bernstein/src/main.cpp: remove redundant include
[barvinok.git] / sample.c
bloba149c6897cfdb19159d8a0cda5b7baf99ca30135
1 #include <barvinok/util.h>
2 #include <barvinok/basis_reduction.h>
3 #include <barvinok/sample.h>
4 #include <barvinok/options.h>
6 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
8 /* If P has no rays, then we return NULL.
9 * Otherwise, look for the coordinate axis with the smallest maximal non-zero
10 * coefficient over all rays and a constraint that bounds the values on
11 * this axis to the maximal value over the vertices plus the above maximal
12 * non-zero coefficient times the number of rays minus 1.
13 * Any integer point x outside this region is the sum of a point inside
14 * the region and an integer multiple of the rays.
15 * Write x = \sum_i a_i v_i + \sum_j b_j r_j
16 * with \sum_i a_i = 1.
17 * Then x = \sum_i a_i v_i + \sum_j {b_j} r_j + \sum_j [b_j] r_j
18 * with y = \sum_i a_i v_i + \sum_j {b_j} r_j a point inside the region.
20 static Polyhedron *remove_ray(Polyhedron *P, unsigned MaxRays)
22 int r = 0;
23 Vector *min, *max, *c;
24 int i;
25 Value s, v, tmp;
26 int pos;
27 Polyhedron *R;
28 int rays;
30 if (P->NbBid == 0)
31 for (; r < P->NbRays; ++r)
32 if (value_zero_p(P->Ray[r][P->Dimension+1]))
33 break;
34 if (P->NbBid == 0 && r == P->NbRays)
35 return NULL;
37 max = Vector_Alloc(P->Dimension);
38 min = Vector_Alloc(P->Dimension);
39 for (r = 0; r < P->NbBid; ++r)
40 for (i = 0 ; i < P->Dimension; ++i)
41 if (value_abs_gt(P->Ray[r][1+i], max->p[i]))
42 value_absolute(max->p[i], P->Ray[r][1+i]);
44 for (i = 0 ; i < P->Dimension; ++i)
45 value_oppose(min->p[i], max->p[i]);
47 rays = P->NbBid;
48 for (r = P->NbBid; r < P->NbRays; ++r) {
49 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
50 continue;
51 for (i = 0 ; i < P->Dimension; ++i) {
52 if (value_gt(P->Ray[r][1+i], max->p[i]))
53 value_assign(max->p[i], P->Ray[r][1+i]);
54 if (value_lt(P->Ray[r][1+i], min->p[i]))
55 value_assign(min->p[i], P->Ray[r][1+i]);
57 ++rays;
60 value_init(s);
61 value_init(v);
62 value_init(tmp);
64 for (i = 0 ; i < P->Dimension; ++i) {
65 if (value_notzero_p(min->p[i]) &&
66 (value_zero_p(s) || value_abs_lt(min->p[i], s))) {
67 value_assign(s, min->p[i]);
68 pos = i;
70 if (value_notzero_p(max->p[i]) &&
71 (value_zero_p(s) || value_abs_lt(max->p[i], s))) {
72 value_assign(s, max->p[i]);
73 pos = i;
77 for (r = P->NbBid; r < P->NbRays; ++r)
78 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
79 break;
81 if (value_pos_p(s))
82 mpz_cdiv_q(v, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
83 else
84 mpz_fdiv_q(v, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
86 for ( ; r < P->NbRays; ++r) {
87 if (value_zero_p(P->Ray[r][P->Dimension+1]))
88 continue;
90 if (value_pos_p(s)) {
91 mpz_cdiv_q(tmp, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
92 if (value_gt(tmp, v))
93 value_assign(v, tmp);
94 } else {
95 mpz_fdiv_q(tmp, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
96 if (value_lt(tmp, v))
97 value_assign(v, tmp);
101 c = Vector_Alloc(1+P->Dimension+1);
103 value_set_si(tmp, rays);
104 value_addmul(v, tmp, s);
105 value_set_si(c->p[0], 1);
106 if (value_pos_p(s)) {
107 value_set_si(c->p[1+pos], -1);
108 value_assign(c->p[1+P->Dimension], v);
109 } else {
110 value_set_si(c->p[1+pos], 1);
111 value_oppose(c->p[1+P->Dimension], v);
113 value_decrement(c->p[1+P->Dimension], c->p[1+P->Dimension]);
115 R = AddConstraints(c->p, 1, P, MaxRays);
117 Vector_Free(c);
119 Vector_Free(min);
120 Vector_Free(max);
122 value_clear(tmp);
123 value_clear(s);
124 value_clear(v);
126 return R;
129 static void print_minmax(Polyhedron *P)
131 int i, j;
132 POL_ENSURE_VERTICES(P);
133 Polyhedron_Print(stderr, P_VALUE_FMT, P);
134 for (i = 0; i < P->Dimension; ++i) {
135 Value min, max, tmp;
136 value_init(min);
137 value_init(max);
138 value_init(tmp);
140 mpz_cdiv_q(min, P->Ray[0][1+i], P->Ray[0][1+P->Dimension]);
141 mpz_fdiv_q(max, P->Ray[0][1+i], P->Ray[0][1+P->Dimension]);
143 for (j = 1; j < P->NbRays; ++j) {
144 mpz_cdiv_q(tmp, P->Ray[j][1+i], P->Ray[j][1+P->Dimension]);
145 if (value_lt(tmp, min))
146 value_assign(min, tmp);
147 mpz_fdiv_q(tmp, P->Ray[j][1+i], P->Ray[j][1+P->Dimension]);
148 if (value_gt(tmp, max))
149 value_assign(max, tmp);
151 fprintf(stderr, "i: %d, min: ", i);
152 value_print(stderr, VALUE_FMT, min);
153 fprintf(stderr, ", max: ");
154 value_print(stderr, VALUE_FMT, max);
155 fprintf(stderr, "\n");
157 value_clear(min);
158 value_clear(max);
159 value_clear(tmp);
163 /* Remove coordinates that have a fixed value and return the matrix
164 * that adds these fixed coordinates again through T.
166 static Polyhedron *Polyhedron_RemoveFixedColumns(Polyhedron *P, Matrix **T)
168 int i, j, k, n;
169 int dim = P->Dimension;
170 int *remove = ALLOCN(int, dim);
171 Polyhedron *Q;
172 int NbEq;
174 assert(POL_HAS(P, POL_INEQUALITIES));
175 for (i = 0; i < dim; ++i)
176 remove[i] = -1;
177 NbEq = 0;
178 for (i = 0; i < P->NbEq; ++i) {
179 int pos = First_Non_Zero(P->Constraint[i]+1, dim);
180 if (First_Non_Zero(P->Constraint[i]+1+pos+1, dim-pos-1) != -1)
181 continue;
182 remove[pos] = i;
183 ++NbEq;
185 assert(NbEq > 0);
186 Q = Polyhedron_Alloc(P->Dimension-NbEq, P->NbConstraints-NbEq, P->NbRays);
187 for (i = 0, k = 0; i < P->NbConstraints; ++i) {
188 if (i < P->NbEq) {
189 int pos = First_Non_Zero(P->Constraint[i]+1, dim);
190 if (First_Non_Zero(P->Constraint[i]+1+pos+1, dim-pos-1) == -1)
191 continue;
193 value_assign(Q->Constraint[k][0], P->Constraint[i][0]);
194 for (j = 0, n = 0; j < P->Dimension; ++j) {
195 if (remove[j] != -1)
196 ++n;
197 else
198 value_assign(Q->Constraint[k][1+j-n], P->Constraint[i][1+j]);
200 value_assign(Q->Constraint[k][1+j-n], P->Constraint[i][1+j]);
201 ++k;
203 for (i = 0; i < Q->NbRays; ++i) {
204 value_assign(Q->Ray[i][0], P->Ray[i][0]);
205 for (j = 0, n = 0; j < P->Dimension; ++j) {
206 if (remove[j] != -1)
207 ++n;
208 else
209 value_assign(Q->Ray[i][1+j-n], P->Ray[i][1+j]);
211 value_assign(Q->Ray[i][1+j-n], P->Ray[i][1+j]);
213 *T = Matrix_Alloc(P->Dimension+1, Q->Dimension+1);
214 for (i = 0, n = 0; i < P->Dimension; ++i) {
215 if (remove[i] != -1) {
216 value_oppose((*T)->p[i][Q->Dimension],
217 P->Constraint[remove[i]][1+P->Dimension]);
218 ++n;
219 } else
220 value_set_si((*T)->p[i][i-n], 1);
222 value_set_si((*T)->p[i][i-n], 1);
223 POL_SET(Q, POL_VALID);
224 if (POL_HAS(P, POL_INEQUALITIES))
225 POL_SET(Q, POL_INEQUALITIES);
226 if (POL_HAS(P, POL_FACETS))
227 POL_SET(Q, POL_FACETS);
228 if (POL_HAS(P, POL_POINTS))
229 POL_SET(Q, POL_POINTS);
230 if (POL_HAS(P, POL_VERTICES))
231 POL_SET(Q, POL_VERTICES);
232 free(remove);
233 return Q;
236 /* This function implements the algorithm described in
237 * "An Implementation of the Generalized Basis Reduction Algorithm
238 * for Integer Programming" of Cook el al. to find an integer point
239 * in a polyhedron.
240 * If the polyhedron is unbounded, we first remove its rays.
242 Vector *Polyhedron_Sample(Polyhedron *P, struct barvinok_options *options)
244 int i, j;
245 Vector *sample = NULL;
246 Polyhedron *Q;
247 Matrix *T, *inv, *M;
248 Value min, max, tmp;
249 Vector *v;
250 int ok;
252 POL_ENSURE_VERTICES(P);
253 if (emptyQ(P))
254 return NULL;
256 if (P->Dimension == 0) {
257 sample = Vector_Alloc(1);
258 value_set_si(sample->p[0], 1);
259 return sample;
262 for (i = 0; i < P->NbRays; ++i)
263 if (value_one_p(P->Ray[i][1+P->Dimension])) {
264 sample = Vector_Alloc(P->Dimension+1);
265 Vector_Copy(P->Ray[i]+1, sample->p, P->Dimension+1);
266 return sample;
269 Q = remove_ray(P, options->MaxRays);
270 if (Q) {
271 sample = Polyhedron_Sample(Q, options);
272 Polyhedron_Free(Q);
273 return sample;
276 Matrix *basis = Polyhedron_Reduced_Basis(P, options);
278 T = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
279 inv = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
280 for (i = 0; i < P->Dimension; ++i)
281 for (j = 0; j < P->Dimension; ++j)
282 value_assign(T->p[i][j], basis->p[i][j]);
283 value_set_si(T->p[P->Dimension][P->Dimension], 1);
284 Matrix_Free(basis);
286 M = Matrix_Copy(T);
287 ok = Matrix_Inverse(M, inv);
288 assert(ok);
289 Matrix_Free(M);
291 Q = Polyhedron_Image(P, T, options->MaxRays);
293 POL_ENSURE_VERTICES(Q);
295 value_init(min);
296 value_init(max);
297 value_init(tmp);
299 mpz_cdiv_q(min, Q->Ray[0][1], Q->Ray[0][1+Q->Dimension]);
300 mpz_fdiv_q(max, Q->Ray[0][1], Q->Ray[0][1+Q->Dimension]);
302 for (j = 1; j < Q->NbRays; ++j) {
303 mpz_cdiv_q(tmp, Q->Ray[j][1], Q->Ray[j][1+Q->Dimension]);
304 if (value_lt(tmp, min))
305 value_assign(min, tmp);
306 mpz_fdiv_q(tmp, Q->Ray[j][1], Q->Ray[j][1+Q->Dimension]);
307 if (value_gt(tmp, max))
308 value_assign(max, tmp);
311 v = Vector_Alloc(1+Q->Dimension+1);
312 value_set_si(v->p[1], -1);
314 for (value_assign(tmp, min); value_le(tmp, max); value_increment(tmp, tmp)) {
315 Polyhedron *R, *S;
316 Matrix *T;
317 Vector *S_sample;
318 value_assign(v->p[1+Q->Dimension], tmp);
320 R = AddConstraints(v->p, 1, Q, options->MaxRays);
321 R = DomainConstraintSimplify(R, options->MaxRays);
322 if (emptyQ(R)) {
323 Polyhedron_Free(R);
324 continue;
327 S = Polyhedron_RemoveFixedColumns(R, &T);
328 Polyhedron_Free(R);
329 S_sample = Polyhedron_Sample(S, options);
330 Polyhedron_Free(S);
331 if (S_sample) {
332 Vector *Q_sample = Vector_Alloc(Q->Dimension + 1);
333 Matrix_Vector_Product(T, S_sample->p, Q_sample->p);
334 Matrix_Free(T);
335 Vector_Free(S_sample);
336 sample = Vector_Alloc(P->Dimension + 1);
337 Matrix_Vector_Product(inv, Q_sample->p, sample->p);
338 Vector_Free(Q_sample);
339 break;
341 Matrix_Free(T);
344 Matrix_Free(T);
345 Matrix_Free(inv);
346 Polyhedron_Free(Q);
347 Vector_Free(v);
349 value_clear(min);
350 value_clear(max);
351 value_clear(tmp);
353 return sample;