3 #include <barvinok/util.h>
4 #include <barvinok/options.h>
5 #include <polylib/ranking.h>
7 #include "lattice_point.h"
9 #define ALLOC(type) (type*)malloc(sizeof(type))
10 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
13 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
15 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
18 void manual_count(Polyhedron
*P
, Value
* result
)
20 Polyhedron
*U
= Universe_Polyhedron(0);
21 Enumeration
*en
= Polyhedron_Enumerate(P
,U
,1024,NULL
);
22 Value
*v
= compute_poly(en
,NULL
);
23 value_assign(*result
, *v
);
30 #include <barvinok/evalue.h>
31 #include <barvinok/util.h>
32 #include <barvinok/barvinok.h>
34 /* Return random value between 0 and max-1 inclusive
36 int random_int(int max
) {
37 return (int) (((double)(max
))*rand()/(RAND_MAX
+1.0));
40 Polyhedron
*Polyhedron_Read(unsigned MaxRays
)
43 unsigned NbRows
, NbColumns
;
48 while (fgets(s
, sizeof(s
), stdin
)) {
51 if (strncasecmp(s
, "vertices", sizeof("vertices")-1) == 0)
53 if (sscanf(s
, "%u %u", &NbRows
, &NbColumns
) == 2)
58 M
= Matrix_Alloc(NbRows
,NbColumns
);
61 P
= Rays2Polyhedron(M
, MaxRays
);
63 P
= Constraints2Polyhedron(M
, MaxRays
);
68 /* Inplace polarization
70 void Polyhedron_Polarize(Polyhedron
*P
)
72 unsigned NbRows
= P
->NbConstraints
+ P
->NbRays
;
76 q
= (Value
**)malloc(NbRows
* sizeof(Value
*));
78 for (i
= 0; i
< P
->NbRays
; ++i
)
80 for (; i
< NbRows
; ++i
)
81 q
[i
] = P
->Constraint
[i
-P
->NbRays
];
82 P
->NbConstraints
= NbRows
- P
->NbConstraints
;
83 P
->NbRays
= NbRows
- P
->NbRays
;
86 P
->Ray
= q
+ P
->NbConstraints
;
90 * Rather general polar
91 * We can optimize it significantly if we assume that
94 * Also, we calculate the polar as defined in Schrijver
95 * The opposite should probably work as well and would
96 * eliminate the need for multiplying by -1
98 Polyhedron
* Polyhedron_Polar(Polyhedron
*P
, unsigned NbMaxRays
)
102 unsigned dim
= P
->Dimension
+ 2;
103 Matrix
*M
= Matrix_Alloc(P
->NbRays
, dim
);
107 value_set_si(mone
, -1);
108 for (i
= 0; i
< P
->NbRays
; ++i
) {
109 Vector_Scale(P
->Ray
[i
], M
->p
[i
], mone
, dim
);
110 value_multiply(M
->p
[i
][0], M
->p
[i
][0], mone
);
111 value_multiply(M
->p
[i
][dim
-1], M
->p
[i
][dim
-1], mone
);
113 P
= Constraints2Polyhedron(M
, NbMaxRays
);
121 * Returns the supporting cone of P at the vertex with index v
123 Polyhedron
* supporting_cone(Polyhedron
*P
, int v
)
128 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
129 unsigned dim
= P
->Dimension
+ 2;
131 assert(v
>=0 && v
< P
->NbRays
);
132 assert(value_pos_p(P
->Ray
[v
][dim
-1]));
136 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
137 Inner_Product(P
->Constraint
[i
] + 1, P
->Ray
[v
] + 1, dim
- 1, &tmp
);
138 if ((supporting
[i
] = value_zero_p(tmp
)))
141 assert(n
>= dim
- 2);
143 M
= Matrix_Alloc(n
, dim
);
145 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
147 value_set_si(M
->p
[j
][dim
-1], 0);
148 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], dim
-1);
151 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
157 #define INT_BITS (sizeof(unsigned) * 8)
159 unsigned *supporting_constraints(Matrix
*Constraints
, Param_Vertices
*v
, int *n
)
161 Value lcm
, tmp
, tmp2
;
162 unsigned dim
= Constraints
->NbColumns
;
163 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
164 unsigned nvar
= dim
- nparam
- 2;
165 int len
= (Constraints
->NbRows
+INT_BITS
-1)/INT_BITS
;
166 unsigned *supporting
= (unsigned *)calloc(len
, sizeof(unsigned));
173 row
= Vector_Alloc(nparam
+1);
178 value_set_si(lcm
, 1);
179 for (i
= 0, *n
= 0, ix
= 0, bx
= MSB
; i
< Constraints
->NbRows
; ++i
) {
180 Vector_Set(row
->p
, 0, nparam
+1);
181 for (j
= 0 ; j
< nvar
; ++j
) {
182 value_set_si(tmp
, 1);
183 value_assign(tmp2
, Constraints
->p
[i
][j
+1]);
184 if (value_ne(lcm
, v
->Vertex
->p
[j
][nparam
+1])) {
185 value_assign(tmp
, lcm
);
186 value_lcm(lcm
, lcm
, v
->Vertex
->p
[j
][nparam
+1]);
187 value_division(tmp
, lcm
, tmp
);
188 value_multiply(tmp2
, tmp2
, lcm
);
189 value_division(tmp2
, tmp2
, v
->Vertex
->p
[j
][nparam
+1]);
191 Vector_Combine(row
->p
, v
->Vertex
->p
[j
], row
->p
,
192 tmp
, tmp2
, nparam
+1);
194 value_set_si(tmp
, 1);
195 Vector_Combine(row
->p
, Constraints
->p
[i
]+1+nvar
, row
->p
, tmp
, lcm
, nparam
+1);
196 for (j
= 0; j
< nparam
+1; ++j
)
197 if (value_notzero_p(row
->p
[j
]))
199 if (j
== nparam
+ 1) {
200 supporting
[ix
] |= bx
;
214 Polyhedron
* supporting_cone_p(Polyhedron
*P
, Param_Vertices
*v
)
217 unsigned dim
= P
->Dimension
+ 2;
218 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
219 unsigned nvar
= dim
- nparam
- 2;
223 unsigned *supporting
;
226 Polyhedron_Matrix_View(P
, &View
, P
->NbConstraints
);
227 supporting
= supporting_constraints(&View
, v
, &n
);
228 M
= Matrix_Alloc(n
, nvar
+2);
230 for (i
= 0, j
= 0, ix
= 0, bx
= MSB
; i
< P
->NbConstraints
; ++i
) {
231 if (supporting
[ix
] & bx
) {
232 value_set_si(M
->p
[j
][nvar
+1], 0);
233 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], nvar
+1);
238 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
244 Polyhedron
* triangulate_cone(Polyhedron
*P
, unsigned NbMaxCons
)
246 struct barvinok_options
*options
= barvinok_options_new_with_defaults();
247 options
->MaxRays
= NbMaxCons
;
248 P
= triangulate_cone_with_options(P
, options
);
249 barvinok_options_free(options
);
253 Polyhedron
* triangulate_cone_with_options(Polyhedron
*P
,
254 struct barvinok_options
*options
)
256 const static int MAX_TRY
=10;
259 unsigned dim
= P
->Dimension
;
260 Matrix
*M
= Matrix_Alloc(P
->NbRays
+1, dim
+3);
262 Polyhedron
*L
, *R
, *T
;
263 assert(P
->NbEq
== 0);
269 Vector_Set(M
->p
[0]+1, 0, dim
+1);
270 value_set_si(M
->p
[0][0], 1);
271 value_set_si(M
->p
[0][dim
+2], 1);
272 Vector_Set(M
->p
[P
->NbRays
]+1, 0, dim
+2);
273 value_set_si(M
->p
[P
->NbRays
][0], 1);
274 value_set_si(M
->p
[P
->NbRays
][dim
+1], 1);
276 for (i
= 0, r
= 1; i
< P
->NbRays
; ++i
) {
277 if (value_notzero_p(P
->Ray
[i
][dim
+1]))
279 Vector_Copy(P
->Ray
[i
], M
->p
[r
], dim
+1);
280 value_set_si(M
->p
[r
][dim
+2], 0);
284 M2
= Matrix_Alloc(dim
+1, dim
+2);
287 if (options
->try_Delaunay_triangulation
) {
288 /* Delaunay triangulation */
289 for (r
= 1; r
< P
->NbRays
; ++r
) {
290 Inner_Product(M
->p
[r
]+1, M
->p
[r
]+1, dim
, &tmp
);
291 value_assign(M
->p
[r
][dim
+1], tmp
);
294 L
= Rays2Polyhedron(M3
, options
->MaxRays
);
299 /* Usually R should still be 0 */
302 for (r
= 1; r
< P
->NbRays
; ++r
) {
303 value_set_si(M
->p
[r
][dim
+1], random_int((t
+1)*dim
*P
->NbRays
)+1);
306 L
= Rays2Polyhedron(M3
, options
->MaxRays
);
310 assert(t
<= MAX_TRY
);
315 POL_ENSURE_FACETS(L
);
316 for (i
= 0; i
< L
->NbConstraints
; ++i
) {
317 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
318 if (value_negz_p(L
->Constraint
[i
][dim
+1]))
320 if (value_notzero_p(L
->Constraint
[i
][dim
+2]))
322 for (j
= 1, r
= 1; j
< M
->NbRows
; ++j
) {
323 Inner_Product(M
->p
[j
]+1, L
->Constraint
[i
]+1, dim
+1, &tmp
);
324 if (value_notzero_p(tmp
))
328 Vector_Copy(M
->p
[j
]+1, M2
->p
[r
]+1, dim
);
329 value_set_si(M2
->p
[r
][0], 1);
330 value_set_si(M2
->p
[r
][dim
+1], 0);
334 Vector_Set(M2
->p
[0]+1, 0, dim
);
335 value_set_si(M2
->p
[0][0], 1);
336 value_set_si(M2
->p
[0][dim
+1], 1);
337 T
= Rays2Polyhedron(M2
, P
->NbConstraints
+1);
351 void check_triangulization(Polyhedron
*P
, Polyhedron
*T
)
353 Polyhedron
*C
, *D
, *E
, *F
, *G
, *U
;
354 for (C
= T
; C
; C
= C
->next
) {
358 U
= DomainConvex(DomainUnion(U
, C
, 100), 100);
359 for (D
= C
->next
; D
; D
= D
->next
) {
364 E
= DomainIntersection(C
, D
, 600);
365 assert(E
->NbRays
== 0 || E
->NbEq
>= 1);
371 assert(PolyhedronIncludes(U
, P
));
372 assert(PolyhedronIncludes(P
, U
));
375 /* Computes x, y and g such that g = gcd(a,b) and a*x+b*y = g */
376 void Extended_Euclid(Value a
, Value b
, Value
*x
, Value
*y
, Value
*g
)
378 Value c
, d
, e
, f
, tmp
;
385 value_absolute(c
, a
);
386 value_absolute(d
, b
);
389 while(value_pos_p(d
)) {
390 value_division(tmp
, c
, d
);
391 value_multiply(tmp
, tmp
, f
);
392 value_subtract(e
, e
, tmp
);
393 value_division(tmp
, c
, d
);
394 value_multiply(tmp
, tmp
, d
);
395 value_subtract(c
, c
, tmp
);
402 else if (value_pos_p(a
))
404 else value_oppose(*x
, e
);
408 value_multiply(tmp
, a
, *x
);
409 value_subtract(tmp
, c
, tmp
);
410 value_division(*y
, tmp
, b
);
419 static int unimodular_complete_1(Matrix
*m
)
421 Value g
, b
, c
, old
, tmp
;
430 value_assign(g
, m
->p
[0][0]);
431 for (i
= 1; value_zero_p(g
) && i
< m
->NbColumns
; ++i
) {
432 for (j
= 0; j
< m
->NbColumns
; ++j
) {
434 value_set_si(m
->p
[i
][j
], 1);
436 value_set_si(m
->p
[i
][j
], 0);
438 value_assign(g
, m
->p
[0][i
]);
440 for (; i
< m
->NbColumns
; ++i
) {
441 value_assign(old
, g
);
442 Extended_Euclid(old
, m
->p
[0][i
], &c
, &b
, &g
);
444 for (j
= 0; j
< m
->NbColumns
; ++j
) {
446 value_multiply(tmp
, m
->p
[0][j
], b
);
447 value_division(m
->p
[i
][j
], tmp
, old
);
449 value_assign(m
->p
[i
][j
], c
);
451 value_set_si(m
->p
[i
][j
], 0);
463 int unimodular_complete(Matrix
*M
, int row
)
470 return unimodular_complete_1(M
);
472 left_hermite(M
, &H
, &Q
, &U
);
474 for (r
= 0; ok
&& r
< row
; ++r
)
475 if (value_notone_p(H
->p
[r
][r
]))
478 for (r
= row
; r
< M
->NbRows
; ++r
)
479 Vector_Copy(Q
->p
[r
], M
->p
[r
], M
->NbColumns
);
485 * left_hermite may leave positive entries below the main diagonal in H.
486 * This function postprocesses the output of left_hermite to make
487 * the non-zero entries below the main diagonal negative.
489 void neg_left_hermite(Matrix
*A
, Matrix
**H_p
, Matrix
**Q_p
, Matrix
**U_p
)
494 left_hermite(A
, &H
, &Q
, &U
);
499 for (row
= 0, col
= 0; col
< H
->NbColumns
; ++col
, ++row
) {
500 while (value_zero_p(H
->p
[row
][col
]))
502 for (i
= 0; i
< col
; ++i
) {
503 if (value_negz_p(H
->p
[row
][i
]))
506 /* subtract column col from column i in H and U */
507 for (j
= 0; j
< H
->NbRows
; ++j
)
508 value_subtract(H
->p
[j
][i
], H
->p
[j
][i
], H
->p
[j
][col
]);
509 for (j
= 0; j
< U
->NbRows
; ++j
)
510 value_subtract(U
->p
[j
][i
], U
->p
[j
][i
], U
->p
[j
][col
]);
512 /* add row i to row col in Q */
513 for (j
= 0; j
< Q
->NbColumns
; ++j
)
514 value_addto(Q
->p
[col
][j
], Q
->p
[col
][j
], Q
->p
[i
][j
]);
520 * Returns a full-dimensional polyhedron with the same number
521 * of integer points as P
523 Polyhedron
*remove_equalities(Polyhedron
*P
, unsigned MaxRays
)
525 Polyhedron
*Q
= Polyhedron_Copy(P
);
526 unsigned dim
= P
->Dimension
;
533 Q
= DomainConstraintSimplify(Q
, MaxRays
);
537 m1
= Matrix_Alloc(dim
, dim
);
538 for (i
= 0; i
< Q
->NbEq
; ++i
)
539 Vector_Copy(Q
->Constraint
[i
]+1, m1
->p
[i
], dim
);
541 /* m1 may not be unimodular, but we won't be throwing anything away */
542 unimodular_complete(m1
, Q
->NbEq
);
544 m2
= Matrix_Alloc(dim
+1-Q
->NbEq
, dim
+1);
545 for (i
= Q
->NbEq
; i
< dim
; ++i
)
546 Vector_Copy(m1
->p
[i
], m2
->p
[i
-Q
->NbEq
], dim
);
547 value_set_si(m2
->p
[dim
-Q
->NbEq
][dim
], 1);
550 P
= Polyhedron_Image(Q
, m2
, MaxRays
);
558 * Returns a full-dimensional polyhedron with the same number
559 * of integer points as P
560 * nvar specifies the number of variables
561 * The remaining dimensions are assumed to be parameters
563 * factor is NbEq x (nparam+2) matrix, containing stride constraints
564 * on the parameters; column nparam is the constant;
565 * column nparam+1 is the stride
567 * if factor is NULL, only remove equalities that don't affect
568 * the number of points
570 Polyhedron
*remove_equalities_p(Polyhedron
*P
, unsigned nvar
, Matrix
**factor
,
575 unsigned dim
= P
->Dimension
;
582 m1
= Matrix_Alloc(nvar
, nvar
);
583 P
= DomainConstraintSimplify(P
, MaxRays
);
585 f
= Matrix_Alloc(P
->NbEq
, dim
-nvar
+2);
589 for (i
= 0, j
= 0; i
< P
->NbEq
; ++i
) {
590 if (First_Non_Zero(P
->Constraint
[i
]+1, nvar
) == -1)
593 Vector_Gcd(P
->Constraint
[i
]+1, nvar
, &g
);
594 if (!factor
&& value_notone_p(g
))
598 Vector_Copy(P
->Constraint
[i
]+1+nvar
, f
->p
[j
], dim
-nvar
+1);
599 value_assign(f
->p
[j
][dim
-nvar
+1], g
);
602 Vector_Copy(P
->Constraint
[i
]+1, m1
->p
[j
], nvar
);
608 unimodular_complete(m1
, j
);
610 m2
= Matrix_Alloc(dim
+1-j
, dim
+1);
611 for (i
= 0; i
< nvar
-j
; ++i
)
612 Vector_Copy(m1
->p
[i
+j
], m2
->p
[i
], nvar
);
614 for (i
= nvar
-j
; i
<= dim
-j
; ++i
)
615 value_set_si(m2
->p
[i
][i
+j
], 1);
617 Q
= Polyhedron_Image(P
, m2
, MaxRays
);
624 void Line_Length(Polyhedron
*P
, Value
*len
)
630 assert(P
->Dimension
== 1);
636 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
637 value_oppose(tmp
, P
->Constraint
[i
][2]);
638 if (value_pos_p(P
->Constraint
[i
][1])) {
639 mpz_cdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
640 if (!p
|| value_gt(tmp
, pos
))
641 value_assign(pos
, tmp
);
643 } else if (value_neg_p(P
->Constraint
[i
][1])) {
644 mpz_fdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
645 if (!n
|| value_lt(tmp
, neg
))
646 value_assign(neg
, tmp
);
650 value_subtract(tmp
, neg
, pos
);
651 value_increment(*len
, tmp
);
653 value_set_si(*len
, -1);
662 * Factors the polyhedron P into polyhedra Q_i such that
663 * the number of integer points in P is equal to the product
664 * of the number of integer points in the individual Q_i
666 * If no factors can be found, NULL is returned.
667 * Otherwise, a linked list of the factors is returned.
669 * If there are factors and if T is not NULL, then a matrix will be
670 * returned through T expressing the old variables in terms of the
671 * new variables as they appear in the sequence of factors.
673 * The algorithm works by first computing the Hermite normal form
674 * and then grouping columns linked by one or more constraints together,
675 * where a constraints "links" two or more columns if the constraint
676 * has nonzero coefficients in the columns.
678 Polyhedron
* Polyhedron_Factor(Polyhedron
*P
, unsigned nparam
, Matrix
**T
,
682 Matrix
*M
, *H
, *Q
, *U
;
683 int *pos
; /* for each column: row position of pivot */
684 int *group
; /* group to which a column belongs */
685 int *cnt
; /* number of columns in the group */
686 int *rowgroup
; /* group to which a constraint belongs */
687 int nvar
= P
->Dimension
- nparam
;
688 Polyhedron
*F
= NULL
;
696 NALLOC(rowgroup
, P
->NbConstraints
);
698 M
= Matrix_Alloc(P
->NbConstraints
, nvar
);
699 for (i
= 0; i
< P
->NbConstraints
; ++i
)
700 Vector_Copy(P
->Constraint
[i
]+1, M
->p
[i
], nvar
);
701 left_hermite(M
, &H
, &Q
, &U
);
705 for (i
= 0; i
< P
->NbConstraints
; ++i
)
707 for (i
= 0, j
= 0; i
< H
->NbColumns
; ++i
) {
708 for ( ; j
< H
->NbRows
; ++j
)
709 if (value_notzero_p(H
->p
[j
][i
]))
711 assert (j
< H
->NbRows
);
714 for (i
= 0; i
< nvar
; ++i
) {
718 for (i
= 0; i
< H
->NbColumns
&& cnt
[0] < nvar
; ++i
) {
719 if (rowgroup
[pos
[i
]] == -1)
720 rowgroup
[pos
[i
]] = i
;
721 for (j
= pos
[i
]+1; j
< H
->NbRows
; ++j
) {
722 if (value_zero_p(H
->p
[j
][i
]))
724 if (rowgroup
[j
] != -1)
726 rowgroup
[j
] = group
[i
];
727 for (k
= i
+1; k
< H
->NbColumns
&& j
>= pos
[k
]; ++k
) {
732 if (group
[k
] != group
[i
] && value_notzero_p(H
->p
[j
][k
])) {
733 assert(cnt
[group
[k
]] != 0);
734 assert(cnt
[group
[i
]] != 0);
735 if (group
[i
] < group
[k
]) {
736 cnt
[group
[i
]] += cnt
[group
[k
]];
740 cnt
[group
[k
]] += cnt
[group
[i
]];
749 if (cnt
[0] != nvar
) {
750 /* Extract out pure context constraints separately */
751 Polyhedron
**next
= &F
;
754 *T
= Matrix_Alloc(nvar
, nvar
);
755 for (i
= nparam
? -1 : 0; i
< nvar
; ++i
) {
759 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
760 if (rowgroup
[j
] == -1) {
761 if (First_Non_Zero(P
->Constraint
[j
]+1+nvar
,
774 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
775 if (rowgroup
[j
] >= 0 && group
[rowgroup
[j
]] == i
) {
782 for (j
= 0; j
< nvar
; ++j
) {
784 for (l
= 0, m
= 0; m
< d
; ++l
) {
787 value_assign((*T
)->p
[j
][tot_d
+m
++], U
->p
[j
][l
]);
791 M
= Matrix_Alloc(k
, d
+nparam
+2);
792 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
) {
794 if (rowgroup
[j
] != i
)
796 value_assign(M
->p
[k
][0], P
->Constraint
[j
][0]);
797 for (l
= 0, m
= 0; m
< d
; ++l
) {
800 value_assign(M
->p
[k
][1+m
++], H
->p
[j
][l
]);
802 Vector_Copy(P
->Constraint
[j
]+1+nvar
, M
->p
[k
]+1+m
, nparam
+1);
805 *next
= Constraints2Polyhedron(M
, NbMaxRays
);
806 next
= &(*next
)->next
;
820 /* Computes the intersection of the contexts of a list of factors */
821 Polyhedron
*Factor_Context(Polyhedron
*F
, unsigned nparam
, unsigned MaxRays
)
824 Polyhedron
*C
= NULL
;
826 for (Q
= F
; Q
; Q
= Q
->next
) {
828 Polyhedron
*next
= Q
->next
;
831 if (Q
->Dimension
!= nparam
)
832 QC
= Polyhedron_Project(Q
, nparam
);
835 C
= Q
== QC
? Polyhedron_Copy(QC
) : QC
;
838 C
= DomainIntersection(C
, QC
, MaxRays
);
849 * Project on final dim dimensions
851 Polyhedron
* Polyhedron_Project(Polyhedron
*P
, int dim
)
854 int remove
= P
->Dimension
- dim
;
858 if (P
->Dimension
== dim
)
859 return Polyhedron_Copy(P
);
861 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
862 for (i
= 0; i
< dim
+1; ++i
)
863 value_set_si(T
->p
[i
][i
+remove
], 1);
864 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
869 /* Constructs a new constraint that ensures that
870 * the first constraint is (strictly) smaller than
873 static void smaller_constraint(Value
*a
, Value
*b
, Value
*c
, int pos
, int shift
,
874 int len
, int strict
, Value
*tmp
)
876 value_oppose(*tmp
, b
[pos
+1]);
877 value_set_si(c
[0], 1);
878 Vector_Combine(a
+1+shift
, b
+1+shift
, c
+1, *tmp
, a
[pos
+1], len
-shift
-1);
880 value_decrement(c
[len
-shift
-1], c
[len
-shift
-1]);
881 ConstraintSimplify(c
, c
, len
-shift
, tmp
);
885 /* For each pair of lower and upper bounds on the first variable,
886 * calls fn with the set of constraints on the remaining variables
887 * where these bounds are active, i.e., (stricly) larger/smaller than
888 * the other lower/upper bounds, the lower and upper bound and the
891 * If the first variable is equal to an affine combination of the
892 * other variables then fn is called with both lower and upper
893 * pointing to the corresponding equality.
895 * If there is no lower (or upper) bound, then NULL is passed
896 * as the corresponding bound.
898 void for_each_lower_upper_bound(Polyhedron
*P
,
899 for_each_lower_upper_bound_init init
,
900 for_each_lower_upper_bound_fn fn
,
903 unsigned dim
= P
->Dimension
;
910 if (value_zero_p(P
->Constraint
[0][0]) &&
911 value_notzero_p(P
->Constraint
[0][1])) {
912 M
= Matrix_Alloc(P
->NbConstraints
-1, dim
-1+2);
913 for (i
= 1; i
< P
->NbConstraints
; ++i
) {
914 value_assign(M
->p
[i
-1][0], P
->Constraint
[i
][0]);
915 Vector_Copy(P
->Constraint
[i
]+2, M
->p
[i
-1]+1, dim
);
919 fn(M
, P
->Constraint
[0], P
->Constraint
[0], cb_data
);
925 pos
= ALLOCN(int, P
->NbConstraints
);
927 for (i
= 0, z
= 0; i
< P
->NbConstraints
; ++i
)
928 if (value_zero_p(P
->Constraint
[i
][1]))
929 pos
[P
->NbConstraints
-1 - z
++] = i
;
930 /* put those with positive coefficients first; number: p */
931 for (i
= 0, p
= 0, n
= P
->NbConstraints
-z
-1; i
< P
->NbConstraints
; ++i
)
932 if (value_pos_p(P
->Constraint
[i
][1]))
934 else if (value_neg_p(P
->Constraint
[i
][1]))
936 n
= P
->NbConstraints
-z
-p
;
941 M
= Matrix_Alloc((p
? p
-1 : 0) + (n
? n
-1 : 0) + z
+ 1, dim
-1+2);
942 for (i
= 0; i
< z
; ++i
) {
943 value_assign(M
->p
[i
][0], P
->Constraint
[pos
[P
->NbConstraints
-1 - i
]][0]);
944 Vector_Copy(P
->Constraint
[pos
[P
->NbConstraints
-1 - i
]]+2,
947 for (k
= p
? 0 : -1; k
< p
; ++k
) {
948 for (k2
= 0; k2
< p
; ++k2
) {
951 q
= 1 + z
+ k2
- (k2
> k
);
953 P
->Constraint
[pos
[k
]],
954 P
->Constraint
[pos
[k2
]],
955 M
->p
[q
], 0, 1, dim
+2, k2
> k
, &g
);
957 for (l
= n
? p
: p
-1; l
< p
+n
; ++l
) {
960 for (l2
= p
; l2
< p
+n
; ++l2
) {
963 q
= 1 + z
+ l2
-1 - (l2
> l
);
965 P
->Constraint
[pos
[l2
]],
966 P
->Constraint
[pos
[l
]],
967 M
->p
[q
], 0, 1, dim
+2, l2
> l
, &g
);
970 smaller_constraint(P
->Constraint
[pos
[k
]],
971 P
->Constraint
[pos
[l
]],
972 M
->p
[z
], 0, 1, dim
+2, 0, &g
);
973 lower
= p
? P
->Constraint
[pos
[k
]] : NULL
;
974 upper
= n
? P
->Constraint
[pos
[l
]] : NULL
;
975 fn(M
, lower
, upper
, cb_data
);
984 struct section
{ Polyhedron
* D
; evalue E
; };
994 static void PLL_init(unsigned n
, void *cb_data
)
996 struct PLL_data
*data
= (struct PLL_data
*)cb_data
;
998 data
->s
= ALLOCN(struct section
, n
);
1001 /* Computes ceil(-coef/abs(d)) */
1002 static evalue
* bv_ceil3(Value
*coef
, int len
, Value d
, Polyhedron
*P
)
1006 Vector
*val
= Vector_Alloc(len
);
1009 Vector_Oppose(coef
, val
->p
, len
);
1010 value_absolute(t
, d
);
1012 EP
= ceiling(val
->p
, t
, len
-1, P
);
1020 static void PLL_cb(Matrix
*M
, Value
*lower
, Value
*upper
, void *cb_data
)
1022 struct PLL_data
*data
= (struct PLL_data
*)cb_data
;
1023 unsigned dim
= M
->NbColumns
-1;
1031 M2
= Matrix_Copy(M
);
1032 T
= Constraints2Polyhedron(M2
, data
->MaxRays
);
1034 data
->s
[data
->nd
].D
= DomainIntersection(T
, data
->C
, data
->MaxRays
);
1037 POL_ENSURE_VERTICES(data
->s
[data
->nd
].D
);
1038 if (emptyQ(data
->s
[data
->nd
].D
)) {
1039 Polyhedron_Free(data
->s
[data
->nd
].D
);
1042 L
= bv_ceil3(lower
+1+1, dim
-1+1, lower
[0+1], data
->s
[data
->nd
].D
);
1043 U
= bv_ceil3(upper
+1+1, dim
-1+1, upper
[0+1], data
->s
[data
->nd
].D
);
1045 eadd(&data
->mone
, U
);
1046 emul(&data
->mone
, U
);
1047 data
->s
[data
->nd
].E
= *U
;
1053 static evalue
*ParamLine_Length_mod(Polyhedron
*P
, Polyhedron
*C
, unsigned MaxRays
)
1055 unsigned dim
= P
->Dimension
;
1056 unsigned nvar
= dim
- C
->Dimension
;
1057 struct PLL_data data
;
1063 value_init(data
.mone
.d
);
1064 evalue_set_si(&data
.mone
, -1, 1);
1067 data
.MaxRays
= MaxRays
;
1069 for_each_lower_upper_bound(P
, PLL_init
, PLL_cb
, &data
);
1073 value_set_si(F
->d
, 0);
1074 F
->x
.p
= new_enode(partition
, 2*data
.nd
, dim
-nvar
);
1075 for (k
= 0; k
< data
.nd
; ++k
) {
1076 EVALUE_SET_DOMAIN(F
->x
.p
->arr
[2*k
], data
.s
[k
].D
);
1077 value_clear(F
->x
.p
->arr
[2*k
+1].d
);
1078 F
->x
.p
->arr
[2*k
+1] = data
.s
[k
].E
;
1082 free_evalue_refs(&data
.mone
);
1087 evalue
* ParamLine_Length(Polyhedron
*P
, Polyhedron
*C
,
1088 struct barvinok_options
*options
)
1091 tmp
= ParamLine_Length_mod(P
, C
, options
->MaxRays
);
1092 if (options
->lookup_table
) {
1093 evalue_mod2table(tmp
, C
->Dimension
);
1099 Bool
isIdentity(Matrix
*M
)
1102 if (M
->NbRows
!= M
->NbColumns
)
1105 for (i
= 0;i
< M
->NbRows
; i
++)
1106 for (j
= 0; j
< M
->NbColumns
; j
++)
1108 if(value_notone_p(M
->p
[i
][j
]))
1111 if(value_notzero_p(M
->p
[i
][j
]))
1117 void Param_Polyhedron_Print(FILE* DST
, Param_Polyhedron
*PP
,
1118 const char **param_names
)
1123 for(P
=PP
->D
;P
;P
=P
->next
) {
1125 /* prints current val. dom. */
1126 fprintf(DST
, "---------------------------------------\n");
1127 fprintf(DST
, "Domain :\n");
1128 Print_Domain(DST
, P
->Domain
, param_names
);
1130 /* scan the vertices */
1131 fprintf(DST
, "Vertices :\n");
1132 FORALL_PVertex_in_ParamPolyhedron(V
,P
,PP
) {
1134 /* prints each vertex */
1135 Print_Vertex(DST
, V
->Vertex
, param_names
);
1138 END_FORALL_PVertex_in_ParamPolyhedron
;
1142 void Enumeration_Print(FILE *Dst
, Enumeration
*en
, const char **params
)
1144 for (; en
; en
= en
->next
) {
1145 Print_Domain(Dst
, en
->ValidityDomain
, params
);
1146 print_evalue(Dst
, &en
->EP
, params
);
1150 void Enumeration_Free(Enumeration
*en
)
1156 free_evalue_refs( &(en
->EP
) );
1157 Domain_Free( en
->ValidityDomain
);
1164 void Enumeration_mod2table(Enumeration
*en
, unsigned nparam
)
1166 for (; en
; en
= en
->next
) {
1167 evalue_mod2table(&en
->EP
, nparam
);
1168 reduce_evalue(&en
->EP
);
1172 size_t Enumeration_size(Enumeration
*en
)
1176 for (; en
; en
= en
->next
) {
1177 s
+= domain_size(en
->ValidityDomain
);
1178 s
+= evalue_size(&en
->EP
);
1183 /* Check whether every set in D2 is included in some set of D1 */
1184 int DomainIncludes(Polyhedron
*D1
, Polyhedron
*D2
)
1186 for ( ; D2
; D2
= D2
->next
) {
1188 for (P1
= D1
; P1
; P1
= P1
->next
)
1189 if (PolyhedronIncludes(P1
, D2
))
1197 int line_minmax(Polyhedron
*I
, Value
*min
, Value
*max
)
1202 value_oppose(I
->Constraint
[0][2], I
->Constraint
[0][2]);
1203 /* There should never be a remainder here */
1204 if (value_pos_p(I
->Constraint
[0][1]))
1205 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1207 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1208 value_assign(*max
, *min
);
1209 } else for (i
= 0; i
< I
->NbConstraints
; ++i
) {
1210 if (value_zero_p(I
->Constraint
[i
][1])) {
1215 value_oppose(I
->Constraint
[i
][2], I
->Constraint
[i
][2]);
1216 if (value_pos_p(I
->Constraint
[i
][1]))
1217 mpz_cdiv_q(*min
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1219 mpz_fdiv_q(*max
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1227 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1230 @param pos index position of current loop index (1..hdim-1)
1231 @param P loop domain
1232 @param context context values for fixed indices
1233 @param exist number of existential variables
1234 @return the number of integer points in this
1238 void count_points_e (int pos
, Polyhedron
*P
, int exist
, int nparam
,
1239 Value
*context
, Value
*res
)
1244 value_set_si(*res
, 0);
1249 count_points(pos
, P
, context
, res
);
1253 value_init(LB
); value_init(UB
); value_init(k
);
1257 if (lower_upper_bounds(pos
,P
,context
,&LB
,&UB
) !=0) {
1258 /* Problem if UB or LB is INFINITY */
1259 value_clear(LB
); value_clear(UB
); value_clear(k
);
1260 if (pos
> P
->Dimension
- nparam
- exist
)
1261 value_set_si(*res
, 1);
1263 value_set_si(*res
, -1);
1270 for (value_assign(k
,LB
); value_le(k
,UB
); value_increment(k
,k
)) {
1271 fprintf(stderr
, "(");
1272 for (i
=1; i
<pos
; i
++) {
1273 value_print(stderr
,P_VALUE_FMT
,context
[i
]);
1274 fprintf(stderr
,",");
1276 value_print(stderr
,P_VALUE_FMT
,k
);
1277 fprintf(stderr
,")\n");
1282 value_set_si(context
[pos
],0);
1283 if (value_lt(UB
,LB
)) {
1284 value_clear(LB
); value_clear(UB
); value_clear(k
);
1285 value_set_si(*res
, 0);
1290 value_set_si(*res
, 1);
1292 value_subtract(k
,UB
,LB
);
1293 value_add_int(k
,k
,1);
1294 value_assign(*res
, k
);
1296 value_clear(LB
); value_clear(UB
); value_clear(k
);
1300 /*-----------------------------------------------------------------*/
1301 /* Optimization idea */
1302 /* If inner loops are not a function of k (the current index) */
1303 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1305 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1306 /* (skip the for loop) */
1307 /*-----------------------------------------------------------------*/
1310 value_set_si(*res
, 0);
1311 for (value_assign(k
,LB
);value_le(k
,UB
);value_increment(k
,k
)) {
1312 /* Insert k in context */
1313 value_assign(context
[pos
],k
);
1314 count_points_e(pos
+1, P
->next
, exist
, nparam
, context
, &c
);
1315 if(value_notmone_p(c
))
1316 value_addto(*res
, *res
, c
);
1318 value_set_si(*res
, -1);
1321 if (pos
> P
->Dimension
- nparam
- exist
&&
1328 fprintf(stderr
,"%d\n",CNT
);
1332 value_set_si(context
[pos
],0);
1333 value_clear(LB
); value_clear(UB
); value_clear(k
);
1335 } /* count_points_e */
1337 int DomainContains(Polyhedron
*P
, Value
*list_args
, int len
,
1338 unsigned MaxRays
, int set
)
1343 if (P
->Dimension
== len
)
1344 return in_domain(P
, list_args
);
1346 assert(set
); // assume list_args is large enough
1347 assert((P
->Dimension
- len
) % 2 == 0);
1349 for (i
= 0; i
< P
->Dimension
- len
; i
+= 2) {
1351 for (j
= 0 ; j
< P
->NbEq
; ++j
)
1352 if (value_notzero_p(P
->Constraint
[j
][1+len
+i
]))
1354 assert(j
< P
->NbEq
);
1355 value_absolute(m
, P
->Constraint
[j
][1+len
+i
]);
1356 k
= First_Non_Zero(P
->Constraint
[j
]+1, len
);
1358 assert(First_Non_Zero(P
->Constraint
[j
]+1+k
+1, len
- k
- 1) == -1);
1359 mpz_fdiv_q(list_args
[len
+i
], list_args
[k
], m
);
1360 mpz_fdiv_r(list_args
[len
+i
+1], list_args
[k
], m
);
1364 return in_domain(P
, list_args
);
1367 Polyhedron
*DomainConcat(Polyhedron
*head
, Polyhedron
*tail
)
1372 for (S
= head
; S
->next
; S
= S
->next
)
1378 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1379 Polyhedron
*C
, unsigned MaxRays
)
1382 Polyhedron
*RC
, *RD
, *Q
;
1383 unsigned nparam
= dim
+ C
->Dimension
;
1387 RC
= LexSmaller(P
, D
, dim
, C
, MaxRays
);
1391 exist
= RD
->Dimension
- nparam
- dim
;
1392 CA
= align_context(RC
, RD
->Dimension
, MaxRays
);
1393 Q
= DomainIntersection(RD
, CA
, MaxRays
);
1394 Polyhedron_Free(CA
);
1396 Polyhedron_Free(RC
);
1399 for (Q
= RD
; Q
; Q
= Q
->next
) {
1401 Polyhedron
*next
= Q
->next
;
1404 t
= barvinok_enumerate_e(Q
, exist
, nparam
, MaxRays
);
1421 Enumeration
*barvinok_lexsmaller(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1422 Polyhedron
*C
, unsigned MaxRays
)
1424 evalue
*EP
= barvinok_lexsmaller_ev(P
, D
, dim
, C
, MaxRays
);
1426 return partition2enumeration(EP
);
1429 /* "align" matrix to have nrows by inserting
1430 * the necessary number of rows and an equal number of columns in front
1432 Matrix
*align_matrix(Matrix
*M
, int nrows
)
1435 int newrows
= nrows
- M
->NbRows
;
1436 Matrix
*M2
= Matrix_Alloc(nrows
, newrows
+ M
->NbColumns
);
1437 for (i
= 0; i
< newrows
; ++i
)
1438 value_set_si(M2
->p
[i
][i
], 1);
1439 for (i
= 0; i
< M
->NbRows
; ++i
)
1440 Vector_Copy(M
->p
[i
], M2
->p
[newrows
+i
]+newrows
, M
->NbColumns
);
1444 static void print_varlist(FILE *out
, int n
, char **names
)
1448 for (i
= 0; i
< n
; ++i
) {
1451 fprintf(out
, "%s", names
[i
]);
1456 static void print_term(FILE *out
, Value v
, int pos
, int dim
, int nparam
,
1457 char **iter_names
, char **param_names
, int *first
)
1459 if (value_zero_p(v
)) {
1460 if (first
&& *first
&& pos
>= dim
+ nparam
)
1466 if (!*first
&& value_pos_p(v
))
1470 if (pos
< dim
+ nparam
) {
1471 if (value_mone_p(v
))
1473 else if (!value_one_p(v
))
1474 value_print(out
, VALUE_FMT
, v
);
1476 fprintf(out
, "%s", iter_names
[pos
]);
1478 fprintf(out
, "%s", param_names
[pos
-dim
]);
1480 value_print(out
, VALUE_FMT
, v
);
1483 char **util_generate_names(int n
, const char *prefix
)
1486 int len
= (prefix
? strlen(prefix
) : 0) + 10;
1487 char **names
= ALLOCN(char*, n
);
1489 fprintf(stderr
, "ERROR: memory overflow.\n");
1492 for (i
= 0; i
< n
; ++i
) {
1493 names
[i
] = ALLOCN(char, len
);
1495 fprintf(stderr
, "ERROR: memory overflow.\n");
1499 snprintf(names
[i
], len
, "%d", i
);
1501 snprintf(names
[i
], len
, "%s%d", prefix
, i
);
1507 void util_free_names(int n
, char **names
)
1510 for (i
= 0; i
< n
; ++i
)
1515 void Polyhedron_pprint(FILE *out
, Polyhedron
*P
, int dim
, int nparam
,
1516 char **iter_names
, char **param_names
)
1521 assert(dim
+ nparam
== P
->Dimension
);
1527 print_varlist(out
, nparam
, param_names
);
1528 fprintf(out
, " -> ");
1530 print_varlist(out
, dim
, iter_names
);
1531 fprintf(out
, " : ");
1534 fprintf(out
, "FALSE");
1535 else for (i
= 0; i
< P
->NbConstraints
; ++i
) {
1537 int v
= First_Non_Zero(P
->Constraint
[i
]+1, P
->Dimension
);
1538 if (v
== -1 && value_pos_p(P
->Constraint
[i
][0]))
1541 fprintf(out
, " && ");
1542 if (v
== -1 && value_notzero_p(P
->Constraint
[i
][1+P
->Dimension
]))
1543 fprintf(out
, "FALSE");
1544 else if (value_pos_p(P
->Constraint
[i
][v
+1])) {
1545 print_term(out
, P
->Constraint
[i
][v
+1], v
, dim
, nparam
,
1546 iter_names
, param_names
, NULL
);
1547 if (value_zero_p(P
->Constraint
[i
][0]))
1548 fprintf(out
, " = ");
1550 fprintf(out
, " >= ");
1551 for (j
= v
+1; j
<= dim
+nparam
; ++j
) {
1552 value_oppose(tmp
, P
->Constraint
[i
][1+j
]);
1553 print_term(out
, tmp
, j
, dim
, nparam
,
1554 iter_names
, param_names
, &first
);
1557 value_oppose(tmp
, P
->Constraint
[i
][1+v
]);
1558 print_term(out
, tmp
, v
, dim
, nparam
,
1559 iter_names
, param_names
, NULL
);
1560 fprintf(out
, " <= ");
1561 for (j
= v
+1; j
<= dim
+nparam
; ++j
)
1562 print_term(out
, P
->Constraint
[i
][1+j
], j
, dim
, nparam
,
1563 iter_names
, param_names
, &first
);
1567 fprintf(out
, " }\n");
1572 /* Construct a cone over P with P placed at x_d = 1, with
1573 * x_d the coordinate of an extra dimension
1575 * It's probably a mistake to depend so much on the internal
1576 * representation. We should probably simply compute the
1577 * vertices/facets first.
1579 Polyhedron
*Cone_over_Polyhedron(Polyhedron
*P
)
1581 unsigned NbConstraints
= 0;
1582 unsigned NbRays
= 0;
1586 if (POL_HAS(P
, POL_INEQUALITIES
))
1587 NbConstraints
= P
->NbConstraints
+ 1;
1588 if (POL_HAS(P
, POL_POINTS
))
1589 NbRays
= P
->NbRays
+ 1;
1591 C
= Polyhedron_Alloc(P
->Dimension
+1, NbConstraints
, NbRays
);
1592 if (POL_HAS(P
, POL_INEQUALITIES
)) {
1594 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1595 Vector_Copy(P
->Constraint
[i
], C
->Constraint
[i
], P
->Dimension
+2);
1597 value_set_si(C
->Constraint
[P
->NbConstraints
][0], 1);
1598 value_set_si(C
->Constraint
[P
->NbConstraints
][1+P
->Dimension
], 1);
1600 if (POL_HAS(P
, POL_POINTS
)) {
1601 C
->NbBid
= P
->NbBid
;
1602 for (i
= 0; i
< P
->NbRays
; ++i
)
1603 Vector_Copy(P
->Ray
[i
], C
->Ray
[i
], P
->Dimension
+2);
1605 value_set_si(C
->Ray
[P
->NbRays
][0], 1);
1606 value_set_si(C
->Ray
[P
->NbRays
][1+C
->Dimension
], 1);
1608 POL_SET(C
, POL_VALID
);
1609 if (POL_HAS(P
, POL_INEQUALITIES
))
1610 POL_SET(C
, POL_INEQUALITIES
);
1611 if (POL_HAS(P
, POL_POINTS
))
1612 POL_SET(C
, POL_POINTS
);
1613 if (POL_HAS(P
, POL_VERTICES
))
1614 POL_SET(C
, POL_VERTICES
);
1618 /* Returns a (dim+nparam+1)x((dim-n)+nparam+1) matrix
1619 * mapping the transformed subspace back to the original space.
1620 * n is the number of equalities involving the variables
1621 * (i.e., not purely the parameters).
1622 * The remaining n coordinates in the transformed space would
1623 * have constant (parametric) values and are therefore not
1624 * included in the variables of the new space.
1626 Matrix
*compress_variables(Matrix
*Equalities
, unsigned nparam
)
1628 unsigned dim
= (Equalities
->NbColumns
-2) - nparam
;
1629 Matrix
*M
, *H
, *Q
, *U
, *C
, *ratH
, *invH
, *Ul
, *T1
, *T2
, *T
;
1634 for (n
= 0; n
< Equalities
->NbRows
; ++n
)
1635 if (First_Non_Zero(Equalities
->p
[n
]+1, dim
) == -1)
1638 return Identity(dim
+nparam
+1);
1640 value_set_si(mone
, -1);
1641 M
= Matrix_Alloc(n
, dim
);
1642 C
= Matrix_Alloc(n
+1, nparam
+1);
1643 for (i
= 0; i
< n
; ++i
) {
1644 Vector_Copy(Equalities
->p
[i
]+1, M
->p
[i
], dim
);
1645 Vector_Scale(Equalities
->p
[i
]+1+dim
, C
->p
[i
], mone
, nparam
+1);
1647 value_set_si(C
->p
[n
][nparam
], 1);
1648 left_hermite(M
, &H
, &Q
, &U
);
1653 ratH
= Matrix_Alloc(n
+1, n
+1);
1654 invH
= Matrix_Alloc(n
+1, n
+1);
1655 for (i
= 0; i
< n
; ++i
)
1656 Vector_Copy(H
->p
[i
], ratH
->p
[i
], n
);
1657 value_set_si(ratH
->p
[n
][n
], 1);
1658 ok
= Matrix_Inverse(ratH
, invH
);
1662 T1
= Matrix_Alloc(n
+1, nparam
+1);
1663 Matrix_Product(invH
, C
, T1
);
1666 if (value_notone_p(T1
->p
[n
][nparam
])) {
1667 for (i
= 0; i
< n
; ++i
) {
1668 if (!mpz_divisible_p(T1
->p
[i
][nparam
], T1
->p
[n
][nparam
])) {
1673 /* compress_params should have taken care of this */
1674 for (j
= 0; j
< nparam
; ++j
)
1675 assert(mpz_divisible_p(T1
->p
[i
][j
], T1
->p
[n
][nparam
]));
1676 Vector_AntiScale(T1
->p
[i
], T1
->p
[i
], T1
->p
[n
][nparam
], nparam
+1);
1678 value_set_si(T1
->p
[n
][nparam
], 1);
1680 Ul
= Matrix_Alloc(dim
+1, n
+1);
1681 for (i
= 0; i
< dim
; ++i
)
1682 Vector_Copy(U
->p
[i
], Ul
->p
[i
], n
);
1683 value_set_si(Ul
->p
[dim
][n
], 1);
1684 T2
= Matrix_Alloc(dim
+1, nparam
+1);
1685 Matrix_Product(Ul
, T1
, T2
);
1689 T
= Matrix_Alloc(dim
+nparam
+1, (dim
-n
)+nparam
+1);
1690 for (i
= 0; i
< dim
; ++i
) {
1691 Vector_Copy(U
->p
[i
]+n
, T
->p
[i
], dim
-n
);
1692 Vector_Copy(T2
->p
[i
], T
->p
[i
]+dim
-n
, nparam
+1);
1694 for (i
= 0; i
< nparam
+1; ++i
)
1695 value_set_si(T
->p
[dim
+i
][(dim
-n
)+i
], 1);
1696 assert(value_one_p(T2
->p
[dim
][nparam
]));
1703 /* Computes the left inverse of an affine embedding M and, if Eq is not NULL,
1704 * the equalities that define the affine subspace onto which M maps
1707 Matrix
*left_inverse(Matrix
*M
, Matrix
**Eq
)
1710 Matrix
*L
, *H
, *Q
, *U
, *ratH
, *invH
, *Ut
, *inv
;
1713 if (M
->NbColumns
== 1) {
1714 inv
= Matrix_Alloc(1, M
->NbRows
);
1715 value_set_si(inv
->p
[0][M
->NbRows
-1], 1);
1717 *Eq
= Matrix_Alloc(M
->NbRows
-1, 1+(M
->NbRows
-1)+1);
1718 for (i
= 0; i
< M
->NbRows
-1; ++i
) {
1719 value_oppose((*Eq
)->p
[i
][1+i
], M
->p
[M
->NbRows
-1][0]);
1720 value_assign((*Eq
)->p
[i
][1+(M
->NbRows
-1)], M
->p
[i
][0]);
1727 L
= Matrix_Alloc(M
->NbRows
-1, M
->NbColumns
-1);
1728 for (i
= 0; i
< L
->NbRows
; ++i
)
1729 Vector_Copy(M
->p
[i
], L
->p
[i
], L
->NbColumns
);
1730 right_hermite(L
, &H
, &U
, &Q
);
1733 t
= Vector_Alloc(U
->NbColumns
);
1734 for (i
= 0; i
< U
->NbColumns
; ++i
)
1735 value_oppose(t
->p
[i
], M
->p
[i
][M
->NbColumns
-1]);
1737 *Eq
= Matrix_Alloc(H
->NbRows
- H
->NbColumns
, 2 + U
->NbColumns
);
1738 for (i
= 0; i
< H
->NbRows
- H
->NbColumns
; ++i
) {
1739 Vector_Copy(U
->p
[H
->NbColumns
+i
], (*Eq
)->p
[i
]+1, U
->NbColumns
);
1740 Inner_Product(U
->p
[H
->NbColumns
+i
], t
->p
, U
->NbColumns
,
1741 (*Eq
)->p
[i
]+1+U
->NbColumns
);
1744 ratH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1745 invH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1746 for (i
= 0; i
< H
->NbColumns
; ++i
)
1747 Vector_Copy(H
->p
[i
], ratH
->p
[i
], H
->NbColumns
);
1748 value_set_si(ratH
->p
[ratH
->NbRows
-1][ratH
->NbColumns
-1], 1);
1750 ok
= Matrix_Inverse(ratH
, invH
);
1753 Ut
= Matrix_Alloc(invH
->NbRows
, U
->NbColumns
+1);
1754 for (i
= 0; i
< Ut
->NbRows
-1; ++i
) {
1755 Vector_Copy(U
->p
[i
], Ut
->p
[i
], U
->NbColumns
);
1756 Inner_Product(U
->p
[i
], t
->p
, U
->NbColumns
, &Ut
->p
[i
][Ut
->NbColumns
-1]);
1760 value_set_si(Ut
->p
[Ut
->NbRows
-1][Ut
->NbColumns
-1], 1);
1761 inv
= Matrix_Alloc(invH
->NbRows
, Ut
->NbColumns
);
1762 Matrix_Product(invH
, Ut
, inv
);
1768 /* Check whether all rays are revlex positive in the parameters
1770 int Polyhedron_has_revlex_positive_rays(Polyhedron
*P
, unsigned nparam
)
1773 for (r
= 0; r
< P
->NbRays
; ++r
) {
1775 if (value_notzero_p(P
->Ray
[r
][P
->Dimension
+1]))
1777 for (i
= P
->Dimension
-1; i
>= P
->Dimension
-nparam
; --i
) {
1778 if (value_neg_p(P
->Ray
[r
][i
+1]))
1780 if (value_pos_p(P
->Ray
[r
][i
+1]))
1783 /* A ray independent of the parameters */
1784 if (i
< P
->Dimension
-nparam
)
1790 static Polyhedron
*Recession_Cone(Polyhedron
*P
, unsigned nparam
, unsigned MaxRays
)
1793 unsigned nvar
= P
->Dimension
- nparam
;
1794 Matrix
*M
= Matrix_Alloc(P
->NbConstraints
, 1 + nvar
+ 1);
1796 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1797 Vector_Copy(P
->Constraint
[i
], M
->p
[i
], 1+nvar
);
1798 R
= Constraints2Polyhedron(M
, MaxRays
);
1803 int Polyhedron_is_unbounded(Polyhedron
*P
, unsigned nparam
, unsigned MaxRays
)
1807 Polyhedron
*R
= Recession_Cone(P
, nparam
, MaxRays
);
1808 POL_ENSURE_VERTICES(R
);
1810 for (i
= 0; i
< R
->NbRays
; ++i
)
1811 if (value_zero_p(R
->Ray
[i
][1+R
->Dimension
]))
1813 is_unbounded
= R
->NbBid
> 0 || i
< R
->NbRays
;
1815 return is_unbounded
;
1818 static void SwapColumns(Value
**V
, int n
, int i
, int j
)
1822 for (r
= 0; r
< n
; ++r
)
1823 value_swap(V
[r
][i
], V
[r
][j
]);
1826 void Polyhedron_ExchangeColumns(Polyhedron
*P
, int Column1
, int Column2
)
1828 SwapColumns(P
->Constraint
, P
->NbConstraints
, Column1
, Column2
);
1829 SwapColumns(P
->Ray
, P
->NbRays
, Column1
, Column2
);
1832 Polyhedron_Matrix_View(P
, &M
, P
->NbConstraints
);
1833 Gauss(&M
, P
->NbEq
, P
->Dimension
+1);
1837 /* perform transposition inline; assumes M is a square matrix */
1838 void Matrix_Transposition(Matrix
*M
)
1842 assert(M
->NbRows
== M
->NbColumns
);
1843 for (i
= 0; i
< M
->NbRows
; ++i
)
1844 for (j
= i
+1; j
< M
->NbColumns
; ++j
)
1845 value_swap(M
->p
[i
][j
], M
->p
[j
][i
]);
1848 /* Matrix "view" of first rows rows */
1849 void Polyhedron_Matrix_View(Polyhedron
*P
, Matrix
*M
, unsigned rows
)
1852 M
->NbColumns
= P
->Dimension
+2;
1853 M
->p_Init
= P
->p_Init
;
1854 M
->p
= P
->Constraint
;