim = P->Dimension - nparam;
1376 int nd;
1377 for (nd = 0, D=PP->D; D; ++nd, D=D->next);
1378 evalue_section *s = new evalue_section[nd];
1379 Polyhedron *TC = true_context(P, C, options->MaxRays);
1381 enumerator_base *et = NULL;
1382 try_again:
1383 if (et)
1384 delete et;
1386 et = enumerator_base::create(P, dim, PP, options);
1388 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, D, rVD)
1389 Param_Vertices *V;
1391 s[i].E = evalue_zero();
1392 s[i].D = rVD;
1394 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1395 if (!et->vE[_i])
1396 try {
1397 et->decompose_at(V, _i, options);
1398 } catch (OrthogonalException &e) {
1399 FORALL_REDUCED_DOMAIN_RESET;
1400 for (; i >= 0; --i) {
1401 evalue_free(s[i].E);
1402 Domain_Free(s[i].D);
1404 goto try_again;
1406 eadd(et->vE[_i] , s[i].E);
1407 END_FORALL_PVertex_in_ParamPolyhedron;
1408 evalue_range_reduction_in_domain(s[i].E, rVD);
1409 END_FORALL_REDUCED_DOMAIN
1410 Polyhedron_Free(TC);
1412 delete et;
1413 eres = evalue_from_section_array(s, nd);
1414 delete [] s;
1416 return eres;
1419 static evalue* barvinok_enumerate_ev_f(Polyhedron *P, Polyhedron* C,
1420 barvinok_options *options)
1422 unsigned nparam = C->Dimension;
1423 bool do_scale = options->approx->method == BV_APPROX_SCALE;
1425 if (options->summation == BV_SUM_EULER)
1426 return barvinok_summate_unweighted(P, C, options);
1428 if (options->approx->method == BV_APPROX_VOLUME)
1429 return Param_Polyhedron_Volume(P, C, options);
1431 if (P->Dimension - nparam == 1 && !do_scale)
1432 return ParamLine_Length(P, C, options);
1434 Param_Polyhedron *PP = NULL;
1435 evalue *eres;
1437 if (do_scale) {
1438 eres = scale_bound(P, C, options);
1439 if (eres)
1440 return eres;
1443 PP = Polyhedron2Param_Polyhedron(P, C, options);
1445 if (do_scale)
1446 eres = scale(PP, P, C, options);
1447 else
1448 eres = Param_Polyhedron_Enumerate(PP, P, C, options);
1450 if (PP)
1451 Param_Polyhedron_Free(PP);
1453 return eres;
1456 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1458 evalue *EP = barvinok_enumerate_ev(P, C, MaxRays);
1460 return partition2enumeration(EP);
1463 evalue* barvinok_enumerate_union(Polyhedron *D, Polyhedron* C, unsigned MaxRays)
1465 evalue *EP;
1466 gen_fun *gf = barvinok_enumerate_union_series(D, C, MaxRays);
1467 EP = *gf;
1468 delete gf;
1469 return EP;
1472 static __isl_give isl_pw_qpolynomial *basic_set_card(
1473 __isl_take isl_basic_set *bset)
1475 isl_ctx *ctx;
1476 isl_space *dim;
1477 isl_pw_qpolynomial *pwqp;
1478 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
1479 Polyhedron *U = Universe_Polyhedron(nparam);
1480 Polyhedron *P;
1481 evalue *E;
1482 barvinok_options *options;
1483 int options_allocated = 0;
1485 ctx = isl_basic_set_get_ctx(bset);
1486 options = isl_ctx_peek_barvinok_options(ctx);
1487 if (!options) {
1488 options = barvinok_options_new_with_defaults();
1489 options_allocated = 1;
1492 dim = isl_basic_set_get_space(bset);
1493 dim = isl_space_domain(dim);
1495 P = isl_basic_set_to_polylib(bset);
1496 E = enumerate(P, U, options);
1498 pwqp = isl_pw_qpolynomial_from_evalue(dim, E);
1499 isl_basic_set_free(bset);
1501 evalue_free(E);
1502 Polyhedron_Free(P);
1503 Polyhedron_Free(U);
1504 if (options_allocated)
1505 barvinok_options_free(options);
1507 return pwqp;
1510 static isl_stat basic_map_card(__isl_take isl_basic_map *bmap, void *user)
1512 isl_pw_qpolynomial **sum = (isl_pw_qpolynomial **)user;
1513 isl_pw_qpolynomial *pwqp;
1514 unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
1515 unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
1516 isl_space *target_dim;
1517 isl_basic_set *bset;
1519 target_dim = isl_basic_map_get_space(bmap);
1520 target_dim = isl_space_domain(target_dim);
1522 bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
1523 isl_dim_in, 0, n_in);
1525 bset = isl_basic_map_range(bmap);
1526 bset = isl_basic_set_lift(bset);
1527 pwqp = isl_basic_set_multiplicative_call(bset, &basic_set_card);
1529 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_in, 0,
1530 isl_dim_param, nparam, n_in);
1531 pwqp = isl_pw_qpolynomial_reset_domain_space(pwqp, target_dim);
1532 *sum = isl_pw_qpolynomial_add(*sum, pwqp);
1534 return isl_stat_ok;
1537 static __isl_give isl_pw_qpolynomial *card_as_sum(__isl_take isl_map *map,
1538 barvinok_options *options)
1540 isl_ctx *ctx;
1541 isl_val *one;
1542 isl_space *dim;
1543 isl_set *set;
1544 isl_qpolynomial *qp;
1545 isl_pw_qpolynomial *pwqp;
1546 int summation = options->summation;
1548 if (!map)
1549 return NULL;
1551 options->summation = BV_SUM_BERNOULLI;
1553 set = isl_map_wrap(map);
1554 dim = isl_set_get_space(set);
1555 ctx = isl_map_get_ctx(map);
1556 one = isl_val_one(ctx);
1557 qp = isl_qpolynomial_val_on_domain(dim, one);
1559 pwqp = isl_pw_qpolynomial_alloc(set, qp);
1560 pwqp = isl_pw_qpolynomial_sum(pwqp);
1562 options->summation = summation;
1564 return pwqp;
1567 __isl_give isl_pw_qpolynomial *isl_map_card(__isl_take isl_map *map)
1569 isl_ctx *ctx;
1570 isl_space *dim;
1571 isl_pw_qpolynomial *sum;
1572 barvinok_options *options;
1574 ctx = isl_map_get_ctx(map);
1575 options = isl_ctx_peek_barvinok_options(ctx);
1576 if (options &&
1577 (options->approx->method == BV_APPROX_BERNOULLI ||
1578 options->summation == BV_SUM_BERNOULLI))
1579 return card_as_sum(map, options);
1581 dim = isl_map_get_space(map);
1582 dim = isl_space_domain(dim);
1583 dim = isl_space_from_domain(dim);
1584 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1585 sum = isl_pw_qpolynomial_zero(dim);
1587 map = isl_map_make_disjoint(map);
1588 map = isl_map_compute_divs(map);
1590 if (isl_map_foreach_basic_map(map, &basic_map_card, &sum) < 0)
1591 goto error;
1593 isl_map_free(map);
1595 return sum;
1596 error:
1597 isl_map_free(map);
1598 isl_pw_qpolynomial_free(sum);
1599 return NULL;
1602 __isl_give isl_pw_qpolynomial *isl_set_card(__isl_take isl_set *set)
1604 isl_pw_qpolynomial *pwqp;
1605 pwqp = isl_map_card(isl_map_from_range(set));
1606 pwqp = isl_pw_qpolynomial_project_domain_on_params(pwqp);
1607 return pwqp;
1610 __isl_give isl_pw_qpolynomial *isl_basic_map_card(__isl_take isl_basic_map *bmap)
1612 return isl_map_card(isl_map_from_basic_map(bmap));
1615 __isl_give isl_pw_qpolynomial *isl_basic_set_card(__isl_take isl_basic_set *bset)
1617 isl_pw_qpolynomial *pwqp;
1618 pwqp = isl_basic_map_card(isl_basic_map_from_range(bset));
1619 pwqp = isl_pw_qpolynomial_project_domain_on_params(pwqp);
1620 return pwqp;
1623 static isl_stat set_card(__isl_take isl_set *set, void *user)
1625 isl_union_pw_qpolynomial **res = (isl_union_pw_qpolynomial **)user;
1626 isl_pw_qpolynomial *pwqp;
1627 isl_union_pw_qpolynomial *upwqp;
1629 pwqp = isl_set_card(set);
1630 upwqp = isl_union_pw_qpolynomial_from_pw_qpolynomial(pwqp);
1631 *res = isl_union_pw_qpolynomial_add(*res, upwqp);
1633 return isl_stat_ok;
1636 __isl_give isl_union_pw_qpolynomial *isl_union_set_card(
1637 __isl_take isl_union_set *uset)
1639 isl_space *dim;
1640 isl_union_pw_qpolynomial *res;
1642 dim = isl_union_set_get_space(uset);
1643 res = isl_union_pw_qpolynomial_zero(dim);
1644 if (isl_union_set_foreach_set(uset, &set_card, &res) < 0)
1645 goto error;
1646 isl_union_set_free(uset);
1648 return res;
1649 error:
1650 isl_union_set_free(uset);
1651 isl_union_pw_qpolynomial_free(res);
1652 return NULL;
1655 static isl_stat map_card(__isl_take isl_map *map, void *user)
1657 isl_union_pw_qpolynomial **res = (isl_union_pw_qpolynomial **)user;
1658 isl_pw_qpolynomial *pwqp;
1659 isl_union_pw_qpolynomial *upwqp;
1661 pwqp = isl_map_card(map);
1662 upwqp = isl_union_pw_qpolynomial_from_pw_qpolynomial(pwqp);
1663 *res = isl_union_pw_qpolynomial_add(*res, upwqp);
1665 return isl_stat_ok;
1668 __isl_give isl_union_pw_qpolynomial *isl_union_map_card(
1669 __isl_take isl_union_map *umap)
1671 isl_space *dim;
1672 isl_union_pw_qpolynomial *res;
1674 dim = isl_union_map_get_space(umap);
1675 res = isl_union_pw_qpolynomial_zero(dim);
1676 if (isl_union_map_foreach_map(umap, &map_card, &res) < 0)
1677 goto error;
1678 isl_union_map_free(umap);
1680 return res;
1681 error:
1682 isl_union_map_free(umap);
1683 isl_union_pw_qpolynomial_free(res);
1684 return NULL;