remove redundant rays
[barvinok.git] / barvinok.cc
blob9cd6d9d023445536ab446075cf19bc2b349251e7
1 #include <assert.h>
2 #include <iostream>
3 #include <vector>
4 #include <deque>
5 #include <string>
6 #include <sstream>
7 #include <gmp.h>
8 #include <NTL/mat_ZZ.h>
9 #include <NTL/LLL.h>
10 #include <util.h>
11 extern "C" {
12 #include <polylib/polylibgmp.h>
13 #include "ev_operations.h"
15 #include "config.h"
16 #include <barvinok.h>
18 #ifdef NTL_STD_CXX
19 using namespace NTL;
20 #endif
21 using std::cout;
22 using std::endl;
23 using std::vector;
24 using std::deque;
25 using std::string;
26 using std::ostringstream;
28 #define ALLOC(p) (((long *) (p))[0])
29 #define SIZE(p) (((long *) (p))[1])
30 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
32 static void value2zz(Value v, ZZ& z)
34 int sa = v[0]._mp_size;
35 int abs_sa = sa < 0 ? -sa : sa;
37 _ntl_gsetlength(&z.rep, abs_sa);
38 mp_limb_t * adata = DATA(z.rep);
39 for (int i = 0; i < abs_sa; ++i)
40 adata[i] = v[0]._mp_d[i];
41 SIZE(z.rep) = sa;
44 static void zz2value(ZZ& z, Value& v)
46 if (!z.rep) {
47 value_set_si(v, 0);
48 return;
51 int sa = SIZE(z.rep);
52 int abs_sa = sa < 0 ? -sa : sa;
54 mp_limb_t * adata = DATA(z.rep);
55 mpz_realloc2(v, __GMP_BITS_PER_MP_LIMB * abs_sa);
56 for (int i = 0; i < abs_sa; ++i)
57 v[0]._mp_d[i] = adata[i];
58 v[0]._mp_size = sa;
61 #undef ALLOC
62 #define ALLOC(p) p = (typeof(p))malloc(sizeof(*p))
65 * We just ignore the last column and row
66 * If the final element is not equal to one
67 * then the result will actually be a multiple of the input
69 static void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
71 m.SetDims(nr, nc);
73 for (int i = 0; i < nr; ++i) {
74 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
75 for (int j = 0; j < nc; ++j) {
76 value2zz(M->p[i][j], m[i][j]);
81 static void values2zz(Value *p, vec_ZZ& v, int len)
83 v.SetLength(len);
85 for (int i = 0; i < len; ++i) {
86 value2zz(p[i], v[i]);
92 static void zz2values(vec_ZZ& v, Value *p)
94 for (int i = 0; i < v.length(); ++i)
95 zz2value(v[i], p[i]);
98 static void rays(mat_ZZ& r, Polyhedron *C)
100 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
101 assert(C->NbRays - 1 == C->Dimension);
102 r.SetDims(dim, dim);
103 ZZ tmp;
105 int i, c;
106 for (i = 0, c = 0; i < dim; ++i)
107 if (value_zero_p(C->Ray[i][dim+1])) {
108 for (int j = 0; j < dim; ++j) {
109 value2zz(C->Ray[i][j+1], tmp);
110 r[j][c] = tmp;
112 ++c;
116 static Matrix * rays(Polyhedron *C)
118 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
119 assert(C->NbRays - 1 == C->Dimension);
121 Matrix *M = Matrix_Alloc(dim+1, dim+1);
122 assert(M);
124 int i, c;
125 for (i = 0, c = 0; i <= dim && c < dim; ++i)
126 if (value_zero_p(C->Ray[i][dim+1])) {
127 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
128 value_set_si(M->p[c++][dim], 0);
130 assert(c == dim);
131 value_set_si(M->p[dim][dim], 1);
133 return M;
136 static Matrix * rays2(Polyhedron *C)
138 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
139 assert(C->NbRays - 1 == C->Dimension);
141 Matrix *M = Matrix_Alloc(dim, dim);
142 assert(M);
144 int i, c;
145 for (i = 0, c = 0; i <= dim && c < dim; ++i)
146 if (value_zero_p(C->Ray[i][dim+1]))
147 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
148 assert(c == dim);
150 return M;
154 * Returns the largest absolute value in the vector
156 static ZZ max(vec_ZZ& v)
158 ZZ max = abs(v[0]);
159 for (int i = 1; i < v.length(); ++i)
160 if (abs(v[i]) > max)
161 max = abs(v[i]);
162 return max;
165 class cone {
166 public:
167 cone(Matrix *M) {
168 Cone = 0;
169 Rays = Matrix_Copy(M);
170 set_det();
172 cone(Polyhedron *C) {
173 Cone = Polyhedron_Copy(C);
174 Rays = rays(C);
175 set_det();
177 void set_det() {
178 mat_ZZ A;
179 matrix2zz(Rays, A, Rays->NbRows - 1, Rays->NbColumns - 1);
180 det = determinant(A);
181 Value v;
182 value_init(v);
183 zz2value(det, v);
184 value_clear(v);
187 Vector* short_vector(vec_ZZ& lambda) {
188 Matrix *M = Matrix_Copy(Rays);
189 Matrix *inv = Matrix_Alloc(M->NbRows, M->NbColumns);
190 int ok = Matrix_Inverse(M, inv);
191 assert(ok);
192 Matrix_Free(M);
194 ZZ det2;
195 mat_ZZ B;
196 mat_ZZ U;
197 matrix2zz(inv, B, inv->NbRows - 1, inv->NbColumns - 1);
198 long r = LLL(det2, B, U);
200 ZZ min = max(B[0]);
201 int index = 0;
202 for (int i = 1; i < B.NumRows(); ++i) {
203 ZZ tmp = max(B[i]);
204 if (tmp < min) {
205 min = tmp;
206 index = i;
210 Matrix_Free(inv);
212 lambda = B[index];
214 Vector *z = Vector_Alloc(U[index].length()+1);
215 assert(z);
216 zz2values(U[index], z->p);
217 value_set_si(z->p[U[index].length()], 0);
219 Value tmp;
220 value_init(tmp);
221 Polyhedron *C = poly();
222 int i;
223 for (i = 0; i < C->NbConstraints; ++i) {
224 Inner_Product(z->p, C->Constraint[i]+1, z->Size-1, &tmp);
225 if (value_pos_p(tmp))
226 break;
228 if (i == C->NbConstraints) {
229 value_set_si(tmp, -1);
230 Vector_Scale(z->p, z->p, tmp, z->Size-1);
232 value_clear(tmp);
233 return z;
236 ~cone() {
237 Polyhedron_Free(Cone);
238 Matrix_Free(Rays);
241 Polyhedron *poly() {
242 if (!Cone) {
243 Matrix *M = Matrix_Alloc(Rays->NbRows+1, Rays->NbColumns+1);
244 for (int i = 0; i < Rays->NbRows; ++i) {
245 Vector_Copy(Rays->p[i], M->p[i]+1, Rays->NbColumns);
246 value_set_si(M->p[i][0], 1);
248 Vector_Set(M->p[Rays->NbRows]+1, 0, Rays->NbColumns-1);
249 value_set_si(M->p[Rays->NbRows][0], 1);
250 value_set_si(M->p[Rays->NbRows][Rays->NbColumns], 1);
251 Cone = Rays2Polyhedron(M, M->NbRows+1);
252 assert(Cone->NbConstraints == Cone->NbRays);
253 Matrix_Free(M);
255 return Cone;
258 ZZ det;
259 Polyhedron *Cone;
260 Matrix *Rays;
263 class dpoly {
264 public:
265 vec_ZZ coeff;
266 dpoly(int d, ZZ& degree, int offset = 0) {
267 coeff.SetLength(d+1);
269 int min = d + offset;
270 if (degree < ZZ(INIT_VAL, min))
271 min = to_int(degree);
273 ZZ c = ZZ(INIT_VAL, 1);
274 if (!offset)
275 coeff[0] = c;
276 for (int i = 1; i <= min; ++i) {
277 c *= (degree -i + 1);
278 c /= i;
279 coeff[i-offset] = c;
282 void operator *= (dpoly& f) {
283 assert(coeff.length() == f.coeff.length());
284 vec_ZZ old = coeff;
285 coeff = f.coeff[0] * coeff;
286 for (int i = 1; i < coeff.length(); ++i)
287 for (int j = 0; i+j < coeff.length(); ++j)
288 coeff[i+j] += f.coeff[i] * old[j];
290 void div(dpoly& d, mpq_t count, ZZ& sign) {
291 int len = coeff.length();
292 Value tmp;
293 value_init(tmp);
294 mpq_t* c = new mpq_t[coeff.length()];
295 mpq_t qtmp;
296 mpq_init(qtmp);
297 for (int i = 0; i < len; ++i) {
298 mpq_init(c[i]);
299 zz2value(coeff[i], tmp);
300 mpq_set_z(c[i], tmp);
302 for (int j = 1; j <= i; ++j) {
303 zz2value(d.coeff[j], tmp);
304 mpq_set_z(qtmp, tmp);
305 mpq_mul(qtmp, qtmp, c[i-j]);
306 mpq_sub(c[i], c[i], qtmp);
309 zz2value(d.coeff[0], tmp);
310 mpq_set_z(qtmp, tmp);
311 mpq_div(c[i], c[i], qtmp);
313 if (sign == -1)
314 mpq_sub(count, count, c[len-1]);
315 else
316 mpq_add(count, count, c[len-1]);
318 value_clear(tmp);
319 mpq_clear(qtmp);
320 for (int i = 0; i < len; ++i)
321 mpq_clear(c[i]);
322 delete [] c;
326 class dpoly_n {
327 public:
328 Matrix *coeff;
329 ~dpoly_n() {
330 Matrix_Free(coeff);
332 dpoly_n(int d, ZZ& degree_0, ZZ& degree_1, int offset = 0) {
333 Value d0, d1;
334 value_init(d0);
335 value_init(d1);
336 zz2value(degree_0, d0);
337 zz2value(degree_1, d1);
338 coeff = Matrix_Alloc(d+1, d+1+1);
339 value_set_si(coeff->p[0][0], 1);
340 value_set_si(coeff->p[0][d+1], 1);
341 for (int i = 1; i <= d; ++i) {
342 value_multiply(coeff->p[i][0], coeff->p[i-1][0], d0);
343 Vector_Combine(coeff->p[i-1], coeff->p[i-1]+1, coeff->p[i]+1,
344 d1, d0, i);
345 value_set_si(coeff->p[i][d+1], i);
346 value_multiply(coeff->p[i][d+1], coeff->p[i][d+1], coeff->p[i-1][d+1]);
347 value_decrement(d0, d0);
349 value_clear(d0);
350 value_clear(d1);
352 void div(dpoly& d, Vector *count, ZZ& sign) {
353 int len = coeff->NbRows;
354 Matrix * c = Matrix_Alloc(coeff->NbRows, coeff->NbColumns);
355 Value tmp;
356 value_init(tmp);
357 for (int i = 0; i < len; ++i) {
358 Vector_Copy(coeff->p[i], c->p[i], len+1);
359 for (int j = 1; j <= i; ++j) {
360 zz2value(d.coeff[j], tmp);
361 value_multiply(tmp, tmp, c->p[i][len]);
362 value_oppose(tmp, tmp);
363 Vector_Combine(c->p[i], c->p[i-j], c->p[i],
364 c->p[i-j][len], tmp, len);
365 value_multiply(c->p[i][len], c->p[i][len], c->p[i-j][len]);
367 zz2value(d.coeff[0], tmp);
368 value_multiply(c->p[i][len], c->p[i][len], tmp);
370 if (sign == -1) {
371 value_set_si(tmp, -1);
372 Vector_Scale(c->p[len-1], count->p, tmp, len);
373 value_assign(count->p[len], c->p[len-1][len]);
374 } else
375 Vector_Copy(c->p[len-1], count->p, len+1);
376 Vector_Normalize(count->p, len+1);
377 value_clear(tmp);
378 Matrix_Free(c);
383 * Barvinok's Decomposition of a simplicial cone
385 * Returns two lists of polyhedra
387 void barvinok_decompose(Polyhedron *C, Polyhedron **ppos, Polyhedron **pneg)
389 Polyhedron *pos = *ppos, *neg = *pneg;
390 vector<cone *> nonuni;
391 cone * c = new cone(C);
392 ZZ det = c->det;
393 int s = sign(det);
394 assert(det != 0);
395 if (abs(det) > 1) {
396 nonuni.push_back(c);
397 } else {
398 Polyhedron *p = Polyhedron_Copy(c->Cone);
399 p->next = pos;
400 pos = p;
401 delete c;
403 vec_ZZ lambda;
404 while (!nonuni.empty()) {
405 c = nonuni.back();
406 nonuni.pop_back();
407 Vector* v = c->short_vector(lambda);
408 for (int i = 0; i < c->Rays->NbRows - 1; ++i) {
409 if (lambda[i] == 0)
410 continue;
411 Matrix* M = Matrix_Copy(c->Rays);
412 Vector_Copy(v->p, M->p[i], v->Size);
413 cone * pc = new cone(M);
414 assert (pc->det != 0);
415 if (abs(pc->det) > 1) {
416 assert(abs(pc->det) < abs(c->det));
417 nonuni.push_back(pc);
418 } else {
419 Polyhedron *p = pc->poly();
420 pc->Cone = 0;
421 if (sign(pc->det) == s) {
422 p->next = pos;
423 pos = p;
424 } else {
425 p->next = neg;
426 neg = p;
428 delete pc;
430 Matrix_Free(M);
432 Vector_Free(v);
433 delete c;
435 *ppos = pos;
436 *pneg = neg;
440 * Returns a single list of npos "positive" cones followed by nneg
441 * "negative" cones.
442 * The input cone is freed
444 void decompose(Polyhedron *cone, Polyhedron **parts, int *npos, int *nneg, unsigned MaxRays)
446 Polyhedron_Polarize(cone);
447 if (cone->NbRays - 1 != cone->Dimension) {
448 Polyhedron *tmp = cone;
449 cone = triangularize_cone(cone, MaxRays);
450 Polyhedron_Free(tmp);
452 Polyhedron *polpos = NULL, *polneg = NULL;
453 *npos = 0; *nneg = 0;
454 for (Polyhedron *Polar = cone; Polar; Polar = Polar->next)
455 barvinok_decompose(Polar, &polpos, &polneg);
457 Polyhedron *last;
458 for (Polyhedron *i = polpos; i; i = i->next) {
459 Polyhedron_Polarize(i);
460 ++*npos;
461 last = i;
463 for (Polyhedron *i = polneg; i; i = i->next) {
464 Polyhedron_Polarize(i);
465 ++*nneg;
467 if (last) {
468 last->next = polneg;
469 *parts = polpos;
470 } else
471 *parts = polneg;
472 Domain_Free(cone);
475 const int MAX_TRY=10;
477 * Searches for a vector that is not othogonal to any
478 * of the rays in rays.
480 static void nonorthog(mat_ZZ& rays, vec_ZZ& lambda)
482 int dim = rays.NumCols();
483 bool found = false;
484 lambda.SetLength(dim);
485 for (int i = 2; !found && i <= 50*dim; i+=4) {
486 for (int j = 0; j < MAX_TRY; ++j) {
487 for (int k = 0; k < dim; ++k) {
488 int r = random_int(i)+2;
489 int v = (2*(r%2)-1) * (r >> 1);
490 lambda[k] = v;
492 int k = 0;
493 for (; k < rays.NumRows(); ++k)
494 if (lambda * rays[k] == 0)
495 break;
496 if (k == rays.NumRows()) {
497 found = true;
498 break;
502 assert(found);
505 static void add_rays(mat_ZZ& rays, Polyhedron *i, int *r)
507 unsigned dim = i->Dimension;
508 for (int k = 0; k < i->NbRays; ++k) {
509 if (!value_zero_p(i->Ray[k][dim+1]))
510 continue;
511 values2zz(i->Ray[k]+1, rays[(*r)++], dim);
515 void lattice_point(Value* values, Polyhedron *i, vec_ZZ& lambda, ZZ& num)
517 vec_ZZ vertex;
518 unsigned dim = i->Dimension;
519 if(!value_one_p(values[dim])) {
520 Matrix* Rays = rays(i);
521 Matrix *inv = Matrix_Alloc(Rays->NbRows, Rays->NbColumns);
522 int ok = Matrix_Inverse(Rays, inv);
523 assert(ok);
524 Matrix_Free(Rays);
525 Rays = rays(i);
526 Vector *lambda = Vector_Alloc(dim+1);
527 Vector_Matrix_Product(values, inv, lambda->p);
528 Matrix_Free(inv);
529 for (int j = 0; j < dim; ++j)
530 mpz_cdiv_q(lambda->p[j], lambda->p[j], lambda->p[dim]);
531 value_set_si(lambda->p[dim], 1);
532 Vector *A = Vector_Alloc(dim+1);
533 Vector_Matrix_Product(lambda->p, Rays, A->p);
534 Vector_Free(lambda);
535 Matrix_Free(Rays);
536 values2zz(A->p, vertex, dim);
537 Vector_Free(A);
538 } else
539 values2zz(values, vertex, dim);
541 num = vertex * lambda;
544 static evalue *term(int param, ZZ& c, Value *den = NULL)
546 evalue *EP = new evalue();
547 value_init(EP->d);
548 value_set_si(EP->d,0);
549 EP->x.p = new_enode(polynomial, 2, param + 1);
550 evalue_set_si(&EP->x.p->arr[0], 0, 1);
551 value_init(EP->x.p->arr[1].x.n);
552 if (den == NULL)
553 value_set_si(EP->x.p->arr[1].d, 1);
554 else
555 value_assign(EP->x.p->arr[1].d, *den);
556 zz2value(c, EP->x.p->arr[1].x.n);
557 return EP;
560 static void vertex_period(
561 Polyhedron *i, vec_ZZ& lambda, Matrix *T,
562 Value lcm, int p, Vector *val,
563 evalue *E, evalue* ev,
564 ZZ& offset)
566 unsigned nparam = T->NbRows - 1;
567 unsigned dim = i->Dimension;
568 Value tmp;
569 ZZ nump;
571 if (p == nparam) {
572 ZZ num, l;
573 Vector * values = Vector_Alloc(dim + 1);
574 Vector_Matrix_Product(val->p, T, values->p);
575 value_assign(values->p[dim], lcm);
576 lattice_point(values->p, i, lambda, num);
577 value2zz(lcm, l);
578 num *= l;
579 num += offset;
580 value_init(ev->x.n);
581 zz2value(num, ev->x.n);
582 value_assign(ev->d, lcm);
583 Vector_Free(values);
584 return;
587 value_init(tmp);
588 vec_ZZ vertex;
589 values2zz(T->p[p], vertex, dim);
590 nump = vertex * lambda;
591 if (First_Non_Zero(val->p, p) == -1) {
592 value_assign(tmp, lcm);
593 evalue *ET = term(p, nump, &tmp);
594 eadd(ET, E);
595 free_evalue_refs(ET);
596 delete ET;
599 value_assign(tmp, lcm);
600 if (First_Non_Zero(T->p[p], dim) != -1)
601 Vector_Gcd(T->p[p], dim, &tmp);
602 Gcd(tmp, lcm, &tmp);
603 if (value_lt(tmp, lcm)) {
604 ZZ count;
606 value_division(tmp, lcm, tmp);
607 value_set_si(ev->d, 0);
608 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
609 value2zz(tmp, count);
610 do {
611 value_decrement(tmp, tmp);
612 --count;
613 ZZ new_offset = offset - count * nump;
614 value_assign(val->p[p], tmp);
615 vertex_period(i, lambda, T, lcm, p+1, val, E,
616 &ev->x.p->arr[VALUE_TO_INT(tmp)], new_offset);
617 } while (value_pos_p(tmp));
618 } else
619 vertex_period(i, lambda, T, lcm, p+1, val, E, ev, offset);
620 value_clear(tmp);
623 static void mask_r(Matrix *f, int nr, Vector *lcm, int p, Vector *val, evalue *ev)
625 unsigned nparam = lcm->Size;
627 if (p == nparam) {
628 Vector * prod = Vector_Alloc(f->NbRows);
629 Matrix_Vector_Product(f, val->p, prod->p);
630 int isint = 1;
631 for (int i = 0; i < nr; ++i) {
632 value_modulus(prod->p[i], prod->p[i], f->p[i][nparam+1]);
633 isint &= value_zero_p(prod->p[i]);
635 value_set_si(ev->d, 1);
636 value_init(ev->x.n);
637 value_set_si(ev->x.n, isint);
638 Vector_Free(prod);
639 return;
642 Value tmp;
643 value_init(tmp);
644 if (value_one_p(lcm->p[p]))
645 mask_r(f, nr, lcm, p+1, val, ev);
646 else {
647 value_assign(tmp, lcm->p[p]);
648 value_set_si(ev->d, 0);
649 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
650 do {
651 value_decrement(tmp, tmp);
652 value_assign(val->p[p], tmp);
653 mask_r(f, nr, lcm, p+1, val, &ev->x.p->arr[VALUE_TO_INT(tmp)]);
654 } while (value_pos_p(tmp));
656 value_clear(tmp);
659 static evalue *multi_monom(vec_ZZ& p)
661 evalue *X = new evalue();
662 value_init(X->d);
663 value_init(X->x.n);
664 unsigned nparam = p.length()-1;
665 zz2value(p[nparam], X->x.n);
666 value_set_si(X->d, 1);
667 for (int i = 0; i < nparam; ++i) {
668 if (p[i] == 0)
669 continue;
670 evalue *T = term(i, p[i]);
671 eadd(T, X);
672 free_evalue_refs(T);
673 delete T;
675 return X;
679 * Check whether mapping polyhedron P on the affine combination
680 * num yields a range that has a fixed quotient on integer
681 * division by d
682 * If zero is true, then we are only interested in the quotient
683 * for the cases where the remainder is zero.
684 * Returns NULL if false and a newly allocated value if true.
686 static Value *fixed_quotient(Polyhedron *P, vec_ZZ& num, Value d, bool zero)
688 Value* ret = NULL;
689 int len = num.length();
690 Matrix *T = Matrix_Alloc(2, len);
691 zz2values(num, T->p[0]);
692 value_set_si(T->p[1][len-1], 1);
693 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
694 Matrix_Free(T);
696 int i;
697 for (i = 0; i < I->NbRays; ++i)
698 if (value_zero_p(I->Ray[i][2])) {
699 Polyhedron_Free(I);
700 return NULL;
703 Value min, max;
704 value_init(min);
705 value_init(max);
706 int bounded = line_minmax(I, &min, &max);
707 assert(bounded);
709 if (zero)
710 mpz_cdiv_q(min, min, d);
711 else
712 mpz_fdiv_q(min, min, d);
713 mpz_fdiv_q(max, max, d);
715 if (value_eq(min, max)) {
716 ALLOC(ret);
717 value_init(*ret);
718 value_assign(*ret, min);
720 value_clear(min);
721 value_clear(max);
722 return ret;
726 * Normalize linear expression coef modulo m
727 * Removes common factor and reduces coefficients
728 * Returns index of first non-zero coefficient or len
730 static int normal_mod(Value *coef, int len, Value *m)
732 Value gcd;
733 value_init(gcd);
735 Vector_Gcd(coef, len, &gcd);
736 Gcd(gcd, *m, &gcd);
737 Vector_AntiScale(coef, coef, gcd, len);
739 value_division(*m, *m, gcd);
740 value_clear(gcd);
742 if (value_one_p(*m))
743 return len;
745 int j;
746 for (j = 0; j < len; ++j)
747 mpz_fdiv_r(coef[j], coef[j], *m);
748 for (j = 0; j < len; ++j)
749 if (value_notzero_p(coef[j]))
750 break;
752 return j;
755 #ifdef USE_MODULO
756 static void mask(Matrix *f, evalue *factor)
758 int nr = f->NbRows, nc = f->NbColumns;
759 int n;
760 bool found = false;
761 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
762 if (value_notone_p(f->p[n][nc-1]) &&
763 value_notmone_p(f->p[n][nc-1]))
764 found = true;
765 if (!found)
766 return;
768 evalue EP;
769 nr = n;
771 Value m;
772 value_init(m);
774 evalue EV;
775 value_init(EV.d);
776 value_init(EV.x.n);
777 value_set_si(EV.x.n, 1);
779 for (n = 0; n < nr; ++n) {
780 value_assign(m, f->p[n][nc-1]);
781 if (value_one_p(m) || value_mone_p(m))
782 continue;
784 int j = normal_mod(f->p[n], nc-1, &m);
785 if (j == nc-1) {
786 free_evalue_refs(factor);
787 value_init(factor->d);
788 evalue_set_si(factor, 0, 1);
789 break;
791 vec_ZZ row;
792 values2zz(f->p[n], row, nc-1);
793 ZZ g;
794 value2zz(m, g);
795 if (j < (nc-1)-1 && row[j] > g/2) {
796 for (int k = j; k < (nc-1); ++k)
797 if (row[k] != 0)
798 row[k] = g - row[k];
801 value_init(EP.d);
802 value_set_si(EP.d, 0);
803 EP.x.p = new_enode(relation, 2, 0);
804 value_clear(EP.x.p->arr[1].d);
805 EP.x.p->arr[1] = *factor;
806 evalue *ev = &EP.x.p->arr[0];
807 value_set_si(ev->d, 0);
808 ev->x.p = new_enode(fractional, 3, -1);
809 evalue_set_si(&ev->x.p->arr[1], 0, 1);
810 evalue_set_si(&ev->x.p->arr[2], 1, 1);
811 evalue *E = multi_monom(row);
812 value_assign(EV.d, m);
813 emul(&EV, E);
814 value_clear(ev->x.p->arr[0].d);
815 ev->x.p->arr[0] = *E;
816 delete E;
817 *factor = EP;
820 value_clear(m);
821 free_evalue_refs(&EV);
823 #else
827 static void mask(Matrix *f, evalue *factor)
829 int nr = f->NbRows, nc = f->NbColumns;
830 int n;
831 bool found = false;
832 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
833 if (value_notone_p(f->p[n][nc-1]) &&
834 value_notmone_p(f->p[n][nc-1]))
835 found = true;
836 if (!found)
837 return;
839 Value tmp;
840 value_init(tmp);
841 nr = n;
842 unsigned np = nc - 2;
843 Vector *lcm = Vector_Alloc(np);
844 Vector *val = Vector_Alloc(nc);
845 Vector_Set(val->p, 0, nc);
846 value_set_si(val->p[np], 1);
847 Vector_Set(lcm->p, 1, np);
848 for (n = 0; n < nr; ++n) {
849 if (value_one_p(f->p[n][nc-1]) ||
850 value_mone_p(f->p[n][nc-1]))
851 continue;
852 for (int j = 0; j < np; ++j)
853 if (value_notzero_p(f->p[n][j])) {
854 Gcd(f->p[n][j], f->p[n][nc-1], &tmp);
855 value_division(tmp, f->p[n][nc-1], tmp);
856 value_lcm(tmp, lcm->p[j], &lcm->p[j]);
859 evalue EP;
860 value_init(EP.d);
861 mask_r(f, nr, lcm, 0, val, &EP);
862 value_clear(tmp);
863 Vector_Free(val);
864 Vector_Free(lcm);
865 emul(&EP,factor);
866 free_evalue_refs(&EP);
868 #endif
870 struct term_info {
871 evalue *E;
872 ZZ constant;
873 ZZ coeff;
874 int pos;
877 static bool mod_needed(Polyhedron *PD, vec_ZZ& num, Value d, evalue *E)
879 Value *q = fixed_quotient(PD, num, d, false);
881 if (!q)
882 return true;
884 value_oppose(*q, *q);
885 evalue EV;
886 value_init(EV.d);
887 value_set_si(EV.d, 1);
888 value_init(EV.x.n);
889 value_multiply(EV.x.n, *q, d);
890 eadd(&EV, E);
891 free_evalue_refs(&EV);
892 value_clear(*q);
893 free(q);
894 return false;
897 static void ceil_mod(Value *coef, int len, Value d, ZZ& f, evalue *EP, Polyhedron *PD)
899 Value m;
900 value_init(m);
901 value_set_si(m, -1);
903 Vector_Scale(coef, coef, m, len);
905 value_assign(m, d);
906 int j = normal_mod(coef, len, &m);
908 if (j == len) {
909 value_clear(m);
910 return;
913 vec_ZZ num;
914 values2zz(coef, num, len);
916 ZZ g;
917 value2zz(m, g);
919 evalue tmp;
920 value_init(tmp.d);
921 evalue_set_si(&tmp, 0, 1);
923 int p = j;
924 if (g % 2 == 0)
925 while (j < len-1 && (num[j] == g/2 || num[j] == 0))
926 ++j;
927 if ((j < len-1 && num[j] > g/2) || (j == len-1 && num[j] >= (g+1)/2)) {
928 for (int k = j; k < len-1; ++k)
929 if (num[k] != 0)
930 num[k] = g - num[k];
931 num[len-1] = g - 1 - num[len-1];
932 value_assign(tmp.d, m);
933 ZZ t = f*(g-1);
934 zz2value(t, tmp.x.n);
935 eadd(&tmp, EP);
936 f = -f;
939 if (p >= len-1) {
940 ZZ t = num[len-1] * f;
941 zz2value(t, tmp.x.n);
942 value_assign(tmp.d, m);
943 eadd(&tmp, EP);
944 } else {
945 evalue *E = multi_monom(num);
946 evalue EV;
947 value_init(EV.d);
949 if (PD && !mod_needed(PD, num, m, E)) {
950 value_init(EV.x.n);
951 zz2value(f, EV.x.n);
952 value_assign(EV.d, m);
953 emul(&EV, E);
954 eadd(E, EP);
955 } else {
956 value_init(EV.x.n);
957 value_set_si(EV.x.n, 1);
958 value_assign(EV.d, m);
959 emul(&EV, E);
960 value_clear(EV.x.n);
961 value_set_si(EV.d, 0);
962 EV.x.p = new_enode(fractional, 3, -1);
963 evalue_copy(&EV.x.p->arr[0], E);
964 evalue_set_si(&EV.x.p->arr[1], 0, 1);
965 value_init(EV.x.p->arr[2].x.n);
966 zz2value(f, EV.x.p->arr[2].x.n);
967 value_set_si(EV.x.p->arr[2].d, 1);
969 eadd(&EV, EP);
972 free_evalue_refs(&EV);
973 free_evalue_refs(E);
974 delete E;
977 free_evalue_refs(&tmp);
979 out:
980 value_clear(m);
983 evalue* bv_ceil3(Value *coef, int len, Value d, Polyhedron *P)
985 Vector *val = Vector_Alloc(len);
987 Value t;
988 value_init(t);
989 value_set_si(t, -1);
990 Vector_Scale(coef, val->p, t, len);
991 value_absolute(t, d);
993 vec_ZZ num;
994 values2zz(val->p, num, len);
995 evalue *EP = multi_monom(num);
997 evalue tmp;
998 value_init(tmp.d);
999 value_init(tmp.x.n);
1000 value_set_si(tmp.x.n, 1);
1001 value_assign(tmp.d, t);
1003 emul(&tmp, EP);
1005 ZZ one;
1006 one = 1;
1007 ceil_mod(val->p, len, t, one, EP, P);
1008 value_clear(t);
1010 /* copy EP to malloc'ed evalue */
1011 evalue *E;
1012 ALLOC(E);
1013 *E = *EP;
1014 delete EP;
1016 free_evalue_refs(&tmp);
1017 Vector_Free(val);
1019 return E;
1022 #ifdef USE_MODULO
1023 evalue* lattice_point(
1024 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1026 unsigned nparam = W->NbColumns - 1;
1028 Matrix* Rays = rays2(i);
1029 Matrix *T = Transpose(Rays);
1030 Matrix *T2 = Matrix_Copy(T);
1031 Matrix *inv = Matrix_Alloc(T2->NbRows, T2->NbColumns);
1032 int ok = Matrix_Inverse(T2, inv);
1033 assert(ok);
1034 Matrix_Free(Rays);
1035 Matrix_Free(T2);
1036 mat_ZZ vertex;
1037 matrix2zz(W, vertex, W->NbRows, W->NbColumns);
1039 vec_ZZ num;
1040 num = lambda * vertex;
1042 evalue *EP = multi_monom(num);
1044 evalue tmp;
1045 value_init(tmp.d);
1046 value_init(tmp.x.n);
1047 value_set_si(tmp.x.n, 1);
1048 value_assign(tmp.d, lcm);
1050 emul(&tmp, EP);
1052 Matrix *L = Matrix_Alloc(inv->NbRows, W->NbColumns);
1053 Matrix_Product(inv, W, L);
1055 mat_ZZ RT;
1056 matrix2zz(T, RT, T->NbRows, T->NbColumns);
1057 Matrix_Free(T);
1059 vec_ZZ p = lambda * RT;
1061 for (int i = 0; i < L->NbRows; ++i) {
1062 ceil_mod(L->p[i], nparam+1, lcm, p[i], EP, PD);
1065 Matrix_Free(L);
1067 Matrix_Free(inv);
1068 free_evalue_refs(&tmp);
1069 return EP;
1071 #else
1072 evalue* lattice_point(
1073 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1075 Matrix *T = Transpose(W);
1076 unsigned nparam = T->NbRows - 1;
1078 evalue *EP = new evalue();
1079 value_init(EP->d);
1080 evalue_set_si(EP, 0, 1);
1082 evalue ev;
1083 Vector *val = Vector_Alloc(nparam+1);
1084 value_set_si(val->p[nparam], 1);
1085 ZZ offset(INIT_VAL, 0);
1086 value_init(ev.d);
1087 vertex_period(i, lambda, T, lcm, 0, val, EP, &ev, offset);
1088 Vector_Free(val);
1089 eadd(&ev, EP);
1090 free_evalue_refs(&ev);
1092 Matrix_Free(T);
1094 reduce_evalue(EP);
1096 return EP;
1098 #endif
1100 void lattice_point(
1101 Param_Vertices* V, Polyhedron *i, vec_ZZ& lambda, term_info* term,
1102 Polyhedron *PD)
1104 unsigned nparam = V->Vertex->NbColumns - 2;
1105 unsigned dim = i->Dimension;
1106 mat_ZZ vertex;
1107 vertex.SetDims(V->Vertex->NbRows, nparam+1);
1108 Value lcm, tmp;
1109 value_init(lcm);
1110 value_init(tmp);
1111 value_set_si(lcm, 1);
1112 for (int j = 0; j < V->Vertex->NbRows; ++j) {
1113 value_lcm(lcm, V->Vertex->p[j][nparam+1], &lcm);
1115 if (value_notone_p(lcm)) {
1116 Matrix * mv = Matrix_Alloc(dim, nparam+1);
1117 for (int j = 0 ; j < dim; ++j) {
1118 value_division(tmp, lcm, V->Vertex->p[j][nparam+1]);
1119 Vector_Scale(V->Vertex->p[j], mv->p[j], tmp, nparam+1);
1122 term->E = lattice_point(i, lambda, mv, lcm, PD);
1123 term->constant = 0;
1125 Matrix_Free(mv);
1126 value_clear(lcm);
1127 value_clear(tmp);
1128 return;
1130 for (int i = 0; i < V->Vertex->NbRows; ++i) {
1131 assert(value_one_p(V->Vertex->p[i][nparam+1])); // for now
1132 values2zz(V->Vertex->p[i], vertex[i], nparam+1);
1135 vec_ZZ num;
1136 num = lambda * vertex;
1138 int p = -1;
1139 int nn = 0;
1140 for (int j = 0; j < nparam; ++j)
1141 if (num[j] != 0) {
1142 ++nn;
1143 p = j;
1145 if (nn >= 2) {
1146 term->E = multi_monom(num);
1147 term->constant = 0;
1148 } else {
1149 term->E = NULL;
1150 term->constant = num[nparam];
1151 term->pos = p;
1152 if (p != -1)
1153 term->coeff = num[p];
1156 value_clear(lcm);
1157 value_clear(tmp);
1160 void normalize(Polyhedron *i, vec_ZZ& lambda, ZZ& sign, ZZ& num, vec_ZZ& den)
1162 unsigned dim = i->Dimension;
1164 int r = 0;
1165 mat_ZZ rays;
1166 rays.SetDims(dim, dim);
1167 add_rays(rays, i, &r);
1168 den = rays * lambda;
1169 int change = 0;
1171 for (int j = 0; j < den.length(); ++j) {
1172 if (den[j] > 0)
1173 change ^= 1;
1174 else {
1175 den[j] = abs(den[j]);
1176 num += den[j];
1179 if (change)
1180 sign = -sign;
1183 void barvinok_count(Polyhedron *P, Value* result, unsigned NbMaxCons)
1185 Polyhedron ** vcone;
1186 vec_ZZ sign;
1187 int ncone = 0;
1188 sign.SetLength(ncone);
1189 unsigned dim;
1190 int allocated = 0;
1191 Value factor;
1192 Polyhedron *Q;
1193 int r = 0;
1195 if (emptyQ(P)) {
1196 value_set_si(*result, 0);
1197 return;
1199 if (P->NbBid == 0)
1200 for (; r < P->NbRays; ++r)
1201 if (value_zero_p(P->Ray[r][P->Dimension+1]))
1202 break;
1203 if (P->NbBid !=0 || r < P->NbRays) {
1204 value_set_si(*result, -1);
1205 return;
1207 if (P->NbEq != 0) {
1208 P = remove_equalities(P);
1209 if (emptyQ(P)) {
1210 Polyhedron_Free(P);
1211 value_set_si(*result, 0);
1212 return;
1214 allocated = 1;
1216 value_init(factor);
1217 value_set_si(factor, 1);
1218 Q = Polyhedron_Reduce(P, &factor);
1219 if (Q) {
1220 if (allocated)
1221 Polyhedron_Free(P);
1222 P = Q;
1223 allocated = 1;
1225 if (P->Dimension == 0) {
1226 value_assign(*result, factor);
1227 if (allocated)
1228 Polyhedron_Free(P);
1229 value_clear(factor);
1230 return;
1233 dim = P->Dimension;
1234 vcone = new (Polyhedron *)[P->NbRays];
1236 for (int j = 0; j < P->NbRays; ++j) {
1237 int npos, nneg;
1238 Polyhedron *C = supporting_cone(P, j);
1239 decompose(C, &vcone[j], &npos, &nneg, NbMaxCons);
1240 ncone += npos + nneg;
1241 sign.SetLength(ncone);
1242 for (int k = 0; k < npos; ++k)
1243 sign[ncone-nneg-k-1] = 1;
1244 for (int k = 0; k < nneg; ++k)
1245 sign[ncone-k-1] = -1;
1248 mat_ZZ rays;
1249 rays.SetDims(ncone * dim, dim);
1250 r = 0;
1251 for (int j = 0; j < P->NbRays; ++j) {
1252 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1253 assert(i->NbRays-1 == dim);
1254 add_rays(rays, i, &r);
1257 vec_ZZ lambda;
1258 nonorthog(rays, lambda);
1260 vec_ZZ num;
1261 mat_ZZ den;
1262 num.SetLength(ncone);
1263 den.SetDims(ncone,dim);
1265 int f = 0;
1266 for (int j = 0; j < P->NbRays; ++j) {
1267 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1268 lattice_point(P->Ray[j]+1, i, lambda, num[f]);
1269 normalize(i, lambda, sign[f], num[f], den[f]);
1270 ++f;
1273 ZZ min = num[0];
1274 for (int j = 1; j < num.length(); ++j)
1275 if (num[j] < min)
1276 min = num[j];
1277 for (int j = 0; j < num.length(); ++j)
1278 num[j] -= min;
1280 f = 0;
1281 mpq_t count;
1282 mpq_init(count);
1283 for (int j = 0; j < P->NbRays; ++j) {
1284 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1285 dpoly d(dim, num[f]);
1286 dpoly n(dim, den[f][0], 1);
1287 for (int k = 1; k < dim; ++k) {
1288 dpoly fact(dim, den[f][k], 1);
1289 n *= fact;
1291 d.div(n, count, sign[f]);
1292 ++f;
1295 assert(value_one_p(&count[0]._mp_den));
1296 value_multiply(*result, &count[0]._mp_num, factor);
1297 mpq_clear(count);
1299 for (int j = 0; j < P->NbRays; ++j)
1300 Domain_Free(vcone[j]);
1302 delete [] vcone;
1304 if (allocated)
1305 Polyhedron_Free(P);
1306 value_clear(factor);
1309 static void uni_polynom(int param, Vector *c, evalue *EP)
1311 unsigned dim = c->Size-2;
1312 value_init(EP->d);
1313 value_set_si(EP->d,0);
1314 EP->x.p = new_enode(polynomial, dim+1, param+1);
1315 for (int j = 0; j <= dim; ++j)
1316 evalue_set(&EP->x.p->arr[j], c->p[j], c->p[dim+1]);
1319 static void multi_polynom(Vector *c, evalue* X, evalue *EP)
1321 unsigned dim = c->Size-2;
1322 evalue EC;
1324 value_init(EC.d);
1325 evalue_set(&EC, c->p[dim], c->p[dim+1]);
1327 value_init(EP->d);
1328 evalue_set(EP, c->p[dim], c->p[dim+1]);
1330 for (int i = dim-1; i >= 0; --i) {
1331 emul(X, EP);
1332 value_assign(EC.x.n, c->p[i]);
1333 eadd(&EC, EP);
1335 free_evalue_refs(&EC);
1338 Polyhedron *unfringe (Polyhedron *P, unsigned MaxRays)
1340 int len = P->Dimension+2;
1341 Polyhedron *T, *R = P;
1342 Value g;
1343 value_init(g);
1344 Vector *row = Vector_Alloc(len);
1345 value_set_si(row->p[0], 1);
1347 R = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
1349 Matrix *M = Matrix_Alloc(2, len-1);
1350 value_set_si(M->p[1][len-2], 1);
1351 for (int v = 0; v < P->Dimension; ++v) {
1352 value_set_si(M->p[0][v], 1);
1353 Polyhedron *I = Polyhedron_Image(P, M, 2+1);
1354 value_set_si(M->p[0][v], 0);
1355 for (int r = 0; r < I->NbConstraints; ++r) {
1356 if (value_zero_p(I->Constraint[r][0]))
1357 continue;
1358 if (value_zero_p(I->Constraint[r][1]))
1359 continue;
1360 if (value_one_p(I->Constraint[r][1]))
1361 continue;
1362 if (value_mone_p(I->Constraint[r][1]))
1363 continue;
1364 value_absolute(g, I->Constraint[r][1]);
1365 Vector_Set(row->p+1, 0, len-2);
1366 value_division(row->p[1+v], I->Constraint[r][1], g);
1367 mpz_fdiv_q(row->p[len-1], I->Constraint[r][2], g);
1368 T = R;
1369 R = AddConstraints(row->p, 1, R, MaxRays);
1370 if (T != P)
1371 Polyhedron_Free(T);
1373 Polyhedron_Free(I);
1375 Matrix_Free(M);
1376 Vector_Free(row);
1377 value_clear(g);
1378 return R;
1381 static Polyhedron *reduce_domain(Polyhedron *D, Matrix *CT, Polyhedron *CEq,
1382 Polyhedron **fVD, int nd, unsigned MaxRays)
1384 assert(CEq);
1386 Polyhedron *Dt;
1387 Dt = CT ? DomainPreimage(D, CT, MaxRays) : D;
1388 Polyhedron *rVD = DomainIntersection(Dt, CEq, MaxRays);
1390 /* if rVD is empty or too small in geometric dimension */
1391 if(!rVD || emptyQ(rVD) ||
1392 (rVD->Dimension-rVD->NbEq < Dt->Dimension-Dt->NbEq-CEq->NbEq)) {
1393 if(rVD)
1394 Domain_Free(rVD);
1395 if (CT)
1396 Domain_Free(Dt);
1397 return 0; /* empty validity domain */
1400 if (CT)
1401 Domain_Free(Dt);
1403 fVD[nd] = Domain_Copy(rVD);
1404 for (int i = 0 ; i < nd; ++i) {
1405 Polyhedron *I = DomainIntersection(fVD[nd], fVD[i], MaxRays);
1406 if (emptyQ(I)) {
1407 Domain_Free(I);
1408 continue;
1410 Polyhedron *F = DomainSimplify(I, fVD[nd], MaxRays);
1411 if (F->NbEq == 1) {
1412 Polyhedron *T = rVD;
1413 rVD = DomainDifference(rVD, F, MaxRays);
1414 Domain_Free(T);
1416 Domain_Free(F);
1417 Domain_Free(I);
1420 rVD = DomainConstraintSimplify(rVD, MaxRays);
1421 if (emptyQ(rVD)) {
1422 Domain_Free(fVD[nd]);
1423 Domain_Free(rVD);
1424 return 0;
1427 Value c;
1428 value_init(c);
1429 barvinok_count(rVD, &c, MaxRays);
1430 if (value_zero_p(c)) {
1431 Domain_Free(rVD);
1432 rVD = 0;
1434 value_clear(c);
1436 return rVD;
1439 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1441 //P = unfringe(P, MaxRays);
1442 Polyhedron *CEq = NULL, *rVD, *pVD, *CA;
1443 Matrix *CT = NULL;
1444 Param_Polyhedron *PP = NULL;
1445 Param_Domain *D, *next;
1446 Param_Vertices *V;
1447 int r = 0;
1448 unsigned nparam = C->Dimension;
1449 evalue *eres;
1450 ALLOC(eres);
1451 value_init(eres->d);
1452 value_set_si(eres->d, 0);
1454 evalue factor;
1455 value_init(factor.d);
1456 evalue_set_si(&factor, 1, 1);
1458 CA = align_context(C, P->Dimension, MaxRays);
1459 P = DomainIntersection(P, CA, MaxRays);
1460 Polyhedron_Free(CA);
1462 if (C->Dimension == 0 || emptyQ(P)) {
1463 constant:
1464 eres->x.p = new_enode(partition, 2, C->Dimension);
1465 EVALUE_SET_DOMAIN(eres->x.p->arr[0],
1466 DomainConstraintSimplify(CEq ? CEq : Polyhedron_Copy(C), MaxRays));
1467 value_set_si(eres->x.p->arr[1].d, 1);
1468 value_init(eres->x.p->arr[1].x.n);
1469 if (emptyQ(P))
1470 value_set_si(eres->x.p->arr[1].x.n, 0);
1471 else
1472 barvinok_count(P, &eres->x.p->arr[1].x.n, MaxRays);
1473 out:
1474 emul(&factor, eres);
1475 reduce_evalue(eres);
1476 free_evalue_refs(&factor);
1477 Polyhedron_Free(P);
1478 if (CT)
1479 Matrix_Free(CT);
1480 if (PP)
1481 Param_Polyhedron_Free(PP);
1483 return eres;
1485 for (r = 0; r < P->NbRays; ++r)
1486 if (value_zero_p(P->Ray[r][0]) ||
1487 value_zero_p(P->Ray[r][P->Dimension+1])) {
1488 int i;
1489 for (i = P->Dimension - nparam; i < P->Dimension; ++i)
1490 if (value_notzero_p(P->Ray[r][i+1]))
1491 break;
1492 if (i >= P->Dimension)
1493 break;
1495 if (r < P->NbRays)
1496 goto constant;
1498 if (P->NbEq != 0) {
1499 Matrix *f;
1500 P = remove_equalities_p(P, P->Dimension-nparam, &f);
1501 mask(f, &factor);
1502 Matrix_Free(f);
1504 if (P->Dimension == nparam) {
1505 CEq = P;
1506 P = Universe_Polyhedron(0);
1507 goto constant;
1510 Polyhedron *Q = ParamPolyhedron_Reduce(P, P->Dimension-nparam, &factor);
1511 if (Q) {
1512 Polyhedron_Free(P);
1513 if (Q->Dimension == nparam) {
1514 CEq = Q;
1515 P = Universe_Polyhedron(0);
1516 goto constant;
1518 P = Q;
1520 Polyhedron *oldP = P;
1521 PP = Polyhedron2Param_SimplifiedDomain(&P,C,MaxRays,&CEq,&CT);
1522 if (P != oldP)
1523 Polyhedron_Free(oldP);
1525 if (isIdentity(CT)) {
1526 Matrix_Free(CT);
1527 CT = NULL;
1528 } else {
1529 assert(CT->NbRows != CT->NbColumns);
1530 if (CT->NbRows == 1) // no more parameters
1531 goto constant;
1532 nparam = CT->NbRows - 1;
1535 unsigned dim = P->Dimension - nparam;
1536 Polyhedron ** vcone = new (Polyhedron *)[PP->nbV];
1537 int * npos = new int[PP->nbV];
1538 int * nneg = new int[PP->nbV];
1539 vec_ZZ sign;
1541 int i;
1542 for (i = 0, V = PP->V; V; ++i, V = V->next) {
1543 Polyhedron *C = supporting_cone_p(P, V);
1544 decompose(C, &vcone[i], &npos[i], &nneg[i], MaxRays);
1547 Vector *c = Vector_Alloc(dim+2);
1549 int nd;
1550 for (nd = 0, D=PP->D; D; ++nd, D=D->next);
1551 struct section { Polyhedron *D; evalue E; };
1552 section *s = new section[nd];
1553 Polyhedron **fVD = new (Polyhedron*)[nd];
1555 for(nd = 0, D=PP->D; D; D=next) {
1556 next = D->next;
1558 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
1559 fVD, nd, MaxRays);
1560 if (!rVD)
1561 continue;
1563 pVD = CT ? DomainImage(rVD,CT,MaxRays) : rVD;
1565 int ncone = 0;
1566 sign.SetLength(ncone);
1567 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1568 ncone += npos[_i] + nneg[_i];
1569 sign.SetLength(ncone);
1570 for (int k = 0; k < npos[_i]; ++k)
1571 sign[ncone-nneg[_i]-k-1] = 1;
1572 for (int k = 0; k < nneg[_i]; ++k)
1573 sign[ncone-k-1] = -1;
1574 END_FORALL_PVertex_in_ParamPolyhedron;
1576 mat_ZZ rays;
1577 rays.SetDims(ncone * dim, dim);
1578 r = 0;
1579 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1580 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1581 assert(i->NbRays-1 == dim);
1582 add_rays(rays, i, &r);
1584 END_FORALL_PVertex_in_ParamPolyhedron;
1585 vec_ZZ lambda;
1586 nonorthog(rays, lambda);
1588 mat_ZZ den;
1589 den.SetDims(ncone,dim);
1590 term_info *num = new term_info[ncone];
1592 int f = 0;
1593 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1594 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1595 lattice_point(V, i, lambda, &num[f], pVD);
1596 normalize(i, lambda, sign[f], num[f].constant, den[f]);
1597 ++f;
1599 END_FORALL_PVertex_in_ParamPolyhedron;
1600 ZZ min = num[0].constant;
1601 for (int j = 1; j < ncone; ++j)
1602 if (num[j].constant < min)
1603 min = num[j].constant;
1604 for (int j = 0; j < ncone; ++j)
1605 num[j].constant -= min;
1606 f = 0;
1607 value_init(s[nd].E.d);
1608 evalue_set_si(&s[nd].E, 0, 1);
1609 mpq_t count;
1610 mpq_init(count);
1611 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1612 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1613 dpoly n(dim, den[f][0], 1);
1614 for (int k = 1; k < dim; ++k) {
1615 dpoly fact(dim, den[f][k], 1);
1616 n *= fact;
1618 if (num[f].E != NULL) {
1619 ZZ one(INIT_VAL, 1);
1620 dpoly_n d(dim, num[f].constant, one);
1621 d.div(n, c, sign[f]);
1622 evalue EV;
1623 multi_polynom(c, num[f].E, &EV);
1624 eadd(&EV , &s[nd].E);
1625 free_evalue_refs(&EV);
1626 free_evalue_refs(num[f].E);
1627 delete num[f].E;
1628 } else if (num[f].pos != -1) {
1629 dpoly_n d(dim, num[f].constant, num[f].coeff);
1630 d.div(n, c, sign[f]);
1631 evalue EV;
1632 uni_polynom(num[f].pos, c, &EV);
1633 eadd(&EV , &s[nd].E);
1634 free_evalue_refs(&EV);
1635 } else {
1636 mpq_set_si(count, 0, 1);
1637 dpoly d(dim, num[f].constant);
1638 d.div(n, count, sign[f]);
1639 evalue EV;
1640 value_init(EV.d);
1641 evalue_set(&EV, &count[0]._mp_num, &count[0]._mp_den);
1642 eadd(&EV , &s[nd].E);
1643 free_evalue_refs(&EV);
1645 ++f;
1647 END_FORALL_PVertex_in_ParamPolyhedron;
1649 mpq_clear(count);
1650 delete [] num;
1652 if (CT)
1653 addeliminatedparams_evalue(&s[nd].E, CT);
1654 s[nd].D = rVD;
1655 ++nd;
1656 if (rVD != pVD)
1657 Domain_Free(pVD);
1660 if (nd == 0)
1661 evalue_set_si(eres, 0, 1);
1662 else {
1663 eres->x.p = new_enode(partition, 2*nd, C->Dimension);
1664 for (int j = 0; j < nd; ++j) {
1665 EVALUE_SET_DOMAIN(eres->x.p->arr[2*j], s[j].D);
1666 value_clear(eres->x.p->arr[2*j+1].d);
1667 eres->x.p->arr[2*j+1] = s[j].E;
1668 Domain_Free(fVD[j]);
1671 delete [] s;
1672 delete [] fVD;
1674 Vector_Free(c);
1676 for (int j = 0; j < PP->nbV; ++j)
1677 Domain_Free(vcone[j]);
1678 delete [] vcone;
1679 delete [] npos;
1680 delete [] nneg;
1682 if (CEq)
1683 Polyhedron_Free(CEq);
1685 goto out;
1688 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1690 evalue *EP = barvinok_enumerate_ev(P, C, MaxRays);
1692 return partition2enumeration(EP);
1695 static void SwapColumns(Value **V, int n, int i, int j)
1697 for (int r = 0; r < n; ++r)
1698 value_swap(V[r][i], V[r][j]);
1701 static void SwapColumns(Polyhedron *P, int i, int j)
1703 SwapColumns(P->Constraint, P->NbConstraints, i, j);
1704 SwapColumns(P->Ray, P->NbRays, i, j);
1707 static bool SplitOnConstraint(Polyhedron *P, int i, int l, int u,
1708 int nvar, int len, int exist, int MaxRays,
1709 Vector *row, Value& f, bool independent,
1710 Polyhedron **pos, Polyhedron **neg)
1712 value_oppose(f, P->Constraint[u][nvar+i+1]);
1713 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
1714 row->p+1,
1715 f, P->Constraint[l][nvar+i+1], len-1);
1717 //printf("l: %d, u: %d\n", l, u);
1718 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
1719 value_substract(row->p[len-1], row->p[len-1], f);
1720 value_set_si(f, -1);
1721 Vector_Scale(row->p+1, row->p+1, f, len-1);
1722 value_decrement(row->p[len-1], row->p[len-1]);
1723 Vector_Gcd(row->p+1, len - 2, &f);
1724 if (value_notone_p(f)) {
1725 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
1726 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
1728 *neg = AddConstraints(row->p, 1, P, MaxRays);
1730 /* We found an independent, but useless constraint
1731 * Maybe we should detect this earlier and not
1732 * mark the variable as INDEPENDENT
1734 if (emptyQ((*neg))) {
1735 Polyhedron_Free(*neg);
1736 return false;
1739 value_set_si(f, -1);
1740 Vector_Scale(row->p+1, row->p+1, f, len-1);
1741 value_decrement(row->p[len-1], row->p[len-1]);
1742 *pos = AddConstraints(row->p, 1, P, MaxRays);
1744 if (emptyQ((*pos))) {
1745 Polyhedron_Free(*neg);
1746 Polyhedron_Free(*pos);
1747 return false;
1750 return true;
1754 * unimodularly transform P such that constraint r is transformed
1755 * into a constraint that involves only a single (the first)
1756 * existential variable
1759 static Polyhedron *rotate_along(Polyhedron *P, int r, int nvar, int exist,
1760 unsigned MaxRays)
1762 Value g;
1763 value_init(g);
1765 Vector *row = Vector_Alloc(exist);
1766 Vector_Copy(P->Constraint[r]+1+nvar, row->p, exist);
1767 Vector_Gcd(row->p, exist, &g);
1768 if (value_notone_p(g))
1769 Vector_AntiScale(row->p, row->p, g, exist);
1770 value_clear(g);
1772 Matrix *M = unimodular_complete(row);
1773 Matrix *M2 = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
1774 for (r = 0; r < nvar; ++r)
1775 value_set_si(M2->p[r][r], 1);
1776 for ( ; r < nvar+exist; ++r)
1777 Vector_Copy(M->p[r-nvar], M2->p[r]+nvar, exist);
1778 for ( ; r < P->Dimension+1; ++r)
1779 value_set_si(M2->p[r][r], 1);
1780 Polyhedron *T = Polyhedron_Image(P, M2, MaxRays);
1782 Matrix_Free(M2);
1783 Matrix_Free(M);
1784 Vector_Free(row);
1786 return T;
1789 static bool SplitOnVar(Polyhedron *P, int i,
1790 int nvar, int len, int exist, int MaxRays,
1791 Vector *row, Value& f, bool independent,
1792 Polyhedron **pos, Polyhedron **neg)
1794 int j;
1796 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
1797 if (value_negz_p(P->Constraint[l][nvar+i+1]))
1798 continue;
1800 if (independent) {
1801 for (j = 0; j < exist; ++j)
1802 if (j != i && value_notzero_p(P->Constraint[l][nvar+j+1]))
1803 break;
1804 if (j < exist)
1805 continue;
1808 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
1809 if (value_posz_p(P->Constraint[u][nvar+i+1]))
1810 continue;
1812 if (independent) {
1813 for (j = 0; j < exist; ++j)
1814 if (j != i && value_notzero_p(P->Constraint[u][nvar+j+1]))
1815 break;
1816 if (j < exist)
1817 continue;
1820 if (SplitOnConstraint(P, i, l, u,
1821 nvar, len, exist, MaxRays,
1822 row, f, independent,
1823 pos, neg)) {
1824 if (independent) {
1825 if (i != 0)
1826 SwapColumns(*neg, nvar+1, nvar+1+i);
1828 return true;
1833 return false;
1836 static bool double_bound_pair(Polyhedron *P, int nvar, int exist,
1837 int i, int l1, int l2,
1838 Polyhedron **pos, Polyhedron **neg)
1840 Value f;
1841 value_init(f);
1842 Vector *row = Vector_Alloc(P->Dimension+2);
1843 value_set_si(row->p[0], 1);
1844 value_oppose(f, P->Constraint[l1][nvar+i+1]);
1845 Vector_Combine(P->Constraint[l1]+1, P->Constraint[l2]+1,
1846 row->p+1,
1847 P->Constraint[l2][nvar+i+1], f,
1848 P->Dimension+1);
1849 ConstraintSimplify(row->p, row->p, P->Dimension+2, &f);
1850 *pos = AddConstraints(row->p, 1, P, 0);
1851 value_set_si(f, -1);
1852 Vector_Scale(row->p+1, row->p+1, f, P->Dimension+1);
1853 value_decrement(row->p[P->Dimension+1], row->p[P->Dimension+1]);
1854 *neg = AddConstraints(row->p, 1, P, 0);
1855 Vector_Free(row);
1856 value_clear(f);
1858 return !emptyQ((*pos)) && !emptyQ((*neg));
1861 static bool double_bound(Polyhedron *P, int nvar, int exist,
1862 Polyhedron **pos, Polyhedron **neg)
1864 for (int i = 0; i < exist; ++i) {
1865 int l1, l2;
1866 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1867 if (value_negz_p(P->Constraint[l1][nvar+i+1]))
1868 continue;
1869 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1870 if (value_negz_p(P->Constraint[l2][nvar+i+1]))
1871 continue;
1872 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1873 return true;
1876 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1877 if (value_posz_p(P->Constraint[l1][nvar+i+1]))
1878 continue;
1879 if (l1 < P->NbConstraints)
1880 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1881 if (value_posz_p(P->Constraint[l2][nvar+i+1]))
1882 continue;
1883 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1884 return true;
1887 return false;
1889 return false;
1892 enum constraint {
1893 ALL_POS = 1 << 0,
1894 ONE_NEG = 1 << 1,
1895 INDEPENDENT = 1 << 2,
1898 static evalue* enumerate_or(Polyhedron *D,
1899 unsigned exist, unsigned nparam, unsigned MaxRays)
1901 #ifdef DEBUG_ER
1902 fprintf(stderr, "\nER: Or\n");
1903 #endif /* DEBUG_ER */
1905 Polyhedron *N = D->next;
1906 D->next = 0;
1907 evalue *EP =
1908 barvinok_enumerate_e(D, exist, nparam, MaxRays);
1909 Polyhedron_Free(D);
1911 for (D = N; D; D = N) {
1912 N = D->next;
1913 D->next = 0;
1915 evalue *EN =
1916 barvinok_enumerate_e(D, exist, nparam, MaxRays);
1918 eor(EN, EP);
1919 free_evalue_refs(EN);
1920 free(EN);
1921 Polyhedron_Free(D);
1924 reduce_evalue(EP);
1926 return EP;
1929 static evalue* enumerate_sum(Polyhedron *P,
1930 unsigned exist, unsigned nparam, unsigned MaxRays)
1932 int nvar = P->Dimension - exist - nparam;
1933 int toswap = nvar < exist ? nvar : exist;
1934 for (int i = 0; i < toswap; ++i)
1935 SwapColumns(P, 1 + i, nvar+exist - i);
1936 nparam += nvar;
1938 #ifdef DEBUG_ER
1939 fprintf(stderr, "\nER: Sum\n");
1940 #endif /* DEBUG_ER */
1942 evalue *EP = barvinok_enumerate_e(P, exist, nparam, MaxRays);
1944 for (int i = 0; i < /* nvar */ nparam; ++i) {
1945 Matrix *C = Matrix_Alloc(1, 1 + nparam + 1);
1946 value_set_si(C->p[0][0], 1);
1947 evalue split;
1948 value_init(split.d);
1949 value_set_si(split.d, 0);
1950 split.x.p = new_enode(partition, 4, nparam);
1951 value_set_si(C->p[0][1+i], 1);
1952 Matrix *C2 = Matrix_Copy(C);
1953 EVALUE_SET_DOMAIN(split.x.p->arr[0],
1954 Constraints2Polyhedron(C2, MaxRays));
1955 Matrix_Free(C2);
1956 evalue_set_si(&split.x.p->arr[1], 1, 1);
1957 value_set_si(C->p[0][1+i], -1);
1958 value_set_si(C->p[0][1+nparam], -1);
1959 EVALUE_SET_DOMAIN(split.x.p->arr[2],
1960 Constraints2Polyhedron(C, MaxRays));
1961 evalue_set_si(&split.x.p->arr[3], 1, 1);
1962 emul(&split, EP);
1963 free_evalue_refs(&split);
1964 Matrix_Free(C);
1966 reduce_evalue(EP);
1967 evalue_range_reduction(EP);
1969 evalue_frac2floor(EP);
1971 evalue *sum = esum(EP, nvar);
1973 free_evalue_refs(EP);
1974 free(EP);
1975 EP = sum;
1977 evalue_range_reduction(EP);
1979 return EP;
1982 static evalue* split_sure(Polyhedron *P, Polyhedron *S,
1983 unsigned exist, unsigned nparam, unsigned MaxRays)
1985 int nvar = P->Dimension - exist - nparam;
1987 Matrix *M = Matrix_Alloc(exist, S->Dimension+2);
1988 for (int i = 0; i < exist; ++i)
1989 value_set_si(M->p[i][nvar+i+1], 1);
1990 Polyhedron *O = S;
1991 S = DomainAddRays(S, M, MaxRays);
1992 Polyhedron_Free(O);
1993 Polyhedron *F = DomainAddRays(P, M, MaxRays);
1994 Polyhedron *D = DomainDifference(F, S, MaxRays);
1995 O = D;
1996 D = Disjoint_Domain(D, 0, MaxRays);
1997 Polyhedron_Free(F);
1998 Domain_Free(O);
1999 Matrix_Free(M);
2001 M = Matrix_Alloc(P->Dimension+1-exist, P->Dimension+1);
2002 for (int j = 0; j < nvar; ++j)
2003 value_set_si(M->p[j][j], 1);
2004 for (int j = 0; j < nparam+1; ++j)
2005 value_set_si(M->p[nvar+j][nvar+exist+j], 1);
2006 Polyhedron *T = Polyhedron_Image(S, M, MaxRays);
2007 evalue *EP = barvinok_enumerate_e(T, 0, nparam, MaxRays);
2008 Polyhedron_Free(S);
2009 Polyhedron_Free(T);
2010 Matrix_Free(M);
2012 for (Polyhedron *Q = D; Q; Q = Q->next) {
2013 Polyhedron *N = Q->next;
2014 Q->next = 0;
2015 T = DomainIntersection(P, Q, MaxRays);
2016 evalue *E = barvinok_enumerate_e(T, exist, nparam, MaxRays);
2017 eadd(E, EP);
2018 free_evalue_refs(E);
2019 free(E);
2020 Polyhedron_Free(T);
2021 Q->next = N;
2023 Domain_Free(D);
2024 return EP;
2027 static evalue* enumerate_sure(Polyhedron *P,
2028 unsigned exist, unsigned nparam, unsigned MaxRays)
2030 int i;
2031 Polyhedron *S = P;
2032 int nvar = P->Dimension - exist - nparam;
2033 Value lcm;
2034 Value f;
2035 value_init(lcm);
2036 value_init(f);
2038 for (i = 0; i < exist; ++i) {
2039 Matrix *M = Matrix_Alloc(S->NbConstraints, S->Dimension+2);
2040 int c = 0;
2041 value_set_si(lcm, 1);
2042 for (int j = 0; j < S->NbConstraints; ++j) {
2043 if (value_negz_p(S->Constraint[j][1+nvar+i]))
2044 continue;
2045 if (value_one_p(S->Constraint[j][1+nvar+i]))
2046 continue;
2047 value_lcm(lcm, S->Constraint[j][1+nvar+i], &lcm);
2050 for (int j = 0; j < S->NbConstraints; ++j) {
2051 if (value_negz_p(S->Constraint[j][1+nvar+i]))
2052 continue;
2053 if (value_one_p(S->Constraint[j][1+nvar+i]))
2054 continue;
2055 value_division(f, lcm, S->Constraint[j][1+nvar+i]);
2056 Vector_Scale(S->Constraint[j], M->p[c], f, S->Dimension+2);
2057 value_substract(M->p[c][S->Dimension+1],
2058 M->p[c][S->Dimension+1],
2059 lcm);
2060 value_increment(M->p[c][S->Dimension+1],
2061 M->p[c][S->Dimension+1]);
2062 ++c;
2064 Polyhedron *O = S;
2065 S = AddConstraints(M->p[0], c, S, MaxRays);
2066 if (O != P)
2067 Polyhedron_Free(O);
2068 Matrix_Free(M);
2069 if (emptyQ(S)) {
2070 Polyhedron_Free(S);
2071 value_clear(lcm);
2072 value_clear(f);
2073 return 0;
2076 value_clear(lcm);
2077 value_clear(f);
2079 #ifdef DEBUG_ER
2080 fprintf(stderr, "\nER: Sure\n");
2081 #endif /* DEBUG_ER */
2083 return split_sure(P, S, exist, nparam, MaxRays);
2086 static evalue* enumerate_sure2(Polyhedron *P,
2087 unsigned exist, unsigned nparam, unsigned MaxRays)
2089 int nvar = P->Dimension - exist - nparam;
2090 int r;
2091 for (r = 0; r < P->NbRays; ++r)
2092 if (value_one_p(P->Ray[r][0]) &&
2093 value_one_p(P->Ray[r][P->Dimension+1]))
2094 break;
2096 if (r >= P->NbRays)
2097 return 0;
2099 Matrix *M = Matrix_Alloc(nvar + 1 + nparam, P->Dimension+2);
2100 for (int i = 0; i < nvar; ++i)
2101 value_set_si(M->p[i][1+i], 1);
2102 for (int i = 0; i < nparam; ++i)
2103 value_set_si(M->p[i+nvar][1+nvar+exist+i], 1);
2104 Vector_Copy(P->Ray[r]+1+nvar, M->p[nvar+nparam]+1+nvar, exist);
2105 value_set_si(M->p[nvar+nparam][0], 1);
2106 value_set_si(M->p[nvar+nparam][P->Dimension+1], 1);
2107 Polyhedron * F = Rays2Polyhedron(M, MaxRays);
2108 Matrix_Free(M);
2110 Polyhedron *I = DomainIntersection(F, P, MaxRays);
2111 Polyhedron_Free(F);
2113 #ifdef DEBUG_ER
2114 fprintf(stderr, "\nER: Sure2\n");
2115 #endif /* DEBUG_ER */
2117 return split_sure(P, I, exist, nparam, MaxRays);
2120 static evalue* enumerate_cyclic(Polyhedron *P,
2121 unsigned exist, unsigned nparam,
2122 evalue * EP, int r, int p, unsigned MaxRays)
2124 int nvar = P->Dimension - exist - nparam;
2126 /* If EP in its fractional maps only contains references
2127 * to the remainder parameter with appropriate coefficients
2128 * then we could in principle avoid adding existentially
2129 * quantified variables to the validity domains.
2130 * We'd have to replace the remainder by m { p/m }
2131 * and multiply with an appropriate factor that is one
2132 * only in the appropriate range.
2133 * This last multiplication can be avoided if EP
2134 * has a single validity domain with no (further)
2135 * constraints on the remainder parameter
2138 Matrix *CT = Matrix_Alloc(nparam+1, nparam+3);
2139 Matrix *M = Matrix_Alloc(1, 1+nparam+3);
2140 for (int j = 0; j < nparam; ++j)
2141 if (j != p)
2142 value_set_si(CT->p[j][j], 1);
2143 value_set_si(CT->p[p][nparam+1], 1);
2144 value_set_si(CT->p[nparam][nparam+2], 1);
2145 value_set_si(M->p[0][1+p], -1);
2146 value_absolute(M->p[0][1+nparam], P->Ray[0][1+nvar+exist+p]);
2147 value_set_si(M->p[0][1+nparam+1], 1);
2148 Polyhedron *CEq = Constraints2Polyhedron(M, 1);
2149 Matrix_Free(M);
2150 addeliminatedparams_enum(EP, CT, CEq, MaxRays, nparam);
2151 Polyhedron_Free(CEq);
2152 Matrix_Free(CT);
2154 return EP;
2157 static evalue* enumerate_line(Polyhedron *P,
2158 unsigned exist, unsigned nparam, unsigned MaxRays)
2160 if (P->NbBid == 0)
2161 return 0;
2163 #ifdef DEBUG_ER
2164 fprintf(stderr, "\nER: Line\n");
2165 #endif /* DEBUG_ER */
2167 int nvar = P->Dimension - exist - nparam;
2168 int i, j;
2169 for (i = 0; i < nparam; ++i)
2170 if (value_notzero_p(P->Ray[0][1+nvar+exist+i]))
2171 break;
2172 assert(i < nparam);
2173 for (j = i+1; j < nparam; ++j)
2174 if (value_notzero_p(P->Ray[0][1+nvar+exist+i]))
2175 break;
2176 assert(j >= nparam); // for now
2178 Matrix *M = Matrix_Alloc(2, P->Dimension+2);
2179 value_set_si(M->p[0][0], 1);
2180 value_set_si(M->p[0][1+nvar+exist+i], 1);
2181 value_set_si(M->p[1][0], 1);
2182 value_set_si(M->p[1][1+nvar+exist+i], -1);
2183 value_absolute(M->p[1][1+P->Dimension], P->Ray[0][1+nvar+exist+i]);
2184 value_decrement(M->p[1][1+P->Dimension], M->p[1][1+P->Dimension]);
2185 Polyhedron *S = AddConstraints(M->p[0], 2, P, MaxRays);
2186 evalue *EP = barvinok_enumerate_e(S, exist, nparam, MaxRays);
2187 Polyhedron_Free(S);
2188 Matrix_Free(M);
2190 return enumerate_cyclic(P, exist, nparam, EP, 0, i, MaxRays);
2193 static int single_param_pos(Polyhedron*P, unsigned exist, unsigned nparam,
2194 int r)
2196 int nvar = P->Dimension - exist - nparam;
2197 if (First_Non_Zero(P->Ray[r]+1, nvar) != -1)
2198 return -1;
2199 int i = First_Non_Zero(P->Ray[r]+1+nvar+exist, nparam);
2200 if (i == -1)
2201 return -1;
2202 if (First_Non_Zero(P->Ray[r]+1+nvar+exist+1, nparam-i-1) != -1)
2203 return -1;
2204 return i;
2207 static evalue* enumerate_remove_ray(Polyhedron *P, int r,
2208 unsigned exist, unsigned nparam, unsigned MaxRays)
2210 #ifdef DEBUG_ER
2211 fprintf(stderr, "\nER: RedundantRay\n");
2212 #endif /* DEBUG_ER */
2214 Value one;
2215 value_init(one);
2216 value_set_si(one, 1);
2217 int len = P->NbRays-1;
2218 Matrix *M = Matrix_Alloc(2 * len, P->Dimension+2);
2219 Vector_Copy(P->Ray[0], M->p[0], r * (P->Dimension+2));
2220 Vector_Copy(P->Ray[r+1], M->p[r], (len-r) * (P->Dimension+2));
2221 for (int j = 0; j < P->NbRays; ++j) {
2222 if (j == r)
2223 continue;
2224 Vector_Combine(P->Ray[j], P->Ray[r], M->p[len+j-(j>r)],
2225 one, P->Ray[j][P->Dimension+1], P->Dimension+2);
2228 P = Rays2Polyhedron(M, MaxRays);
2229 Matrix_Free(M);
2230 evalue *EP = barvinok_enumerate_e(P, exist, nparam, MaxRays);
2231 Polyhedron_Free(P);
2232 value_clear(one);
2234 return EP;
2237 static evalue* enumerate_redundant_ray(Polyhedron *P,
2238 unsigned exist, unsigned nparam, unsigned MaxRays)
2240 assert(P->NbBid == 0);
2241 int nvar = P->Dimension - exist - nparam;
2242 Value m;
2243 value_init(m);
2245 for (int r = 0; r < P->NbRays; ++r) {
2246 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
2247 continue;
2248 int i1 = single_param_pos(P, exist, nparam, r);
2249 if (i1 == -1)
2250 continue;
2251 for (int r2 = r+1; r2 < P->NbRays; ++r2) {
2252 if (value_notzero_p(P->Ray[r2][P->Dimension+1]))
2253 continue;
2254 int i2 = single_param_pos(P, exist, nparam, r2);
2255 if (i2 == -1)
2256 continue;
2257 if (i1 != i2)
2258 continue;
2260 value_division(m, P->Ray[r][1+nvar+exist+i1],
2261 P->Ray[r2][1+nvar+exist+i1]);
2262 value_multiply(m, m, P->Ray[r2][1+nvar+exist+i1]);
2263 /* r2 divides r => r redundant */
2264 if (value_eq(m, P->Ray[r][1+nvar+exist+i1])) {
2265 value_clear(m);
2266 return enumerate_remove_ray(P, r, exist, nparam, MaxRays);
2269 value_division(m, P->Ray[r2][1+nvar+exist+i1],
2270 P->Ray[r][1+nvar+exist+i1]);
2271 value_multiply(m, m, P->Ray[r][1+nvar+exist+i1]);
2272 /* r divides r2 => r2 redundant */
2273 if (value_eq(m, P->Ray[r2][1+nvar+exist+i1])) {
2274 value_clear(m);
2275 return enumerate_remove_ray(P, r2, exist, nparam, MaxRays);
2279 value_clear(m);
2280 return 0;
2283 static evalue* enumerate_ray(Polyhedron *P,
2284 unsigned exist, unsigned nparam, unsigned MaxRays)
2286 assert(P->NbBid == 0);
2288 int r;
2289 for (r = 0; r < P->NbRays; ++r)
2290 if (value_zero_p(P->Ray[r][P->Dimension+1]))
2291 break;
2292 if (r >= P->NbRays)
2293 return 0;
2295 int r2;
2296 for (r2 = r+1; r2 < P->NbRays; ++r2)
2297 if (value_zero_p(P->Ray[r2][P->Dimension+1]))
2298 break;
2299 if (r2 < P->NbRays)
2300 return 0;
2302 #ifdef DEBUG_ER
2303 fprintf(stderr, "\nER: Ray\n");
2304 #endif /* DEBUG_ER */
2306 int nvar = P->Dimension - exist - nparam;
2307 Value m;
2308 Value one;
2309 value_init(m);
2310 value_init(one);
2311 value_set_si(one, 1);
2312 int i, j;
2313 for (i = 0; i < nparam; ++i)
2314 if (value_notzero_p(P->Ray[r][1+nvar+exist+i]))
2315 break;
2316 assert(i < nparam);
2317 for (j = i+1; j < nparam; ++j)
2318 if (value_notzero_p(P->Ray[r][1+nvar+exist+i]))
2319 break;
2320 assert(j >= nparam); // for now
2322 Matrix *M = Matrix_Alloc(P->NbRays, P->Dimension+2);
2323 for (j = 0; j < P->NbRays; ++j) {
2324 Vector_Combine(P->Ray[j], P->Ray[r], M->p[j],
2325 one, P->Ray[j][P->Dimension+1], P->Dimension+2);
2327 Polyhedron *S = Rays2Polyhedron(M, MaxRays);
2328 Polyhedron *D = DomainDifference(P, S, MaxRays);
2329 assert(D->next == 0);
2330 evalue *EP = barvinok_enumerate_e(D, exist, nparam, MaxRays);
2331 Polyhedron_Free(S);
2332 Polyhedron_Free(D);
2333 Matrix_Free(M);
2334 value_clear(one);
2335 value_clear(m);
2337 return enumerate_cyclic(P, exist, nparam, EP, r, i, MaxRays);
2340 static evalue* new_zero_ep()
2342 evalue *EP;
2343 ALLOC(EP);
2344 value_init(EP->d);
2345 evalue_set_si(EP, 0, 1);
2346 return EP;
2349 static evalue* enumerate_vd(Polyhedron **PA,
2350 unsigned exist, unsigned nparam, unsigned MaxRays)
2352 Polyhedron *P = *PA;
2353 int nvar = P->Dimension - exist - nparam;
2354 Param_Polyhedron *PP = NULL;
2355 Polyhedron *C = Universe_Polyhedron(nparam);
2356 Polyhedron *CEq;
2357 Matrix *CT;
2358 Polyhedron *PR = P;
2359 PP = Polyhedron2Param_SimplifiedDomain(&PR,C,MaxRays,&CEq,&CT);
2360 Polyhedron_Free(C);
2362 int nd;
2363 Param_Domain *D, *last;
2364 Value c;
2365 value_init(c);
2366 for (nd = 0, D=PP->D; D; D=D->next, ++nd)
2369 Polyhedron **VD = new (Polyhedron*)[nd];
2370 Polyhedron **fVD = new (Polyhedron*)[nd];
2371 for(nd = 0, D=PP->D; D; D=D->next) {
2372 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
2373 fVD, nd, MaxRays);
2374 if (!rVD)
2375 continue;
2377 VD[nd++] = rVD;
2378 last = D;
2381 evalue *EP = 0;
2383 if (nd == 0)
2384 EP = new_zero_ep();
2386 /* This doesn't seem to have any effect */
2387 if (nd == 1) {
2388 Polyhedron *CA = align_context(VD[0], P->Dimension, MaxRays);
2389 Polyhedron *O = P;
2390 P = DomainIntersection(P, CA, MaxRays);
2391 if (O != *PA)
2392 Polyhedron_Free(O);
2393 Polyhedron_Free(CA);
2394 if (emptyQ(P))
2395 EP = new_zero_ep();
2398 if (!EP && CT->NbColumns != CT->NbRows) {
2399 Polyhedron *CEqr = DomainImage(CEq, CT, MaxRays);
2400 Polyhedron *CA = align_context(CEqr, PR->Dimension, MaxRays);
2401 Polyhedron *I = DomainIntersection(PR, CA, MaxRays);
2402 Polyhedron_Free(CEqr);
2403 Polyhedron_Free(CA);
2404 #ifdef DEBUG_ER
2405 fprintf(stderr, "\nER: Eliminate\n");
2406 #endif /* DEBUG_ER */
2407 nparam -= CT->NbColumns - CT->NbRows;
2408 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2409 nparam += CT->NbColumns - CT->NbRows;
2410 addeliminatedparams_enum(EP, CT, CEq, MaxRays, nparam);
2411 Polyhedron_Free(I);
2413 if (PR != *PA)
2414 Polyhedron_Free(PR);
2415 PR = 0;
2417 if (!EP && nd > 1) {
2418 #ifdef DEBUG_ER
2419 fprintf(stderr, "\nER: VD\n");
2420 #endif /* DEBUG_ER */
2421 for (int i = 0; i < nd; ++i) {
2422 Polyhedron *CA = align_context(VD[i], P->Dimension, MaxRays);
2423 Polyhedron *I = DomainIntersection(P, CA, MaxRays);
2425 if (i == 0)
2426 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2427 else {
2428 evalue *E = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2429 eadd(E, EP);
2430 free_evalue_refs(E);
2431 free(E);
2433 Polyhedron_Free(I);
2434 Polyhedron_Free(CA);
2438 for (int i = 0; i < nd; ++i) {
2439 Polyhedron_Free(VD[i]);
2440 Polyhedron_Free(fVD[i]);
2442 delete [] VD;
2443 delete [] fVD;
2444 value_clear(c);
2446 if (!EP && nvar == 0) {
2447 Value f;
2448 value_init(f);
2449 Param_Vertices *V, *V2;
2450 Matrix* M = Matrix_Alloc(1, P->Dimension+2);
2452 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2453 bool found = false;
2454 FORALL_PVertex_in_ParamPolyhedron(V2, last, PP) {
2455 if (V == V2) {
2456 found = true;
2457 continue;
2459 if (!found)
2460 continue;
2461 for (int i = 0; i < exist; ++i) {
2462 value_oppose(f, V->Vertex->p[i][nparam+1]);
2463 Vector_Combine(V->Vertex->p[i],
2464 V2->Vertex->p[i],
2465 M->p[0] + 1 + nvar + exist,
2466 V2->Vertex->p[i][nparam+1],
2468 nparam+1);
2469 int j;
2470 for (j = 0; j < nparam; ++j)
2471 if (value_notzero_p(M->p[0][1+nvar+exist+j]))
2472 break;
2473 if (j >= nparam)
2474 continue;
2475 ConstraintSimplify(M->p[0], M->p[0],
2476 P->Dimension+2, &f);
2477 value_set_si(M->p[0][0], 0);
2478 Polyhedron *para = AddConstraints(M->p[0], 1, P,
2479 MaxRays);
2480 if (emptyQ(para)) {
2481 Polyhedron_Free(para);
2482 continue;
2484 Polyhedron *pos, *neg;
2485 value_set_si(M->p[0][0], 1);
2486 value_decrement(M->p[0][P->Dimension+1],
2487 M->p[0][P->Dimension+1]);
2488 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2489 value_set_si(f, -1);
2490 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2491 P->Dimension+1);
2492 value_decrement(M->p[0][P->Dimension+1],
2493 M->p[0][P->Dimension+1]);
2494 value_decrement(M->p[0][P->Dimension+1],
2495 M->p[0][P->Dimension+1]);
2496 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2497 if (emptyQ(neg) && emptyQ(pos)) {
2498 Polyhedron_Free(para);
2499 Polyhedron_Free(pos);
2500 Polyhedron_Free(neg);
2501 continue;
2503 #ifdef DEBUG_ER
2504 fprintf(stderr, "\nER: Order\n");
2505 #endif /* DEBUG_ER */
2506 EP = barvinok_enumerate_e(para, exist, nparam, MaxRays);
2507 evalue *E;
2508 if (!emptyQ(pos)) {
2509 E = barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2510 eadd(E, EP);
2511 free_evalue_refs(E);
2512 free(E);
2514 if (!emptyQ(neg)) {
2515 E = barvinok_enumerate_e(neg, exist, nparam, MaxRays);
2516 eadd(E, EP);
2517 free_evalue_refs(E);
2518 free(E);
2520 Polyhedron_Free(para);
2521 Polyhedron_Free(pos);
2522 Polyhedron_Free(neg);
2523 break;
2525 if (EP)
2526 break;
2527 } END_FORALL_PVertex_in_ParamPolyhedron;
2528 if (EP)
2529 break;
2530 } END_FORALL_PVertex_in_ParamPolyhedron;
2532 if (!EP) {
2533 /* Search for vertex coordinate to split on */
2534 /* First look for one independent of the parameters */
2535 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2536 for (int i = 0; i < exist; ++i) {
2537 int j;
2538 for (j = 0; j < nparam; ++j)
2539 if (value_notzero_p(V->Vertex->p[i][j]))
2540 break;
2541 if (j < nparam)
2542 continue;
2543 value_set_si(M->p[0][0], 1);
2544 Vector_Set(M->p[0]+1, 0, nvar+exist);
2545 Vector_Copy(V->Vertex->p[i],
2546 M->p[0] + 1 + nvar + exist, nparam+1);
2547 value_oppose(M->p[0][1+nvar+i],
2548 V->Vertex->p[i][nparam+1]);
2550 Polyhedron *pos, *neg;
2551 value_set_si(M->p[0][0], 1);
2552 value_decrement(M->p[0][P->Dimension+1],
2553 M->p[0][P->Dimension+1]);
2554 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2555 value_set_si(f, -1);
2556 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2557 P->Dimension+1);
2558 value_decrement(M->p[0][P->Dimension+1],
2559 M->p[0][P->Dimension+1]);
2560 value_decrement(M->p[0][P->Dimension+1],
2561 M->p[0][P->Dimension+1]);
2562 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2563 if (emptyQ(neg) || emptyQ(pos)) {
2564 Polyhedron_Free(pos);
2565 Polyhedron_Free(neg);
2566 continue;
2568 Polyhedron_Free(pos);
2569 value_increment(M->p[0][P->Dimension+1],
2570 M->p[0][P->Dimension+1]);
2571 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2572 #ifdef DEBUG_ER
2573 fprintf(stderr, "\nER: Vertex\n");
2574 #endif /* DEBUG_ER */
2575 pos->next = neg;
2576 EP = enumerate_or(pos, exist, nparam, MaxRays);
2577 break;
2579 if (EP)
2580 break;
2581 } END_FORALL_PVertex_in_ParamPolyhedron;
2584 if (!EP) {
2585 /* Search for vertex coordinate to split on */
2586 /* Now look for one that depends on the parameters */
2587 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2588 for (int i = 0; i < exist; ++i) {
2589 value_set_si(M->p[0][0], 1);
2590 Vector_Set(M->p[0]+1, 0, nvar+exist);
2591 Vector_Copy(V->Vertex->p[i],
2592 M->p[0] + 1 + nvar + exist, nparam+1);
2593 value_oppose(M->p[0][1+nvar+i],
2594 V->Vertex->p[i][nparam+1]);
2596 Polyhedron *pos, *neg;
2597 value_set_si(M->p[0][0], 1);
2598 value_decrement(M->p[0][P->Dimension+1],
2599 M->p[0][P->Dimension+1]);
2600 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2601 value_set_si(f, -1);
2602 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2603 P->Dimension+1);
2604 value_decrement(M->p[0][P->Dimension+1],
2605 M->p[0][P->Dimension+1]);
2606 value_decrement(M->p[0][P->Dimension+1],
2607 M->p[0][P->Dimension+1]);
2608 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2609 if (emptyQ(neg) || emptyQ(pos)) {
2610 Polyhedron_Free(pos);
2611 Polyhedron_Free(neg);
2612 continue;
2614 Polyhedron_Free(pos);
2615 value_increment(M->p[0][P->Dimension+1],
2616 M->p[0][P->Dimension+1]);
2617 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2618 #ifdef DEBUG_ER
2619 fprintf(stderr, "\nER: ParamVertex\n");
2620 #endif /* DEBUG_ER */
2621 pos->next = neg;
2622 EP = enumerate_or(pos, exist, nparam, MaxRays);
2623 break;
2625 if (EP)
2626 break;
2627 } END_FORALL_PVertex_in_ParamPolyhedron;
2630 Matrix_Free(M);
2631 value_clear(f);
2634 if (CEq)
2635 Polyhedron_Free(CEq);
2636 if (CT)
2637 Matrix_Free(CT);
2638 if (PP)
2639 Param_Polyhedron_Free(PP);
2640 *PA = P;
2642 return EP;
2645 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2646 unsigned exist, unsigned nparam, unsigned MaxRays);
2648 #ifdef DEBUG_ER
2649 static int er_level = 0;
2651 evalue* barvinok_enumerate_e(Polyhedron *P,
2652 unsigned exist, unsigned nparam, unsigned MaxRays)
2654 fprintf(stderr, "\nER: level %i\n", er_level);
2655 int nvar = P->Dimension - exist - nparam;
2656 fprintf(stderr, "%d %d %d\n", nvar, exist, nparam);
2658 Polyhedron_Print(stderr, P_VALUE_FMT, P);
2659 ++er_level;
2660 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2661 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2662 Polyhedron_Free(P);
2663 --er_level;
2664 return EP;
2666 #else
2667 evalue* barvinok_enumerate_e(Polyhedron *P,
2668 unsigned exist, unsigned nparam, unsigned MaxRays)
2670 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2671 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2672 Polyhedron_Free(P);
2673 return EP;
2675 #endif
2677 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2678 unsigned exist, unsigned nparam, unsigned MaxRays)
2680 if (exist == 0) {
2681 Polyhedron *U = Universe_Polyhedron(nparam);
2682 evalue *EP = barvinok_enumerate_ev(P, U, MaxRays);
2683 //char *param_name[] = {"P", "Q", "R", "S", "T" };
2684 //print_evalue(stdout, EP, param_name);
2685 Polyhedron_Free(U);
2686 return EP;
2689 int nvar = P->Dimension - exist - nparam;
2690 int len = P->Dimension + 2;
2692 if (emptyQ(P))
2693 return new_zero_ep();
2695 if (nvar == 0 && nparam == 0) {
2696 evalue *EP = new_zero_ep();
2697 barvinok_count(P, &EP->x.n, MaxRays);
2698 if (value_pos_p(EP->x.n))
2699 value_set_si(EP->x.n, 1);
2700 return EP;
2703 int r;
2704 for (r = 0; r < P->NbRays; ++r)
2705 if (value_zero_p(P->Ray[r][0]) ||
2706 value_zero_p(P->Ray[r][P->Dimension+1])) {
2707 int i;
2708 for (i = 0; i < nvar; ++i)
2709 if (value_notzero_p(P->Ray[r][i+1]))
2710 break;
2711 if (i >= nvar)
2712 continue;
2713 for (i = nvar + exist; i < nvar + exist + nparam; ++i)
2714 if (value_notzero_p(P->Ray[r][i+1]))
2715 break;
2716 if (i >= nvar + exist + nparam)
2717 break;
2719 if (r < P->NbRays) {
2720 evalue *EP = new_zero_ep();
2721 value_set_si(EP->x.n, -1);
2722 return EP;
2725 int first;
2726 for (r = 0; r < P->NbEq; ++r)
2727 if ((first = First_Non_Zero(P->Constraint[r]+1+nvar, exist)) != -1)
2728 break;
2729 if (r < P->NbEq) {
2730 if (First_Non_Zero(P->Constraint[r]+1+nvar+first+1,
2731 exist-first-1) != -1) {
2732 Polyhedron *T = rotate_along(P, r, nvar, exist, MaxRays);
2733 #ifdef DEBUG_ER
2734 fprintf(stderr, "\nER: Equality\n");
2735 #endif /* DEBUG_ER */
2736 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2737 Polyhedron_Free(T);
2738 return EP;
2739 } else {
2740 #ifdef DEBUG_ER
2741 fprintf(stderr, "\nER: Fixed\n");
2742 #endif /* DEBUG_ER */
2743 if (first == 0)
2744 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
2745 else {
2746 Polyhedron *T = Polyhedron_Copy(P);
2747 SwapColumns(T, nvar+1, nvar+1+first);
2748 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2749 Polyhedron_Free(T);
2750 return EP;
2755 Vector *row = Vector_Alloc(len);
2756 value_set_si(row->p[0], 1);
2758 Value f;
2759 value_init(f);
2761 enum constraint info[exist];
2762 for (int i = 0; i < exist; ++i) {
2763 info[i] = ALL_POS;
2764 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
2765 if (value_negz_p(P->Constraint[l][nvar+i+1]))
2766 continue;
2767 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
2768 if (value_posz_p(P->Constraint[u][nvar+i+1]))
2769 continue;
2770 value_oppose(f, P->Constraint[u][nvar+i+1]);
2771 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1, row->p+1,
2772 f, P->Constraint[l][nvar+i+1], len-1);
2773 if (!(info[i] & INDEPENDENT)) {
2774 int j;
2775 for (j = 0; j < exist; ++j)
2776 if (j != i && value_notzero_p(row->p[nvar+j+1]))
2777 break;
2778 if (j == exist) {
2779 //printf("independent: i: %d, l: %d, u: %d\n", i, l, u);
2780 info[i] = (constraint)(info[i] | INDEPENDENT);
2783 if (info[i] & ALL_POS) {
2784 value_addto(row->p[len-1], row->p[len-1],
2785 P->Constraint[l][nvar+i+1]);
2786 value_addto(row->p[len-1], row->p[len-1], f);
2787 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
2788 value_substract(row->p[len-1], row->p[len-1], f);
2789 value_decrement(row->p[len-1], row->p[len-1]);
2790 Vector_Gcd(row->p+1, len - 2, &f);
2791 if (value_notone_p(f)) {
2792 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
2793 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
2795 value_set_si(f, -1);
2796 Vector_Scale(row->p+1, row->p+1, f, len-1);
2797 value_decrement(row->p[len-1], row->p[len-1]);
2798 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
2799 if (!emptyQ(T)) {
2800 //printf("not all_pos: i: %d, l: %d, u: %d\n", i, l, u);
2801 info[i] = (constraint)(info[i] ^ ALL_POS);
2803 //puts("pos remainder");
2804 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
2805 Polyhedron_Free(T);
2807 if (!(info[i] & ONE_NEG)) {
2808 int j;
2809 for (j = 0; j < exist; ++j)
2810 if (j != i &&
2811 value_notzero_p(P->Constraint[l][nvar+j+1]))
2812 break;
2813 if (j != exist)
2814 for (j = 0; j < exist; ++j)
2815 if (j != i &&
2816 value_notzero_p(P->Constraint[u][nvar+j+1]))
2817 break;
2818 if (j == exist) {
2819 /* recalculate constant */
2820 /* We actually recalculate the whole row for
2821 * now, because it may have already been scaled
2823 value_oppose(f, P->Constraint[u][nvar+i+1]);
2824 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
2825 row->p+1,
2826 f, P->Constraint[l][nvar+i+1], len-1);
2828 Vector_Combine(P->Constraint[l]+len-1,
2829 P->Constraint[u]+len-1, row->p+len-1,
2830 f, P->Constraint[l][nvar+i+1], 1);
2832 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
2833 value_substract(row->p[len-1], row->p[len-1], f);
2834 value_set_si(f, -1);
2835 Vector_Scale(row->p+1, row->p+1, f, len-1);
2836 value_decrement(row->p[len-1], row->p[len-1]);
2837 Vector_Gcd(row->p+1, len - 2, &f);
2838 if (value_notone_p(f)) {
2839 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
2840 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
2842 value_set_si(f, -1);
2843 Vector_Scale(row->p+1, row->p+1, f, len-1);
2844 value_decrement(row->p[len-1], row->p[len-1]);
2845 //puts("row");
2846 //Vector_Print(stdout, P_VALUE_FMT, row);
2847 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
2848 if (emptyQ(T)) {
2849 //printf("one_neg i: %d, l: %d, u: %d\n", i, l, u);
2850 info[i] = (constraint)(info[i] | ONE_NEG);
2852 //puts("neg remainder");
2853 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
2854 Polyhedron_Free(T);
2857 if (!(info[i] & ALL_POS) && (info[i] & ONE_NEG))
2858 goto next;
2861 if (info[i] & ALL_POS)
2862 break;
2863 next:
2868 for (int i = 0; i < exist; ++i)
2869 printf("%i: %i\n", i, info[i]);
2871 for (int i = 0; i < exist; ++i)
2872 if (info[i] & ALL_POS) {
2873 #ifdef DEBUG_ER
2874 fprintf(stderr, "\nER: Positive\n");
2875 #endif /* DEBUG_ER */
2876 // Eliminate
2877 // Maybe we should chew off some of the fat here
2878 Matrix *M = Matrix_Alloc(P->Dimension, P->Dimension+1);
2879 for (int j = 0; j < P->Dimension; ++j)
2880 value_set_si(M->p[j][j + (j >= i+nvar)], 1);
2881 Polyhedron *T = Polyhedron_Image(P, M, MaxRays);
2882 Matrix_Free(M);
2883 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2884 Polyhedron_Free(T);
2885 value_clear(f);
2886 Vector_Free(row);
2887 return EP;
2889 for (int i = 0; i < exist; ++i)
2890 if (info[i] & ONE_NEG) {
2891 #ifdef DEBUG_ER
2892 fprintf(stderr, "\nER: Negative\n");
2893 #endif /* DEBUG_ER */
2894 Vector_Free(row);
2895 value_clear(f);
2896 if (i == 0)
2897 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
2898 else {
2899 Polyhedron *T = Polyhedron_Copy(P);
2900 SwapColumns(T, nvar+1, nvar+1+i);
2901 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2902 Polyhedron_Free(T);
2903 return EP;
2906 for (int i = 0; i < exist; ++i)
2907 if (info[i] & INDEPENDENT) {
2908 Polyhedron *pos, *neg;
2910 /* Find constraint again and split off negative part */
2912 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
2913 row, f, true, &pos, &neg)) {
2914 #ifdef DEBUG_ER
2915 fprintf(stderr, "\nER: Split\n");
2916 #endif /* DEBUG_ER */
2918 evalue *EP =
2919 barvinok_enumerate_e(neg, exist-1, nparam, MaxRays);
2920 evalue *E =
2921 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2922 eadd(E, EP);
2923 free_evalue_refs(E);
2924 free(E);
2925 Polyhedron_Free(neg);
2926 Polyhedron_Free(pos);
2927 value_clear(f);
2928 Vector_Free(row);
2929 return EP;
2933 Polyhedron *O = P;
2934 Polyhedron *F;
2936 evalue *EP;
2938 EP = enumerate_line(P, exist, nparam, MaxRays);
2939 if (EP)
2940 return EP;
2942 EP = enumerate_redundant_ray(P, exist, nparam, MaxRays);
2943 if (EP)
2944 goto out;
2946 EP = enumerate_sure(P, exist, nparam, MaxRays);
2947 if (EP)
2948 goto out;
2950 EP = enumerate_ray(P, exist, nparam, MaxRays);
2951 if (EP)
2952 goto out;
2954 EP = enumerate_sure2(P, exist, nparam, MaxRays);
2955 if (EP)
2956 goto out;
2958 F = unfringe(P, MaxRays);
2959 if (!PolyhedronIncludes(F, P)) {
2960 #ifdef DEBUG_ER
2961 fprintf(stderr, "\nER: Fringed\n");
2962 #endif /* DEBUG_ER */
2963 EP = barvinok_enumerate_e(F, exist, nparam, MaxRays);
2964 Polyhedron_Free(F);
2965 goto out;
2967 Polyhedron_Free(F);
2969 if (nparam)
2970 EP = enumerate_vd(&P, exist, nparam, MaxRays);
2971 if (EP)
2972 goto out2;
2974 if (nvar != 0) {
2975 EP = enumerate_sum(P, exist, nparam, MaxRays);
2976 goto out2;
2979 assert(nvar == 0);
2981 int i;
2982 Polyhedron *pos, *neg;
2983 for (i = 0; i < exist; ++i)
2984 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
2985 row, f, false, &pos, &neg))
2986 break;
2988 assert (i < exist);
2990 pos->next = neg;
2991 EP = enumerate_or(pos, exist, nparam, MaxRays);
2993 out2:
2994 if (O != P)
2995 Polyhedron_Free(P);
2997 out:
2998 value_clear(f);
2999 Vector_Free(row);
3000 return EP;