conversion.h: directly include required headers
[barvinok.git] / reducer.cc
blobba5a62b527449ee4e908ab30fa0f2d1b1fb2ac8a
1 #include <vector>
2 #include <barvinok/util.h>
3 #include "reducer.h"
4 #include "lattice_point.h"
6 using std::vector;
7 using std::cerr;
8 using std::endl;
10 struct OrthogonalException Orthogonal;
12 void np_base::handle(const signed_cone& sc, barvinok_options *options)
14 assert(sc.rays.NumRows() == dim);
15 factor.n *= sc.sign;
16 handle(sc.rays, current_vertex, factor, sc.det, options);
17 factor.n *= sc.sign;
20 void np_base::start(Polyhedron *P, barvinok_options *options)
22 int n_try = 0;
23 QQ factor(1, 1);
24 for (;;) {
25 try {
26 init(P, n_try);
27 for (int i = 0; i < P->NbRays; ++i) {
28 if (!value_pos_p(P->Ray[i][dim+1]))
29 continue;
31 Polyhedron *C = supporting_cone(P, i);
32 do_vertex_cone(factor, C, P->Ray[i]+1, options);
34 break;
35 } catch (OrthogonalException &e) {
36 n_try++;
37 reset();
42 /* input:
43 * f: the powers in the denominator for the remaining vars
44 * each row refers to a factor
45 * den_s: for each factor, the power of (s+1)
46 * sign
47 * num_s: powers in the numerator corresponding to the summed vars
48 * num_p: powers in the numerator corresponding to the remaining vars
49 * number of rays in cone: "dim" = "k"
50 * length of each ray: "dim" = "d"
51 * for now, it is assumed: k == d
52 * output:
53 * den_p: for each factor
54 * 0: independent of remaining vars
55 * 1: power corresponds to corresponding row in f
57 * all inputs are subject to change
59 void normalize(ZZ& sign, vec_ZZ& num_s, mat_ZZ& num_p, vec_ZZ& den_s, vec_ZZ& den_p,
60 mat_ZZ& f)
62 unsigned nparam = num_p.NumCols();
63 int change = 0;
65 for (int j = 0; j < den_s.length(); ++j) {
66 if (den_s[j] == 0) {
67 den_p[j] = 1;
68 continue;
70 int k;
71 for (k = 0; k < nparam; ++k)
72 if (f[j][k] != 0)
73 break;
74 if (k < nparam) {
75 den_p[j] = 1;
76 if (den_s[j] > 0) {
77 f[j] = -f[j];
78 for (int i = 0; i < num_p.NumRows(); ++i)
79 num_p[i] += f[j];
81 } else
82 den_p[j] = 0;
83 if (den_s[j] > 0)
84 change ^= 1;
85 else {
86 den_s[j] = abs(den_s[j]);
87 for (int i = 0; i < num_p.NumRows(); ++i)
88 num_s[i] += den_s[j];
92 if (change)
93 sign = -sign;
96 void reducer::base(const vec_QQ& c, const mat_ZZ& num, const mat_ZZ& den_f)
98 for (int i = 0; i < num.NumRows(); ++i)
99 base(c[i], num[i], den_f);
102 struct dpoly_r_scanner {
103 const dpoly_r *rc;
104 const dpoly * const *num;
105 int n;
106 int dim;
107 dpoly_r_term_list::iterator *iter;
108 vector<int> powers;
109 vec_ZZ coeff;
111 dpoly_r_scanner(const dpoly * const *num, int n, const dpoly_r *rc, int dim)
112 : rc(rc), num(num), n(n), dim(dim), powers(dim, 0) {
113 coeff.SetLength(n);
114 iter = new dpoly_r_term_list::iterator[rc->len];
115 for (int i = 0; i < rc->len; ++i) {
116 int k;
117 for (k = 0; k < n; ++k)
118 if (value_notzero_p(num[k]->coeff->p[rc->len-1-i]))
119 break;
120 if (k < n)
121 iter[i] = rc->c[i].begin();
122 else
123 iter[i] = rc->c[i].end();
126 bool next() {
127 int *pos;
128 int len = 0;
130 for (int i = 0; i < rc->len; ++i) {
131 if (iter[i] == rc->c[i].end())
132 continue;
133 if (!len) {
134 pos = new int[rc->len];
135 pos[len++] = i;
136 } else {
137 if ((*iter[i])->powers < (*iter[pos[0]])->powers) {
138 pos[0] = i;
139 len = 1;
140 } else if ((*iter[i])->powers == (*iter[pos[0]])->powers)
141 pos[len++] = i;
145 if (!len)
146 return false;
148 powers = (*iter[pos[0]])->powers;
149 for (int k = 0; k < n; ++k) {
150 value2zz(num[k]->coeff->p[rc->len-1-pos[0]], tmp);
151 mul(coeff[k], (*iter[pos[0]])->coeff, tmp);
153 ++iter[pos[0]];
154 for (int i = 1; i < len; ++i) {
155 for (int k = 0; k < n; ++k) {
156 value2zz(num[k]->coeff->p[rc->len-1-pos[i]], tmp);
157 mul(tmp, (*iter[pos[i]])->coeff, tmp);
158 add(coeff[k], coeff[k], tmp);
160 ++iter[pos[i]];
163 delete [] pos;
164 return true;
166 ~dpoly_r_scanner() {
167 delete [] iter;
169 private:
170 ZZ tmp;
173 void reducer::reduce_canonical(const vec_QQ& c, const mat_ZZ& num,
174 const mat_ZZ& den_f)
176 vec_QQ c2 = c;
177 mat_ZZ num2 = num;
179 for (int i = 0; i < c2.length(); ++i) {
180 c2[i].canonicalize();
181 if (c2[i].n != 0)
182 continue;
184 if (i < c2.length()-1) {
185 num2[i] = num2[c2.length()-1];
186 c2[i] = c2[c2.length()-1];
188 num2.SetDims(num2.NumRows()-1, num2.NumCols());
189 c2.SetLength(c2.length()-1);
190 --i;
192 reduce(c2, num2, den_f);
195 void reducer::reduce(const vec_QQ& c, const mat_ZZ& num, const mat_ZZ& den_f)
197 assert(c.length() == num.NumRows());
198 unsigned len = den_f.NumRows(); // number of factors in den
199 vec_QQ c2 = c;
201 if (num.NumCols() == lower) {
202 base(c, num, den_f);
203 return;
205 assert(num.NumCols() > 1);
206 assert(num.NumRows() > 0);
208 vec_ZZ den_s;
209 mat_ZZ den_r;
210 vec_ZZ num_s;
211 mat_ZZ num_p;
213 split(num, num_s, num_p, den_f, den_s, den_r);
215 vec_ZZ den_p;
216 den_p.SetLength(len);
218 ZZ sign(INIT_VAL, 1);
219 normalize(sign, num_s, num_p, den_s, den_p, den_r);
220 c2 *= sign;
222 int only_param = 0; // k-r-s from text
223 int no_param = 0; // r from text
224 for (int k = 0; k < len; ++k) {
225 if (den_p[k] == 0)
226 ++no_param;
227 else if (den_s[k] == 0)
228 ++only_param;
230 if (no_param == 0) {
231 reduce(c2, num_p, den_r);
232 } else {
233 int k, l;
234 mat_ZZ pden;
235 pden.SetDims(only_param, den_r.NumCols());
237 for (k = 0, l = 0; k < len; ++k)
238 if (den_s[k] == 0)
239 pden[l++] = den_r[k];
241 for (k = 0; k < len; ++k)
242 if (den_p[k] == 0)
243 break;
245 dpoly **n = new dpoly *[num_s.length()];
246 for (int i = 0; i < num_s.length(); ++i) {
247 zz2value(num_s[i], tz);
248 n[i] = new dpoly(no_param, tz);
249 /* Search for other numerator (j) with same num_p.
250 * If found, replace a[j]/b[j] * n[j] and a[i]/b[i] * n[i]
251 * by 1/(b[j]*b[i]/g) * (a[j]*b[i]/g * n[j] + a[i]*b[j]/g * n[i])
252 * where g = gcd(b[i], b[j].
254 for (int j = 0; j < i; ++j) {
255 if (num_p[i] != num_p[j])
256 continue;
257 ZZ g = GCD(c2[i].d, c2[j].d);
258 zz2value(c2[j].n * c2[i].d/g, tz);
259 *n[j] *= tz;
260 zz2value(c2[i].n * c2[j].d/g, tz);
261 *n[i] *= tz;
262 *n[j] += *n[i];
263 c2[j].n = 1;
264 c2[j].d *= c2[i].d/g;
265 delete n[i];
266 if (i < num_s.length()-1) {
267 num_s[i] = num_s[num_s.length()-1];
268 num_p[i] = num_p[num_s.length()-1];
269 c2[i] = c2[num_s.length()-1];
271 num_s.SetLength(num_s.length()-1);
272 c2.SetLength(c2.length()-1);
273 num_p.SetDims(num_p.NumRows()-1, num_p.NumCols());
274 --i;
275 break;
278 zz2value(den_s[k], tz);
279 dpoly D(no_param, tz, 1);
280 for ( ; ++k < len; )
281 if (den_p[k] == 0) {
282 zz2value(den_s[k], tz);
283 dpoly fact(no_param, tz, 1);
284 D *= fact;
287 if (no_param + only_param == len) {
288 vec_QQ q;
289 q.SetLength(num_s.length());
290 for (int i = 0; i < num_s.length(); ++i) {
291 mpq_set_si(tcount, 0, 1);
292 n[i]->div(D, tcount, 1);
294 value2zz(mpq_numref(tcount), q[i].n);
295 value2zz(mpq_denref(tcount), q[i].d);
296 q[i] *= c2[i];
298 for (int i = q.length()-1; i >= 0; --i) {
299 if (q[i].n == 0) {
300 q[i] = q[q.length()-1];
301 num_p[i] = num_p[q.length()-1];
302 q.SetLength(q.length()-1);
303 num_p.SetDims(num_p.NumRows()-1, num_p.NumCols());
307 if (q.length() != 0)
308 reduce(q, num_p, pden);
309 } else {
310 value_set_si(tz, 0);
311 dpoly one(no_param, tz);
312 dpoly_r *r = NULL;
314 for (k = 0; k < len; ++k) {
315 if (den_s[k] == 0 || den_p[k] == 0)
316 continue;
318 zz2value(den_s[k], tz);
319 dpoly pd(no_param-1, tz, 1);
321 int l;
322 for (l = 0; l < k; ++l)
323 if (den_r[l] == den_r[k])
324 break;
326 if (!r)
327 r = new dpoly_r(one, pd, l, len);
328 else {
329 dpoly_r *nr = new dpoly_r(r, pd, l, len);
330 delete r;
331 r = nr;
335 vec_QQ factor;
336 factor.SetLength(c2.length());
337 int common = pden.NumRows();
338 dpoly_r *rc = r->div(D);
339 for (int i = 0; i < num_s.length(); ++i) {
340 factor[i].d = c2[i].d;
341 factor[i].d *= rc->denom;
344 dpoly_r_scanner scanner(n, num_s.length(), rc, len);
345 int rows;
346 while (scanner.next()) {
347 int i;
348 for (i = 0; i < num_s.length(); ++i)
349 if (scanner.coeff[i] != 0)
350 break;
351 if (i == num_s.length())
352 continue;
353 rows = common;
354 pden.SetDims(rows, pden.NumCols());
355 for (int k = 0; k < rc->dim; ++k) {
356 int n = scanner.powers[k];
357 if (n == 0)
358 continue;
359 pden.SetDims(rows+n, pden.NumCols());
360 for (int l = 0; l < n; ++l)
361 pden[rows+l] = den_r[k];
362 rows += n;
364 /* The denominators in factor are kept constant
365 * over all iterations of the enclosing while loop.
366 * The rational numbers in factor may therefore not be
367 * canonicalized. Some may even be zero.
369 for (int i = 0; i < num_s.length(); ++i) {
370 factor[i].n = c2[i].n;
371 factor[i].n *= scanner.coeff[i];
373 reduce_canonical(factor, num_p, pden);
376 delete rc;
377 delete r;
379 for (int i = 0; i < num_s.length(); ++i)
380 delete n[i];
381 delete [] n;
385 void reducer::handle(const mat_ZZ& den, Value *V, const QQ& c,
386 unsigned long det, barvinok_options *options)
388 vec_QQ vc;
390 Matrix *points = Matrix_Alloc(det, dim);
391 Matrix* Rays = zz2matrix(den);
392 lattice_points_fixed(V, V, Rays, Rays, points, det);
393 Matrix_Free(Rays);
394 matrix2zz(points, vertex, points->NbRows, points->NbColumns);
395 Matrix_Free(points);
397 vc.SetLength(vertex.NumRows());
398 for (int i = 0; i < vc.length(); ++i)
399 vc[i] = c;
401 reduce(vc, vertex, den);
404 void split_one(const mat_ZZ& num, vec_ZZ& num_s, mat_ZZ& num_p,
405 const mat_ZZ& den_f, vec_ZZ& den_s, mat_ZZ& den_r)
407 unsigned len = den_f.NumRows(); // number of factors in den
408 unsigned d = num.NumCols() - 1;
410 den_s.SetLength(len);
411 den_r.SetDims(len, d);
413 for (int r = 0; r < len; ++r) {
414 den_s[r] = den_f[r][0];
415 for (int k = 1; k <= d; ++k)
416 den_r[r][k-1] = den_f[r][k];
419 num_s.SetLength(num.NumRows());
420 num_p.SetDims(num.NumRows(), d);
421 for (int i = 0; i < num.NumRows(); ++i) {
422 num_s[i] = num[i][0];
423 for (int k = 1 ; k <= d; ++k)
424 num_p[i][k-1] = num[i][k];
428 void icounter::base(const QQ& c, const vec_ZZ& num, const mat_ZZ& den_f)
430 zz2value(c.n, tn);
431 zz2value(c.d, td);
433 unsigned len = den_f.NumRows(); // number of factors in den
435 if (len > 0) {
436 int r;
437 vec_ZZ den_s;
438 den_s.SetLength(len);
439 assert(num.length() == 1);
440 ZZ num_s = num[0];
441 for (r = 0; r < len; ++r)
442 den_s[r] = den_f[r][0];
443 int sign = (len % 2) ? -1 : 1;
445 zz2value(num_s, tz);
446 dpoly n(len, tz);
447 zz2value(den_s[0], tz);
448 dpoly D(len, tz, 1);
449 for (int k = 1; k < len; ++k) {
450 zz2value(den_s[k], tz);
451 dpoly fact(len, tz, 1);
452 D *= fact;
454 mpq_set_si(tcount, 0, 1);
455 n.div(D, tcount, 1);
456 if (sign == -1)
457 value_oppose(tn, tn);
459 mpz_mul(mpq_numref(tcount), mpq_numref(tcount), tn);
460 mpz_mul(mpq_denref(tcount), mpq_denref(tcount), td);
461 mpq_canonicalize(tcount);
462 } else {
463 value_assign(mpq_numref(tcount), tn);
464 value_assign(mpq_denref(tcount), td);
466 mpq_add(count, count, tcount);