remove debugging output
[barvinok.git] / barvinok.cc
blob94b130a96a032bf72c17ee4a92c47710684ac045
1 #include <assert.h>
2 #include <iostream>
3 #include <vector>
4 #include <deque>
5 #include <string>
6 #include <sstream>
7 #include <gmp.h>
8 #include <NTL/mat_ZZ.h>
9 #include <NTL/LLL.h>
10 #include <util.h>
11 extern "C" {
12 #include <polylib/polylibgmp.h>
13 #include "ev_operations.h"
15 #include "config.h"
16 #include <barvinok.h>
18 #ifdef NTL_STD_CXX
19 using namespace NTL;
20 #endif
21 using std::cout;
22 using std::endl;
23 using std::vector;
24 using std::deque;
25 using std::string;
26 using std::ostringstream;
28 #define ALLOC(p) (((long *) (p))[0])
29 #define SIZE(p) (((long *) (p))[1])
30 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
32 static void value2zz(Value v, ZZ& z)
34 int sa = v[0]._mp_size;
35 int abs_sa = sa < 0 ? -sa : sa;
37 _ntl_gsetlength(&z.rep, abs_sa);
38 mp_limb_t * adata = DATA(z.rep);
39 for (int i = 0; i < abs_sa; ++i)
40 adata[i] = v[0]._mp_d[i];
41 SIZE(z.rep) = sa;
44 static void zz2value(ZZ& z, Value& v)
46 if (!z.rep) {
47 value_set_si(v, 0);
48 return;
51 int sa = SIZE(z.rep);
52 int abs_sa = sa < 0 ? -sa : sa;
54 mp_limb_t * adata = DATA(z.rep);
55 mpz_realloc2(v, __GMP_BITS_PER_MP_LIMB * abs_sa);
56 for (int i = 0; i < abs_sa; ++i)
57 v[0]._mp_d[i] = adata[i];
58 v[0]._mp_size = sa;
61 #undef ALLOC
62 #define ALLOC(p) p = (typeof(p))malloc(sizeof(*p))
65 * We just ignore the last column and row
66 * If the final element is not equal to one
67 * then the result will actually be a multiple of the input
69 static void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
71 m.SetDims(nr, nc);
73 for (int i = 0; i < nr; ++i) {
74 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
75 for (int j = 0; j < nc; ++j) {
76 value2zz(M->p[i][j], m[i][j]);
81 static void values2zz(Value *p, vec_ZZ& v, int len)
83 v.SetLength(len);
85 for (int i = 0; i < len; ++i) {
86 value2zz(p[i], v[i]);
92 static void zz2values(vec_ZZ& v, Value *p)
94 for (int i = 0; i < v.length(); ++i)
95 zz2value(v[i], p[i]);
98 static void rays(mat_ZZ& r, Polyhedron *C)
100 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
101 assert(C->NbRays - 1 == C->Dimension);
102 r.SetDims(dim, dim);
103 ZZ tmp;
105 int i, c;
106 for (i = 0, c = 0; i < dim; ++i)
107 if (value_zero_p(C->Ray[i][dim+1])) {
108 for (int j = 0; j < dim; ++j) {
109 value2zz(C->Ray[i][j+1], tmp);
110 r[j][c] = tmp;
112 ++c;
116 static Matrix * rays(Polyhedron *C)
118 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
119 assert(C->NbRays - 1 == C->Dimension);
121 Matrix *M = Matrix_Alloc(dim+1, dim+1);
122 assert(M);
124 int i, c;
125 for (i = 0, c = 0; i <= dim && c < dim; ++i)
126 if (value_zero_p(C->Ray[i][dim+1])) {
127 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
128 value_set_si(M->p[c++][dim], 0);
130 assert(c == dim);
131 value_set_si(M->p[dim][dim], 1);
133 return M;
136 static Matrix * rays2(Polyhedron *C)
138 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
139 assert(C->NbRays - 1 == C->Dimension);
141 Matrix *M = Matrix_Alloc(dim, dim);
142 assert(M);
144 int i, c;
145 for (i = 0, c = 0; i <= dim && c < dim; ++i)
146 if (value_zero_p(C->Ray[i][dim+1]))
147 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
148 assert(c == dim);
150 return M;
154 * Returns the largest absolute value in the vector
156 static ZZ max(vec_ZZ& v)
158 ZZ max = abs(v[0]);
159 for (int i = 1; i < v.length(); ++i)
160 if (abs(v[i]) > max)
161 max = abs(v[i]);
162 return max;
165 class cone {
166 public:
167 cone(Matrix *M) {
168 Cone = 0;
169 Rays = Matrix_Copy(M);
170 set_det();
172 cone(Polyhedron *C) {
173 Cone = Polyhedron_Copy(C);
174 Rays = rays(C);
175 set_det();
177 void set_det() {
178 mat_ZZ A;
179 matrix2zz(Rays, A, Rays->NbRows - 1, Rays->NbColumns - 1);
180 det = determinant(A);
181 Value v;
182 value_init(v);
183 zz2value(det, v);
184 value_clear(v);
187 Vector* short_vector(vec_ZZ& lambda) {
188 Matrix *M = Matrix_Copy(Rays);
189 Matrix *inv = Matrix_Alloc(M->NbRows, M->NbColumns);
190 int ok = Matrix_Inverse(M, inv);
191 assert(ok);
192 Matrix_Free(M);
194 ZZ det2;
195 mat_ZZ B;
196 mat_ZZ U;
197 matrix2zz(inv, B, inv->NbRows - 1, inv->NbColumns - 1);
198 long r = LLL(det2, B, U);
200 ZZ min = max(B[0]);
201 int index = 0;
202 for (int i = 1; i < B.NumRows(); ++i) {
203 ZZ tmp = max(B[i]);
204 if (tmp < min) {
205 min = tmp;
206 index = i;
210 Matrix_Free(inv);
212 lambda = B[index];
214 Vector *z = Vector_Alloc(U[index].length()+1);
215 assert(z);
216 zz2values(U[index], z->p);
217 value_set_si(z->p[U[index].length()], 0);
219 Value tmp;
220 value_init(tmp);
221 Polyhedron *C = poly();
222 int i;
223 for (i = 0; i < C->NbConstraints; ++i) {
224 Inner_Product(z->p, C->Constraint[i]+1, z->Size-1, &tmp);
225 if (value_pos_p(tmp))
226 break;
228 if (i == C->NbConstraints) {
229 value_set_si(tmp, -1);
230 Vector_Scale(z->p, z->p, tmp, z->Size-1);
232 value_clear(tmp);
233 return z;
236 ~cone() {
237 Polyhedron_Free(Cone);
238 Matrix_Free(Rays);
241 Polyhedron *poly() {
242 if (!Cone) {
243 Matrix *M = Matrix_Alloc(Rays->NbRows+1, Rays->NbColumns+1);
244 for (int i = 0; i < Rays->NbRows; ++i) {
245 Vector_Copy(Rays->p[i], M->p[i]+1, Rays->NbColumns);
246 value_set_si(M->p[i][0], 1);
248 Vector_Set(M->p[Rays->NbRows]+1, 0, Rays->NbColumns-1);
249 value_set_si(M->p[Rays->NbRows][0], 1);
250 value_set_si(M->p[Rays->NbRows][Rays->NbColumns], 1);
251 Cone = Rays2Polyhedron(M, M->NbRows+1);
252 assert(Cone->NbConstraints == Cone->NbRays);
253 Matrix_Free(M);
255 return Cone;
258 ZZ det;
259 Polyhedron *Cone;
260 Matrix *Rays;
263 class dpoly {
264 public:
265 vec_ZZ coeff;
266 dpoly(int d, ZZ& degree, int offset = 0) {
267 coeff.SetLength(d+1);
269 int min = d + offset;
270 if (degree < ZZ(INIT_VAL, min))
271 min = to_int(degree);
273 ZZ c = ZZ(INIT_VAL, 1);
274 if (!offset)
275 coeff[0] = c;
276 for (int i = 1; i <= min; ++i) {
277 c *= (degree -i + 1);
278 c /= i;
279 coeff[i-offset] = c;
282 void operator *= (dpoly& f) {
283 assert(coeff.length() == f.coeff.length());
284 vec_ZZ old = coeff;
285 coeff = f.coeff[0] * coeff;
286 for (int i = 1; i < coeff.length(); ++i)
287 for (int j = 0; i+j < coeff.length(); ++j)
288 coeff[i+j] += f.coeff[i] * old[j];
290 void div(dpoly& d, mpq_t count, ZZ& sign) {
291 int len = coeff.length();
292 Value tmp;
293 value_init(tmp);
294 mpq_t* c = new mpq_t[coeff.length()];
295 mpq_t qtmp;
296 mpq_init(qtmp);
297 for (int i = 0; i < len; ++i) {
298 mpq_init(c[i]);
299 zz2value(coeff[i], tmp);
300 mpq_set_z(c[i], tmp);
302 for (int j = 1; j <= i; ++j) {
303 zz2value(d.coeff[j], tmp);
304 mpq_set_z(qtmp, tmp);
305 mpq_mul(qtmp, qtmp, c[i-j]);
306 mpq_sub(c[i], c[i], qtmp);
309 zz2value(d.coeff[0], tmp);
310 mpq_set_z(qtmp, tmp);
311 mpq_div(c[i], c[i], qtmp);
313 if (sign == -1)
314 mpq_sub(count, count, c[len-1]);
315 else
316 mpq_add(count, count, c[len-1]);
318 value_clear(tmp);
319 mpq_clear(qtmp);
320 for (int i = 0; i < len; ++i)
321 mpq_clear(c[i]);
322 delete [] c;
326 class dpoly_n {
327 public:
328 Matrix *coeff;
329 ~dpoly_n() {
330 Matrix_Free(coeff);
332 dpoly_n(int d, ZZ& degree_0, ZZ& degree_1, int offset = 0) {
333 Value d0, d1;
334 value_init(d0);
335 value_init(d1);
336 zz2value(degree_0, d0);
337 zz2value(degree_1, d1);
338 coeff = Matrix_Alloc(d+1, d+1+1);
339 value_set_si(coeff->p[0][0], 1);
340 value_set_si(coeff->p[0][d+1], 1);
341 for (int i = 1; i <= d; ++i) {
342 value_multiply(coeff->p[i][0], coeff->p[i-1][0], d0);
343 Vector_Combine(coeff->p[i-1], coeff->p[i-1]+1, coeff->p[i]+1,
344 d1, d0, i);
345 value_set_si(coeff->p[i][d+1], i);
346 value_multiply(coeff->p[i][d+1], coeff->p[i][d+1], coeff->p[i-1][d+1]);
347 value_decrement(d0, d0);
349 value_clear(d0);
350 value_clear(d1);
352 void div(dpoly& d, Vector *count, ZZ& sign) {
353 int len = coeff->NbRows;
354 Matrix * c = Matrix_Alloc(coeff->NbRows, coeff->NbColumns);
355 Value tmp;
356 value_init(tmp);
357 for (int i = 0; i < len; ++i) {
358 Vector_Copy(coeff->p[i], c->p[i], len+1);
359 for (int j = 1; j <= i; ++j) {
360 zz2value(d.coeff[j], tmp);
361 value_multiply(tmp, tmp, c->p[i][len]);
362 value_oppose(tmp, tmp);
363 Vector_Combine(c->p[i], c->p[i-j], c->p[i],
364 c->p[i-j][len], tmp, len);
365 value_multiply(c->p[i][len], c->p[i][len], c->p[i-j][len]);
367 zz2value(d.coeff[0], tmp);
368 value_multiply(c->p[i][len], c->p[i][len], tmp);
370 if (sign == -1) {
371 value_set_si(tmp, -1);
372 Vector_Scale(c->p[len-1], count->p, tmp, len);
373 value_assign(count->p[len], c->p[len-1][len]);
374 } else
375 Vector_Copy(c->p[len-1], count->p, len+1);
376 Vector_Normalize(count->p, len+1);
377 value_clear(tmp);
378 Matrix_Free(c);
383 * Barvinok's Decomposition of a simplicial cone
385 * Returns two lists of polyhedra
387 void barvinok_decompose(Polyhedron *C, Polyhedron **ppos, Polyhedron **pneg)
389 Polyhedron *pos = *ppos, *neg = *pneg;
390 vector<cone *> nonuni;
391 cone * c = new cone(C);
392 ZZ det = c->det;
393 int s = sign(det);
394 assert(det != 0);
395 if (abs(det) > 1) {
396 nonuni.push_back(c);
397 } else {
398 Polyhedron *p = Polyhedron_Copy(c->Cone);
399 p->next = pos;
400 pos = p;
401 delete c;
403 vec_ZZ lambda;
404 while (!nonuni.empty()) {
405 c = nonuni.back();
406 nonuni.pop_back();
407 Vector* v = c->short_vector(lambda);
408 for (int i = 0; i < c->Rays->NbRows - 1; ++i) {
409 if (lambda[i] == 0)
410 continue;
411 Matrix* M = Matrix_Copy(c->Rays);
412 Vector_Copy(v->p, M->p[i], v->Size);
413 cone * pc = new cone(M);
414 assert (pc->det != 0);
415 if (abs(pc->det) > 1) {
416 assert(abs(pc->det) < abs(c->det));
417 nonuni.push_back(pc);
418 } else {
419 Polyhedron *p = pc->poly();
420 pc->Cone = 0;
421 if (sign(pc->det) == s) {
422 p->next = pos;
423 pos = p;
424 } else {
425 p->next = neg;
426 neg = p;
428 delete pc;
430 Matrix_Free(M);
432 Vector_Free(v);
433 delete c;
435 *ppos = pos;
436 *pneg = neg;
440 * Returns a single list of npos "positive" cones followed by nneg
441 * "negative" cones.
442 * The input cone is freed
444 void decompose(Polyhedron *cone, Polyhedron **parts, int *npos, int *nneg, unsigned MaxRays)
446 Polyhedron_Polarize(cone);
447 if (cone->NbRays - 1 != cone->Dimension) {
448 Polyhedron *tmp = cone;
449 cone = triangularize_cone(cone, MaxRays);
450 Polyhedron_Free(tmp);
452 Polyhedron *polpos = NULL, *polneg = NULL;
453 *npos = 0; *nneg = 0;
454 for (Polyhedron *Polar = cone; Polar; Polar = Polar->next)
455 barvinok_decompose(Polar, &polpos, &polneg);
457 Polyhedron *last;
458 for (Polyhedron *i = polpos; i; i = i->next) {
459 Polyhedron_Polarize(i);
460 ++*npos;
461 last = i;
463 for (Polyhedron *i = polneg; i; i = i->next) {
464 Polyhedron_Polarize(i);
465 ++*nneg;
467 if (last) {
468 last->next = polneg;
469 *parts = polpos;
470 } else
471 *parts = polneg;
472 Domain_Free(cone);
475 const int MAX_TRY=10;
477 * Searches for a vector that is not othogonal to any
478 * of the rays in rays.
480 static void nonorthog(mat_ZZ& rays, vec_ZZ& lambda)
482 int dim = rays.NumCols();
483 bool found = false;
484 lambda.SetLength(dim);
485 for (int i = 2; !found && i <= 50*dim; i+=4) {
486 for (int j = 0; j < MAX_TRY; ++j) {
487 for (int k = 0; k < dim; ++k) {
488 int r = random_int(i)+2;
489 int v = (2*(r%2)-1) * (r >> 1);
490 lambda[k] = v;
492 int k = 0;
493 for (; k < rays.NumRows(); ++k)
494 if (lambda * rays[k] == 0)
495 break;
496 if (k == rays.NumRows()) {
497 found = true;
498 break;
502 assert(found);
505 static void add_rays(mat_ZZ& rays, Polyhedron *i, int *r)
507 unsigned dim = i->Dimension;
508 for (int k = 0; k < i->NbRays; ++k) {
509 if (!value_zero_p(i->Ray[k][dim+1]))
510 continue;
511 values2zz(i->Ray[k]+1, rays[(*r)++], dim);
515 void lattice_point(Value* values, Polyhedron *i, vec_ZZ& lambda, ZZ& num)
517 vec_ZZ vertex;
518 unsigned dim = i->Dimension;
519 if(!value_one_p(values[dim])) {
520 Matrix* Rays = rays(i);
521 Matrix *inv = Matrix_Alloc(Rays->NbRows, Rays->NbColumns);
522 int ok = Matrix_Inverse(Rays, inv);
523 assert(ok);
524 Matrix_Free(Rays);
525 Rays = rays(i);
526 Vector *lambda = Vector_Alloc(dim+1);
527 Vector_Matrix_Product(values, inv, lambda->p);
528 Matrix_Free(inv);
529 for (int j = 0; j < dim; ++j)
530 mpz_cdiv_q(lambda->p[j], lambda->p[j], lambda->p[dim]);
531 value_set_si(lambda->p[dim], 1);
532 Vector *A = Vector_Alloc(dim+1);
533 Vector_Matrix_Product(lambda->p, Rays, A->p);
534 Vector_Free(lambda);
535 Matrix_Free(Rays);
536 values2zz(A->p, vertex, dim);
537 Vector_Free(A);
538 } else
539 values2zz(values, vertex, dim);
541 num = vertex * lambda;
544 static evalue *term(int param, ZZ& c, Value *den = NULL)
546 evalue *EP = new evalue();
547 value_init(EP->d);
548 value_set_si(EP->d,0);
549 EP->x.p = new_enode(polynomial, 2, param + 1);
550 evalue_set_si(&EP->x.p->arr[0], 0, 1);
551 value_init(EP->x.p->arr[1].x.n);
552 if (den == NULL)
553 value_set_si(EP->x.p->arr[1].d, 1);
554 else
555 value_assign(EP->x.p->arr[1].d, *den);
556 zz2value(c, EP->x.p->arr[1].x.n);
557 return EP;
560 static void vertex_period(
561 Polyhedron *i, vec_ZZ& lambda, Matrix *T,
562 Value lcm, int p, Vector *val,
563 evalue *E, evalue* ev,
564 ZZ& offset)
566 unsigned nparam = T->NbRows - 1;
567 unsigned dim = i->Dimension;
568 Value tmp;
569 ZZ nump;
571 if (p == nparam) {
572 ZZ num, l;
573 Vector * values = Vector_Alloc(dim + 1);
574 Vector_Matrix_Product(val->p, T, values->p);
575 value_assign(values->p[dim], lcm);
576 lattice_point(values->p, i, lambda, num);
577 value2zz(lcm, l);
578 num *= l;
579 num += offset;
580 value_init(ev->x.n);
581 zz2value(num, ev->x.n);
582 value_assign(ev->d, lcm);
583 Vector_Free(values);
584 return;
587 value_init(tmp);
588 vec_ZZ vertex;
589 values2zz(T->p[p], vertex, dim);
590 nump = vertex * lambda;
591 if (First_Non_Zero(val->p, p) == -1) {
592 value_assign(tmp, lcm);
593 evalue *ET = term(p, nump, &tmp);
594 eadd(ET, E);
595 free_evalue_refs(ET);
596 delete ET;
599 value_assign(tmp, lcm);
600 if (First_Non_Zero(T->p[p], dim) != -1)
601 Vector_Gcd(T->p[p], dim, &tmp);
602 Gcd(tmp, lcm, &tmp);
603 if (value_lt(tmp, lcm)) {
604 ZZ count;
606 value_division(tmp, lcm, tmp);
607 value_set_si(ev->d, 0);
608 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
609 value2zz(tmp, count);
610 do {
611 value_decrement(tmp, tmp);
612 --count;
613 ZZ new_offset = offset - count * nump;
614 value_assign(val->p[p], tmp);
615 vertex_period(i, lambda, T, lcm, p+1, val, E,
616 &ev->x.p->arr[VALUE_TO_INT(tmp)], new_offset);
617 } while (value_pos_p(tmp));
618 } else
619 vertex_period(i, lambda, T, lcm, p+1, val, E, ev, offset);
620 value_clear(tmp);
623 static void mask_r(Matrix *f, int nr, Vector *lcm, int p, Vector *val, evalue *ev)
625 unsigned nparam = lcm->Size;
627 if (p == nparam) {
628 Vector * prod = Vector_Alloc(f->NbRows);
629 Matrix_Vector_Product(f, val->p, prod->p);
630 int isint = 1;
631 for (int i = 0; i < nr; ++i) {
632 value_modulus(prod->p[i], prod->p[i], f->p[i][nparam+1]);
633 isint &= value_zero_p(prod->p[i]);
635 value_set_si(ev->d, 1);
636 value_init(ev->x.n);
637 value_set_si(ev->x.n, isint);
638 Vector_Free(prod);
639 return;
642 Value tmp;
643 value_init(tmp);
644 if (value_one_p(lcm->p[p]))
645 mask_r(f, nr, lcm, p+1, val, ev);
646 else {
647 value_assign(tmp, lcm->p[p]);
648 value_set_si(ev->d, 0);
649 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
650 do {
651 value_decrement(tmp, tmp);
652 value_assign(val->p[p], tmp);
653 mask_r(f, nr, lcm, p+1, val, &ev->x.p->arr[VALUE_TO_INT(tmp)]);
654 } while (value_pos_p(tmp));
656 value_clear(tmp);
659 static evalue *multi_monom(vec_ZZ& p)
661 evalue *X = new evalue();
662 value_init(X->d);
663 value_init(X->x.n);
664 unsigned nparam = p.length()-1;
665 zz2value(p[nparam], X->x.n);
666 value_set_si(X->d, 1);
667 for (int i = 0; i < nparam; ++i) {
668 if (p[i] == 0)
669 continue;
670 evalue *T = term(i, p[i]);
671 eadd(T, X);
672 free_evalue_refs(T);
673 delete T;
675 return X;
679 * Check whether mapping polyhedron P on the affine combination
680 * num yields a range that has a fixed quotient on integer
681 * division by d
682 * If zero is true, then we are only interested in the quotient
683 * for the cases where the remainder is zero.
684 * Returns NULL if false and a newly allocated value if true.
686 static Value *fixed_quotient(Polyhedron *P, vec_ZZ& num, Value d, bool zero)
688 Value* ret = NULL;
689 int len = num.length();
690 Matrix *T = Matrix_Alloc(2, len);
691 zz2values(num, T->p[0]);
692 value_set_si(T->p[1][len-1], 1);
693 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
694 Matrix_Free(T);
696 int i;
697 for (i = 0; i < I->NbRays; ++i)
698 if (value_zero_p(I->Ray[i][2])) {
699 Polyhedron_Free(I);
700 return NULL;
703 Value min, max;
704 value_init(min);
705 value_init(max);
706 int bounded = line_minmax(I, &min, &max);
707 assert(bounded);
709 if (zero)
710 mpz_cdiv_q(min, min, d);
711 else
712 mpz_fdiv_q(min, min, d);
713 mpz_fdiv_q(max, max, d);
715 if (value_eq(min, max)) {
716 ALLOC(ret);
717 value_init(*ret);
718 value_assign(*ret, min);
720 value_clear(min);
721 value_clear(max);
722 return ret;
726 * Normalize linear expression coef modulo m
727 * Removes common factor and reduces coefficients
728 * Returns index of first non-zero coefficient or len
730 static int normal_mod(Value *coef, int len, Value *m)
732 Value gcd;
733 value_init(gcd);
735 Vector_Gcd(coef, len, &gcd);
736 Gcd(gcd, *m, &gcd);
737 Vector_AntiScale(coef, coef, gcd, len);
739 value_division(*m, *m, gcd);
740 value_clear(gcd);
742 if (value_one_p(*m))
743 return len;
745 int j;
746 for (j = 0; j < len; ++j)
747 mpz_fdiv_r(coef[j], coef[j], *m);
748 for (j = 0; j < len; ++j)
749 if (value_notzero_p(coef[j]))
750 break;
752 return j;
755 #ifdef USE_MODULO
756 static void mask(Matrix *f, evalue *factor)
758 int nr = f->NbRows, nc = f->NbColumns;
759 int n;
760 bool found = false;
761 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
762 if (value_notone_p(f->p[n][nc-1]) &&
763 value_notmone_p(f->p[n][nc-1]))
764 found = true;
765 if (!found)
766 return;
768 evalue EP;
769 nr = n;
771 Value m;
772 value_init(m);
774 evalue EV;
775 value_init(EV.d);
776 value_init(EV.x.n);
777 value_set_si(EV.x.n, 1);
779 for (n = 0; n < nr; ++n) {
780 value_assign(m, f->p[n][nc-1]);
781 if (value_one_p(m) || value_mone_p(m))
782 continue;
784 int j = normal_mod(f->p[n], nc-1, &m);
785 if (j == nc-1) {
786 free_evalue_refs(factor);
787 value_init(factor->d);
788 evalue_set_si(factor, 0, 1);
789 break;
791 vec_ZZ row;
792 values2zz(f->p[n], row, nc-1);
793 ZZ g;
794 value2zz(m, g);
795 if (j < (nc-1)-1 && row[j] > g/2) {
796 for (int k = j; k < (nc-1); ++k)
797 if (row[k] != 0)
798 row[k] = g - row[k];
801 value_init(EP.d);
802 value_set_si(EP.d, 0);
803 EP.x.p = new_enode(relation, 2, 0);
804 value_clear(EP.x.p->arr[1].d);
805 EP.x.p->arr[1] = *factor;
806 evalue *ev = &EP.x.p->arr[0];
807 value_set_si(ev->d, 0);
808 ev->x.p = new_enode(fractional, 3, -1);
809 evalue_set_si(&ev->x.p->arr[1], 0, 1);
810 evalue_set_si(&ev->x.p->arr[2], 1, 1);
811 evalue *E = multi_monom(row);
812 value_assign(EV.d, m);
813 emul(&EV, E);
814 value_clear(ev->x.p->arr[0].d);
815 ev->x.p->arr[0] = *E;
816 delete E;
817 *factor = EP;
820 value_clear(m);
821 free_evalue_refs(&EV);
823 #else
827 static void mask(Matrix *f, evalue *factor)
829 int nr = f->NbRows, nc = f->NbColumns;
830 int n;
831 bool found = false;
832 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
833 if (value_notone_p(f->p[n][nc-1]) &&
834 value_notmone_p(f->p[n][nc-1]))
835 found = true;
836 if (!found)
837 return;
839 Value tmp;
840 value_init(tmp);
841 nr = n;
842 unsigned np = nc - 2;
843 Vector *lcm = Vector_Alloc(np);
844 Vector *val = Vector_Alloc(nc);
845 Vector_Set(val->p, 0, nc);
846 value_set_si(val->p[np], 1);
847 Vector_Set(lcm->p, 1, np);
848 for (n = 0; n < nr; ++n) {
849 if (value_one_p(f->p[n][nc-1]) ||
850 value_mone_p(f->p[n][nc-1]))
851 continue;
852 for (int j = 0; j < np; ++j)
853 if (value_notzero_p(f->p[n][j])) {
854 Gcd(f->p[n][j], f->p[n][nc-1], &tmp);
855 value_division(tmp, f->p[n][nc-1], tmp);
856 value_lcm(tmp, lcm->p[j], &lcm->p[j]);
859 evalue EP;
860 value_init(EP.d);
861 mask_r(f, nr, lcm, 0, val, &EP);
862 value_clear(tmp);
863 Vector_Free(val);
864 Vector_Free(lcm);
865 emul(&EP,factor);
866 free_evalue_refs(&EP);
868 #endif
870 struct term_info {
871 evalue *E;
872 ZZ constant;
873 ZZ coeff;
874 int pos;
877 static bool mod_needed(Polyhedron *PD, vec_ZZ& num, Value d, evalue *E)
879 Value *q = fixed_quotient(PD, num, d, false);
881 if (!q)
882 return true;
884 value_oppose(*q, *q);
885 evalue EV;
886 value_init(EV.d);
887 value_set_si(EV.d, 1);
888 value_init(EV.x.n);
889 value_multiply(EV.x.n, *q, d);
890 eadd(&EV, E);
891 free_evalue_refs(&EV);
892 value_clear(*q);
893 free(q);
894 return false;
897 static void ceil_mod(Value *coef, int len, Value d, ZZ& f, evalue *EP, Polyhedron *PD)
899 Value m;
900 value_init(m);
901 value_set_si(m, -1);
903 Vector_Scale(coef, coef, m, len);
905 value_assign(m, d);
906 int j = normal_mod(coef, len, &m);
908 if (j == len) {
909 value_clear(m);
910 return;
913 vec_ZZ num;
914 values2zz(coef, num, len);
916 ZZ g;
917 value2zz(m, g);
919 evalue tmp;
920 value_init(tmp.d);
921 evalue_set_si(&tmp, 0, 1);
923 int p = j;
924 if (g % 2 == 0)
925 while (j < len-1 && (num[j] == g/2 || num[j] == 0))
926 ++j;
927 if ((j < len-1 && num[j] > g/2) || (j == len-1 && num[j] >= (g+1)/2)) {
928 for (int k = j; k < len-1; ++k)
929 if (num[k] != 0)
930 num[k] = g - num[k];
931 num[len-1] = g - 1 - num[len-1];
932 value_assign(tmp.d, m);
933 ZZ t = f*(g-1);
934 zz2value(t, tmp.x.n);
935 eadd(&tmp, EP);
936 f = -f;
939 if (p >= len-1) {
940 ZZ t = num[len-1] * f;
941 zz2value(t, tmp.x.n);
942 value_assign(tmp.d, m);
943 eadd(&tmp, EP);
944 } else {
945 evalue *E = multi_monom(num);
946 evalue EV;
947 value_init(EV.d);
949 if (PD && !mod_needed(PD, num, m, E)) {
950 value_init(EV.x.n);
951 zz2value(f, EV.x.n);
952 value_assign(EV.d, m);
953 emul(&EV, E);
954 eadd(E, EP);
955 } else {
956 value_init(EV.x.n);
957 value_set_si(EV.x.n, 1);
958 value_assign(EV.d, m);
959 emul(&EV, E);
960 value_clear(EV.x.n);
961 value_set_si(EV.d, 0);
962 EV.x.p = new_enode(fractional, 3, -1);
963 evalue_copy(&EV.x.p->arr[0], E);
964 evalue_set_si(&EV.x.p->arr[1], 0, 1);
965 value_init(EV.x.p->arr[2].x.n);
966 zz2value(f, EV.x.p->arr[2].x.n);
967 value_set_si(EV.x.p->arr[2].d, 1);
969 eadd(&EV, EP);
972 free_evalue_refs(&EV);
973 free_evalue_refs(E);
974 delete E;
977 free_evalue_refs(&tmp);
979 out:
980 value_clear(m);
983 evalue* bv_ceil3(Value *coef, int len, Value d, Polyhedron *P)
985 Vector *val = Vector_Alloc(len);
987 Value t;
988 value_init(t);
989 value_set_si(t, -1);
990 Vector_Scale(coef, val->p, t, len);
991 value_absolute(t, d);
993 vec_ZZ num;
994 values2zz(val->p, num, len);
995 evalue *EP = multi_monom(num);
997 evalue tmp;
998 value_init(tmp.d);
999 value_init(tmp.x.n);
1000 value_set_si(tmp.x.n, 1);
1001 value_assign(tmp.d, t);
1003 emul(&tmp, EP);
1005 ZZ one;
1006 one = 1;
1007 ceil_mod(val->p, len, t, one, EP, P);
1008 value_clear(t);
1010 /* copy EP to malloc'ed evalue */
1011 evalue *E;
1012 ALLOC(E);
1013 *E = *EP;
1014 delete EP;
1016 free_evalue_refs(&tmp);
1017 Vector_Free(val);
1019 return E;
1022 #ifdef USE_MODULO
1023 evalue* lattice_point(
1024 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1026 unsigned nparam = W->NbColumns - 1;
1028 Matrix* Rays = rays2(i);
1029 Matrix *T = Transpose(Rays);
1030 Matrix *T2 = Matrix_Copy(T);
1031 Matrix *inv = Matrix_Alloc(T2->NbRows, T2->NbColumns);
1032 int ok = Matrix_Inverse(T2, inv);
1033 assert(ok);
1034 Matrix_Free(Rays);
1035 Matrix_Free(T2);
1036 mat_ZZ vertex;
1037 matrix2zz(W, vertex, W->NbRows, W->NbColumns);
1039 vec_ZZ num;
1040 num = lambda * vertex;
1042 evalue *EP = multi_monom(num);
1044 evalue tmp;
1045 value_init(tmp.d);
1046 value_init(tmp.x.n);
1047 value_set_si(tmp.x.n, 1);
1048 value_assign(tmp.d, lcm);
1050 emul(&tmp, EP);
1052 Matrix *L = Matrix_Alloc(inv->NbRows, W->NbColumns);
1053 Matrix_Product(inv, W, L);
1055 mat_ZZ RT;
1056 matrix2zz(T, RT, T->NbRows, T->NbColumns);
1057 Matrix_Free(T);
1059 vec_ZZ p = lambda * RT;
1061 for (int i = 0; i < L->NbRows; ++i) {
1062 ceil_mod(L->p[i], nparam+1, lcm, p[i], EP, PD);
1065 Matrix_Free(L);
1067 Matrix_Free(inv);
1068 free_evalue_refs(&tmp);
1069 return EP;
1071 #else
1072 evalue* lattice_point(
1073 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1075 Matrix *T = Transpose(W);
1076 unsigned nparam = T->NbRows - 1;
1078 evalue *EP = new evalue();
1079 value_init(EP->d);
1080 evalue_set_si(EP, 0, 1);
1082 evalue ev;
1083 Vector *val = Vector_Alloc(nparam+1);
1084 value_set_si(val->p[nparam], 1);
1085 ZZ offset(INIT_VAL, 0);
1086 value_init(ev.d);
1087 vertex_period(i, lambda, T, lcm, 0, val, EP, &ev, offset);
1088 Vector_Free(val);
1089 eadd(&ev, EP);
1090 free_evalue_refs(&ev);
1092 Matrix_Free(T);
1094 reduce_evalue(EP);
1096 return EP;
1098 #endif
1100 void lattice_point(
1101 Param_Vertices* V, Polyhedron *i, vec_ZZ& lambda, term_info* term,
1102 Polyhedron *PD)
1104 unsigned nparam = V->Vertex->NbColumns - 2;
1105 unsigned dim = i->Dimension;
1106 mat_ZZ vertex;
1107 vertex.SetDims(V->Vertex->NbRows, nparam+1);
1108 Value lcm, tmp;
1109 value_init(lcm);
1110 value_init(tmp);
1111 value_set_si(lcm, 1);
1112 for (int j = 0; j < V->Vertex->NbRows; ++j) {
1113 value_lcm(lcm, V->Vertex->p[j][nparam+1], &lcm);
1115 if (value_notone_p(lcm)) {
1116 Matrix * mv = Matrix_Alloc(dim, nparam+1);
1117 for (int j = 0 ; j < dim; ++j) {
1118 value_division(tmp, lcm, V->Vertex->p[j][nparam+1]);
1119 Vector_Scale(V->Vertex->p[j], mv->p[j], tmp, nparam+1);
1122 term->E = lattice_point(i, lambda, mv, lcm, PD);
1123 term->constant = 0;
1125 Matrix_Free(mv);
1126 value_clear(lcm);
1127 value_clear(tmp);
1128 return;
1130 for (int i = 0; i < V->Vertex->NbRows; ++i) {
1131 assert(value_one_p(V->Vertex->p[i][nparam+1])); // for now
1132 values2zz(V->Vertex->p[i], vertex[i], nparam+1);
1135 vec_ZZ num;
1136 num = lambda * vertex;
1138 int p = -1;
1139 int nn = 0;
1140 for (int j = 0; j < nparam; ++j)
1141 if (num[j] != 0) {
1142 ++nn;
1143 p = j;
1145 if (nn >= 2) {
1146 term->E = multi_monom(num);
1147 term->constant = 0;
1148 } else {
1149 term->E = NULL;
1150 term->constant = num[nparam];
1151 term->pos = p;
1152 if (p != -1)
1153 term->coeff = num[p];
1156 value_clear(lcm);
1157 value_clear(tmp);
1160 void normalize(Polyhedron *i, vec_ZZ& lambda, ZZ& sign, ZZ& num, vec_ZZ& den)
1162 unsigned dim = i->Dimension;
1164 int r = 0;
1165 mat_ZZ rays;
1166 rays.SetDims(dim, dim);
1167 add_rays(rays, i, &r);
1168 den = rays * lambda;
1169 int change = 0;
1171 for (int j = 0; j < den.length(); ++j) {
1172 if (den[j] > 0)
1173 change ^= 1;
1174 else {
1175 den[j] = abs(den[j]);
1176 num += den[j];
1179 if (change)
1180 sign = -sign;
1183 void barvinok_count(Polyhedron *P, Value* result, unsigned NbMaxCons)
1185 Polyhedron ** vcone;
1186 vec_ZZ sign;
1187 int ncone = 0;
1188 sign.SetLength(ncone);
1189 unsigned dim;
1190 int allocated = 0;
1191 Value factor;
1192 Polyhedron *Q;
1193 int r = 0;
1195 if (emptyQ(P)) {
1196 value_set_si(*result, 0);
1197 return;
1199 if (P->NbBid == 0)
1200 for (; r < P->NbRays; ++r)
1201 if (value_zero_p(P->Ray[r][P->Dimension+1]))
1202 break;
1203 if (P->NbBid !=0 || r < P->NbRays) {
1204 value_set_si(*result, -1);
1205 return;
1207 if (P->NbEq != 0) {
1208 P = remove_equalities(P);
1209 if (emptyQ(P)) {
1210 Polyhedron_Free(P);
1211 value_set_si(*result, 0);
1212 return;
1214 allocated = 1;
1216 value_init(factor);
1217 value_set_si(factor, 1);
1218 Q = Polyhedron_Reduce(P, &factor);
1219 if (Q) {
1220 if (allocated)
1221 Polyhedron_Free(P);
1222 P = Q;
1223 allocated = 1;
1225 if (P->Dimension == 0) {
1226 value_assign(*result, factor);
1227 if (allocated)
1228 Polyhedron_Free(P);
1229 value_clear(factor);
1230 return;
1233 dim = P->Dimension;
1234 vcone = new (Polyhedron *)[P->NbRays];
1236 for (int j = 0; j < P->NbRays; ++j) {
1237 int npos, nneg;
1238 Polyhedron *C = supporting_cone(P, j);
1239 decompose(C, &vcone[j], &npos, &nneg, NbMaxCons);
1240 ncone += npos + nneg;
1241 sign.SetLength(ncone);
1242 for (int k = 0; k < npos; ++k)
1243 sign[ncone-nneg-k-1] = 1;
1244 for (int k = 0; k < nneg; ++k)
1245 sign[ncone-k-1] = -1;
1248 mat_ZZ rays;
1249 rays.SetDims(ncone * dim, dim);
1250 r = 0;
1251 for (int j = 0; j < P->NbRays; ++j) {
1252 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1253 assert(i->NbRays-1 == dim);
1254 add_rays(rays, i, &r);
1257 vec_ZZ lambda;
1258 nonorthog(rays, lambda);
1260 vec_ZZ num;
1261 mat_ZZ den;
1262 num.SetLength(ncone);
1263 den.SetDims(ncone,dim);
1265 int f = 0;
1266 for (int j = 0; j < P->NbRays; ++j) {
1267 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1268 lattice_point(P->Ray[j]+1, i, lambda, num[f]);
1269 normalize(i, lambda, sign[f], num[f], den[f]);
1270 ++f;
1273 ZZ min = num[0];
1274 for (int j = 1; j < num.length(); ++j)
1275 if (num[j] < min)
1276 min = num[j];
1277 for (int j = 0; j < num.length(); ++j)
1278 num[j] -= min;
1280 f = 0;
1281 mpq_t count;
1282 mpq_init(count);
1283 for (int j = 0; j < P->NbRays; ++j) {
1284 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1285 dpoly d(dim, num[f]);
1286 dpoly n(dim, den[f][0], 1);
1287 for (int k = 1; k < dim; ++k) {
1288 dpoly fact(dim, den[f][k], 1);
1289 n *= fact;
1291 d.div(n, count, sign[f]);
1292 ++f;
1295 assert(value_one_p(&count[0]._mp_den));
1296 value_multiply(*result, &count[0]._mp_num, factor);
1297 mpq_clear(count);
1299 for (int j = 0; j < P->NbRays; ++j)
1300 Domain_Free(vcone[j]);
1302 delete [] vcone;
1304 if (allocated)
1305 Polyhedron_Free(P);
1306 value_clear(factor);
1309 static void uni_polynom(int param, Vector *c, evalue *EP)
1311 unsigned dim = c->Size-2;
1312 value_init(EP->d);
1313 value_set_si(EP->d,0);
1314 EP->x.p = new_enode(polynomial, dim+1, param+1);
1315 for (int j = 0; j <= dim; ++j)
1316 evalue_set(&EP->x.p->arr[j], c->p[j], c->p[dim+1]);
1319 static void multi_polynom(Vector *c, evalue* X, evalue *EP)
1321 unsigned dim = c->Size-2;
1322 evalue EC;
1324 value_init(EC.d);
1325 evalue_set(&EC, c->p[dim], c->p[dim+1]);
1327 value_init(EP->d);
1328 evalue_set(EP, c->p[dim], c->p[dim+1]);
1330 for (int i = dim-1; i >= 0; --i) {
1331 emul(X, EP);
1332 value_assign(EC.x.n, c->p[i]);
1333 eadd(&EC, EP);
1335 free_evalue_refs(&EC);
1338 Polyhedron *unfringe (Polyhedron *P, unsigned MaxRays)
1340 int len = P->Dimension+2;
1341 Polyhedron *T, *R = P;
1342 Value g;
1343 value_init(g);
1344 Vector *row = Vector_Alloc(len);
1345 value_set_si(row->p[0], 1);
1347 R = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
1349 Matrix *M = Matrix_Alloc(2, len-1);
1350 value_set_si(M->p[1][len-2], 1);
1351 for (int v = 0; v < P->Dimension; ++v) {
1352 value_set_si(M->p[0][v], 1);
1353 Polyhedron *I = Polyhedron_Image(P, M, 2+1);
1354 value_set_si(M->p[0][v], 0);
1355 for (int r = 0; r < I->NbConstraints; ++r) {
1356 if (value_zero_p(I->Constraint[r][0]))
1357 continue;
1358 if (value_zero_p(I->Constraint[r][1]))
1359 continue;
1360 if (value_one_p(I->Constraint[r][1]))
1361 continue;
1362 if (value_mone_p(I->Constraint[r][1]))
1363 continue;
1364 value_absolute(g, I->Constraint[r][1]);
1365 Vector_Set(row->p+1, 0, len-2);
1366 value_division(row->p[1+v], I->Constraint[r][1], g);
1367 mpz_fdiv_q(row->p[len-1], I->Constraint[r][2], g);
1368 T = R;
1369 R = AddConstraints(row->p, 1, R, MaxRays);
1370 if (T != P)
1371 Polyhedron_Free(T);
1373 Polyhedron_Free(I);
1375 Matrix_Free(M);
1376 Vector_Free(row);
1377 value_clear(g);
1378 return R;
1381 static Polyhedron *reduce_domain(Polyhedron *D, Matrix *CT, Polyhedron *CEq,
1382 Polyhedron **fVD, int nd, unsigned MaxRays)
1384 assert(CEq);
1386 Polyhedron *Dt;
1387 Dt = CT ? DomainPreimage(D, CT, MaxRays) : D;
1388 Polyhedron *rVD = DomainIntersection(Dt, CEq, MaxRays);
1390 /* if rVD is empty or too small in geometric dimension */
1391 if(!rVD || emptyQ(rVD) ||
1392 (rVD->Dimension-rVD->NbEq < Dt->Dimension-Dt->NbEq-CEq->NbEq)) {
1393 if(rVD)
1394 Domain_Free(rVD);
1395 if (CT)
1396 Domain_Free(Dt);
1397 return 0; /* empty validity domain */
1400 if (CT)
1401 Domain_Free(Dt);
1403 fVD[nd] = Domain_Copy(rVD);
1404 for (int i = 0 ; i < nd; ++i) {
1405 Polyhedron *I = DomainIntersection(fVD[nd], fVD[i], MaxRays);
1406 if (emptyQ(I)) {
1407 Domain_Free(I);
1408 continue;
1410 Polyhedron *F = DomainSimplify(I, fVD[nd], MaxRays);
1411 if (F->NbEq == 1) {
1412 Polyhedron *T = rVD;
1413 rVD = DomainDifference(rVD, F, MaxRays);
1414 Domain_Free(T);
1416 Domain_Free(F);
1417 Domain_Free(I);
1420 rVD = DomainConstraintSimplify(rVD, MaxRays);
1421 if (emptyQ(rVD)) {
1422 Domain_Free(fVD[nd]);
1423 Domain_Free(rVD);
1424 return 0;
1427 Value c;
1428 value_init(c);
1429 barvinok_count(rVD, &c, MaxRays);
1430 if (value_zero_p(c)) {
1431 Domain_Free(rVD);
1432 rVD = 0;
1434 value_clear(c);
1436 return rVD;
1439 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1441 //P = unfringe(P, MaxRays);
1442 Polyhedron *CEq = NULL, *rVD, *pVD, *CA;
1443 Matrix *CT = NULL;
1444 Param_Polyhedron *PP = NULL;
1445 Param_Domain *D, *next;
1446 Param_Vertices *V;
1447 int r = 0;
1448 unsigned nparam = C->Dimension;
1449 evalue *eres;
1450 ALLOC(eres);
1451 value_init(eres->d);
1452 value_set_si(eres->d, 0);
1454 evalue factor;
1455 value_init(factor.d);
1456 evalue_set_si(&factor, 1, 1);
1458 CA = align_context(C, P->Dimension, MaxRays);
1459 P = DomainIntersection(P, CA, MaxRays);
1460 Polyhedron_Free(CA);
1462 if (C->Dimension == 0 || emptyQ(P)) {
1463 constant:
1464 eres->x.p = new_enode(partition, 2, C->Dimension);
1465 EVALUE_SET_DOMAIN(eres->x.p->arr[0],
1466 DomainConstraintSimplify(CEq ? CEq : Polyhedron_Copy(C), MaxRays));
1467 value_set_si(eres->x.p->arr[1].d, 1);
1468 value_init(eres->x.p->arr[1].x.n);
1469 if (emptyQ(P))
1470 value_set_si(eres->x.p->arr[1].x.n, 0);
1471 else
1472 barvinok_count(P, &eres->x.p->arr[1].x.n, MaxRays);
1473 out:
1474 emul(&factor, eres);
1475 reduce_evalue(eres);
1476 free_evalue_refs(&factor);
1477 Polyhedron_Free(P);
1478 if (CT)
1479 Matrix_Free(CT);
1480 if (PP)
1481 Param_Polyhedron_Free(PP);
1483 return eres;
1485 for (r = 0; r < P->NbRays; ++r)
1486 if (value_zero_p(P->Ray[r][0]) ||
1487 value_zero_p(P->Ray[r][P->Dimension+1])) {
1488 int i;
1489 for (i = P->Dimension - nparam; i < P->Dimension; ++i)
1490 if (value_notzero_p(P->Ray[r][i+1]))
1491 break;
1492 if (i >= P->Dimension)
1493 break;
1495 if (r < P->NbRays)
1496 goto constant;
1498 if (P->NbEq != 0) {
1499 Matrix *f;
1500 P = remove_equalities_p(P, P->Dimension-nparam, &f);
1501 mask(f, &factor);
1502 Matrix_Free(f);
1504 if (P->Dimension == nparam) {
1505 CEq = P;
1506 P = Universe_Polyhedron(0);
1507 goto constant;
1510 Polyhedron *Q = ParamPolyhedron_Reduce(P, P->Dimension-nparam, &factor);
1511 if (Q) {
1512 Polyhedron_Free(P);
1513 if (Q->Dimension == nparam) {
1514 CEq = Q;
1515 P = Universe_Polyhedron(0);
1516 goto constant;
1518 P = Q;
1520 Polyhedron *oldP = P;
1521 PP = Polyhedron2Param_SimplifiedDomain(&P,C,MaxRays,&CEq,&CT);
1522 if (P != oldP)
1523 Polyhedron_Free(oldP);
1525 if (isIdentity(CT)) {
1526 Matrix_Free(CT);
1527 CT = NULL;
1528 } else {
1529 assert(CT->NbRows != CT->NbColumns);
1530 if (CT->NbRows == 1) // no more parameters
1531 goto constant;
1532 nparam = CT->NbRows - 1;
1535 unsigned dim = P->Dimension - nparam;
1536 Polyhedron ** vcone = new (Polyhedron *)[PP->nbV];
1537 int * npos = new int[PP->nbV];
1538 int * nneg = new int[PP->nbV];
1539 vec_ZZ sign;
1541 int i;
1542 for (i = 0, V = PP->V; V; ++i, V = V->next) {
1543 Polyhedron *C = supporting_cone_p(P, V);
1544 decompose(C, &vcone[i], &npos[i], &nneg[i], MaxRays);
1547 Vector *c = Vector_Alloc(dim+2);
1549 int nd;
1550 for (nd = 0, D=PP->D; D; ++nd, D=D->next);
1551 struct section { Polyhedron *D; evalue E; };
1552 section *s = new section[nd];
1553 Polyhedron **fVD = new (Polyhedron*)[nd];
1555 for(nd = 0, D=PP->D; D; D=next) {
1556 next = D->next;
1558 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
1559 fVD, nd, MaxRays);
1560 if (!rVD)
1561 continue;
1563 pVD = CT ? DomainImage(rVD,CT,MaxRays) : rVD;
1565 int ncone = 0;
1566 sign.SetLength(ncone);
1567 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1568 ncone += npos[_i] + nneg[_i];
1569 sign.SetLength(ncone);
1570 for (int k = 0; k < npos[_i]; ++k)
1571 sign[ncone-nneg[_i]-k-1] = 1;
1572 for (int k = 0; k < nneg[_i]; ++k)
1573 sign[ncone-k-1] = -1;
1574 END_FORALL_PVertex_in_ParamPolyhedron;
1576 mat_ZZ rays;
1577 rays.SetDims(ncone * dim, dim);
1578 r = 0;
1579 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1580 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1581 assert(i->NbRays-1 == dim);
1582 add_rays(rays, i, &r);
1584 END_FORALL_PVertex_in_ParamPolyhedron;
1585 vec_ZZ lambda;
1586 nonorthog(rays, lambda);
1588 mat_ZZ den;
1589 den.SetDims(ncone,dim);
1590 term_info *num = new term_info[ncone];
1592 int f = 0;
1593 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1594 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1595 lattice_point(V, i, lambda, &num[f], pVD);
1596 normalize(i, lambda, sign[f], num[f].constant, den[f]);
1597 ++f;
1599 END_FORALL_PVertex_in_ParamPolyhedron;
1600 ZZ min = num[0].constant;
1601 for (int j = 1; j < ncone; ++j)
1602 if (num[j].constant < min)
1603 min = num[j].constant;
1604 for (int j = 0; j < ncone; ++j)
1605 num[j].constant -= min;
1606 f = 0;
1607 value_init(s[nd].E.d);
1608 evalue_set_si(&s[nd].E, 0, 1);
1609 mpq_t count;
1610 mpq_init(count);
1611 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1612 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1613 dpoly n(dim, den[f][0], 1);
1614 for (int k = 1; k < dim; ++k) {
1615 dpoly fact(dim, den[f][k], 1);
1616 n *= fact;
1618 if (num[f].E != NULL) {
1619 ZZ one(INIT_VAL, 1);
1620 dpoly_n d(dim, num[f].constant, one);
1621 d.div(n, c, sign[f]);
1622 evalue EV;
1623 multi_polynom(c, num[f].E, &EV);
1624 eadd(&EV , &s[nd].E);
1625 free_evalue_refs(&EV);
1626 free_evalue_refs(num[f].E);
1627 delete num[f].E;
1628 } else if (num[f].pos != -1) {
1629 dpoly_n d(dim, num[f].constant, num[f].coeff);
1630 d.div(n, c, sign[f]);
1631 evalue EV;
1632 uni_polynom(num[f].pos, c, &EV);
1633 eadd(&EV , &s[nd].E);
1634 free_evalue_refs(&EV);
1635 } else {
1636 mpq_set_si(count, 0, 1);
1637 dpoly d(dim, num[f].constant);
1638 d.div(n, count, sign[f]);
1639 evalue EV;
1640 value_init(EV.d);
1641 evalue_set(&EV, &count[0]._mp_num, &count[0]._mp_den);
1642 eadd(&EV , &s[nd].E);
1643 free_evalue_refs(&EV);
1645 ++f;
1647 END_FORALL_PVertex_in_ParamPolyhedron;
1649 mpq_clear(count);
1650 delete [] num;
1652 if (CT)
1653 addeliminatedparams_evalue(&s[nd].E, CT);
1654 s[nd].D = rVD;
1655 ++nd;
1656 if (rVD != pVD)
1657 Domain_Free(pVD);
1660 if (nd == 0)
1661 evalue_set_si(eres, 0, 1);
1662 else {
1663 eres->x.p = new_enode(partition, 2*nd, C->Dimension);
1664 for (int j = 0; j < nd; ++j) {
1665 EVALUE_SET_DOMAIN(eres->x.p->arr[2*j], s[j].D);
1666 value_clear(eres->x.p->arr[2*j+1].d);
1667 eres->x.p->arr[2*j+1] = s[j].E;
1668 Domain_Free(fVD[j]);
1671 delete [] s;
1672 delete [] fVD;
1674 Vector_Free(c);
1676 for (int j = 0; j < PP->nbV; ++j)
1677 Domain_Free(vcone[j]);
1678 delete [] vcone;
1679 delete [] npos;
1680 delete [] nneg;
1682 if (CEq)
1683 Polyhedron_Free(CEq);
1685 goto out;
1688 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1690 evalue *EP = barvinok_enumerate_ev(P, C, MaxRays);
1692 return partition2enumeration(EP);
1695 static void SwapColumns(Value **V, int n, int i, int j)
1697 for (int r = 0; r < n; ++r)
1698 value_swap(V[r][i], V[r][j]);
1701 static void SwapColumns(Polyhedron *P, int i, int j)
1703 SwapColumns(P->Constraint, P->NbConstraints, i, j);
1704 SwapColumns(P->Ray, P->NbRays, i, j);
1707 static bool SplitOnConstraint(Polyhedron *P, int i, int l, int u,
1708 int nvar, int len, int exist, int MaxRays,
1709 Vector *row, Value& f, bool independent,
1710 Polyhedron **pos, Polyhedron **neg)
1712 value_oppose(f, P->Constraint[u][nvar+i+1]);
1713 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
1714 row->p+1,
1715 f, P->Constraint[l][nvar+i+1], len-1);
1717 //printf("l: %d, u: %d\n", l, u);
1718 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
1719 value_substract(row->p[len-1], row->p[len-1], f);
1720 value_set_si(f, -1);
1721 Vector_Scale(row->p+1, row->p+1, f, len-1);
1722 value_decrement(row->p[len-1], row->p[len-1]);
1723 Vector_Gcd(row->p+1, len - 2, &f);
1724 if (value_notone_p(f)) {
1725 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
1726 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
1728 *neg = AddConstraints(row->p, 1, P, MaxRays);
1730 /* We found an independent, but useless constraint
1731 * Maybe we should detect this earlier and not
1732 * mark the variable as INDEPENDENT
1734 if (emptyQ((*neg))) {
1735 Polyhedron_Free(*neg);
1736 return false;
1739 value_set_si(f, -1);
1740 Vector_Scale(row->p+1, row->p+1, f, len-1);
1741 value_decrement(row->p[len-1], row->p[len-1]);
1742 *pos = AddConstraints(row->p, 1, P, MaxRays);
1744 if (emptyQ((*pos))) {
1745 Polyhedron_Free(*neg);
1746 Polyhedron_Free(*pos);
1747 return false;
1750 return true;
1754 * unimodularly transform P such that constraint r is transformed
1755 * into a constraint that involves only a single (the first)
1756 * existential variable
1759 static Polyhedron *rotate_along(Polyhedron *P, int r, int nvar, int exist,
1760 unsigned MaxRays)
1762 Value g;
1763 value_init(g);
1765 Vector *row = Vector_Alloc(exist);
1766 Vector_Copy(P->Constraint[r]+1+nvar, row->p, exist);
1767 Vector_Gcd(row->p, exist, &g);
1768 if (value_notone_p(g))
1769 Vector_AntiScale(row->p, row->p, g, exist);
1770 value_clear(g);
1772 Matrix *M = unimodular_complete(row);
1773 Matrix *M2 = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
1774 for (r = 0; r < nvar; ++r)
1775 value_set_si(M2->p[r][r], 1);
1776 for ( ; r < nvar+exist; ++r)
1777 Vector_Copy(M->p[r-nvar], M2->p[r]+nvar, exist);
1778 for ( ; r < P->Dimension+1; ++r)
1779 value_set_si(M2->p[r][r], 1);
1780 Polyhedron *T = Polyhedron_Image(P, M2, MaxRays);
1782 Matrix_Free(M2);
1783 Matrix_Free(M);
1784 Vector_Free(row);
1786 return T;
1789 static bool SplitOnVar(Polyhedron *P, int i,
1790 int nvar, int len, int exist, int MaxRays,
1791 Vector *row, Value& f, bool independent,
1792 Polyhedron **pos, Polyhedron **neg)
1794 int j;
1796 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
1797 if (value_negz_p(P->Constraint[l][nvar+i+1]))
1798 continue;
1800 if (independent) {
1801 for (j = 0; j < exist; ++j)
1802 if (j != i && value_notzero_p(P->Constraint[l][nvar+j+1]))
1803 break;
1804 if (j < exist)
1805 continue;
1808 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
1809 if (value_posz_p(P->Constraint[u][nvar+i+1]))
1810 continue;
1812 if (independent) {
1813 for (j = 0; j < exist; ++j)
1814 if (j != i && value_notzero_p(P->Constraint[u][nvar+j+1]))
1815 break;
1816 if (j < exist)
1817 continue;
1820 if (SplitOnConstraint(P, i, l, u,
1821 nvar, len, exist, MaxRays,
1822 row, f, independent,
1823 pos, neg)) {
1824 if (independent) {
1825 if (i != 0)
1826 SwapColumns(*neg, nvar+1, nvar+1+i);
1828 return true;
1833 return false;
1836 static bool double_bound_pair(Polyhedron *P, int nvar, int exist,
1837 int i, int l1, int l2,
1838 Polyhedron **pos, Polyhedron **neg)
1840 Value f;
1841 value_init(f);
1842 Vector *row = Vector_Alloc(P->Dimension+2);
1843 value_set_si(row->p[0], 1);
1844 value_oppose(f, P->Constraint[l1][nvar+i+1]);
1845 Vector_Combine(P->Constraint[l1]+1, P->Constraint[l2]+1,
1846 row->p+1,
1847 P->Constraint[l2][nvar+i+1], f,
1848 P->Dimension+1);
1849 ConstraintSimplify(row->p, row->p, P->Dimension+2, &f);
1850 *pos = AddConstraints(row->p, 1, P, 0);
1851 value_set_si(f, -1);
1852 Vector_Scale(row->p+1, row->p+1, f, P->Dimension+1);
1853 value_decrement(row->p[P->Dimension+1], row->p[P->Dimension+1]);
1854 *neg = AddConstraints(row->p, 1, P, 0);
1855 Vector_Free(row);
1856 value_clear(f);
1858 return !emptyQ((*pos)) && !emptyQ((*neg));
1861 static bool double_bound(Polyhedron *P, int nvar, int exist,
1862 Polyhedron **pos, Polyhedron **neg)
1864 for (int i = 0; i < exist; ++i) {
1865 int l1, l2;
1866 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1867 if (value_negz_p(P->Constraint[l1][nvar+i+1]))
1868 continue;
1869 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1870 if (value_negz_p(P->Constraint[l2][nvar+i+1]))
1871 continue;
1872 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1873 return true;
1876 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1877 if (value_posz_p(P->Constraint[l1][nvar+i+1]))
1878 continue;
1879 if (l1 < P->NbConstraints)
1880 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1881 if (value_posz_p(P->Constraint[l2][nvar+i+1]))
1882 continue;
1883 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1884 return true;
1887 return false;
1889 return false;
1892 enum constraint {
1893 ALL_POS = 1 << 0,
1894 ONE_NEG = 1 << 1,
1895 INDEPENDENT = 1 << 2,
1898 static evalue* enumerate_or(Polyhedron *pos, Polyhedron *neg,
1899 unsigned exist, unsigned nparam, unsigned MaxRays)
1901 #ifdef DEBUG_ER
1902 fprintf(stderr, "\nER: Or\n");
1903 #endif /* DEBUG_ER */
1905 evalue *EN =
1906 barvinok_enumerate_e(neg, exist, nparam, MaxRays);
1907 evalue *EP =
1908 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
1909 evalue E;
1910 value_init(E.d);
1911 evalue_copy(&E, EP);
1912 eadd(EN, &E);
1913 emul(EN, EP);
1914 free_evalue_refs(EN);
1915 value_init(EN->d);
1916 evalue_set_si(EN, -1, 1);
1917 emul(EN, EP);
1918 eadd(&E, EP);
1920 free_evalue_refs(EN);
1921 free(EN);
1922 free_evalue_refs(&E);
1923 Polyhedron_Free(neg);
1924 Polyhedron_Free(pos);
1926 reduce_evalue(EP);
1928 return EP;
1931 static evalue* enumerate_sum(Polyhedron *P,
1932 unsigned exist, unsigned nparam, unsigned MaxRays)
1934 int nvar = P->Dimension - exist - nparam;
1935 int toswap = nvar < exist ? nvar : exist;
1936 for (int i = 0; i < toswap; ++i)
1937 SwapColumns(P, 1 + i, nvar+exist - i);
1938 nparam += nvar;
1940 #ifdef DEBUG_ER
1941 fprintf(stderr, "\nER: Sum\n");
1942 #endif /* DEBUG_ER */
1944 evalue *EP = barvinok_enumerate_e(P, exist, nparam, MaxRays);
1946 for (int i = 0; i < /* nvar */ nparam; ++i) {
1947 Matrix *C = Matrix_Alloc(1, 1 + nparam + 1);
1948 value_set_si(C->p[0][0], 1);
1949 evalue split;
1950 value_init(split.d);
1951 value_set_si(split.d, 0);
1952 split.x.p = new_enode(partition, 4, nparam);
1953 value_set_si(C->p[0][1+i], 1);
1954 Matrix *C2 = Matrix_Copy(C);
1955 EVALUE_SET_DOMAIN(split.x.p->arr[0],
1956 Constraints2Polyhedron(C2, MaxRays));
1957 Matrix_Free(C2);
1958 evalue_set_si(&split.x.p->arr[1], 1, 1);
1959 value_set_si(C->p[0][1+i], -1);
1960 value_set_si(C->p[0][1+nparam], -1);
1961 EVALUE_SET_DOMAIN(split.x.p->arr[2],
1962 Constraints2Polyhedron(C, MaxRays));
1963 evalue_set_si(&split.x.p->arr[3], 1, 1);
1964 emul(&split, EP);
1965 free_evalue_refs(&split);
1966 Matrix_Free(C);
1968 reduce_evalue(EP);
1969 evalue_range_reduction(EP);
1971 evalue_frac2floor(EP);
1973 evalue *sum = esum(EP, nvar);
1975 free_evalue_refs(EP);
1976 free(EP);
1977 EP = sum;
1979 evalue_range_reduction(EP);
1981 return EP;
1984 static evalue* split_sure(Polyhedron *P, Polyhedron *S,
1985 unsigned exist, unsigned nparam, unsigned MaxRays)
1987 int nvar = P->Dimension - exist - nparam;
1989 Matrix *M = Matrix_Alloc(exist, S->Dimension+2);
1990 for (int i = 0; i < exist; ++i)
1991 value_set_si(M->p[i][nvar+i+1], 1);
1992 Polyhedron *O = S;
1993 S = DomainAddRays(S, M, MaxRays);
1994 Polyhedron_Free(O);
1995 Polyhedron *F = DomainAddRays(P, M, MaxRays);
1996 Polyhedron *D = DomainDifference(F, S, MaxRays);
1997 O = D;
1998 D = Disjoint_Domain(D, 0, MaxRays);
1999 Polyhedron_Free(F);
2000 Domain_Free(O);
2001 Matrix_Free(M);
2003 M = Matrix_Alloc(P->Dimension+1-exist, P->Dimension+1);
2004 for (int j = 0; j < nvar; ++j)
2005 value_set_si(M->p[j][j], 1);
2006 for (int j = 0; j < nparam+1; ++j)
2007 value_set_si(M->p[nvar+j][nvar+exist+j], 1);
2008 Polyhedron *T = Polyhedron_Image(S, M, MaxRays);
2009 evalue *EP = barvinok_enumerate_e(T, 0, nparam, MaxRays);
2010 Polyhedron_Free(S);
2011 Polyhedron_Free(T);
2012 Matrix_Free(M);
2014 for (Polyhedron *Q = D; Q; Q = Q->next) {
2015 Polyhedron *N = Q->next;
2016 Q->next = 0;
2017 T = DomainIntersection(P, Q, MaxRays);
2018 evalue *E = barvinok_enumerate_e(T, exist, nparam, MaxRays);
2019 eadd(E, EP);
2020 free_evalue_refs(E);
2021 free(E);
2022 Polyhedron_Free(T);
2023 Q->next = N;
2025 Domain_Free(D);
2026 return EP;
2029 static evalue* enumerate_sure(Polyhedron *P,
2030 unsigned exist, unsigned nparam, unsigned MaxRays)
2032 int i;
2033 Polyhedron *S = P;
2034 int nvar = P->Dimension - exist - nparam;
2035 Value lcm;
2036 Value f;
2037 value_init(lcm);
2038 value_init(f);
2040 for (i = 0; i < exist; ++i) {
2041 Matrix *M = Matrix_Alloc(S->NbConstraints, S->Dimension+2);
2042 int c = 0;
2043 value_set_si(lcm, 1);
2044 for (int j = 0; j < S->NbConstraints; ++j) {
2045 if (value_negz_p(S->Constraint[j][1+nvar+i]))
2046 continue;
2047 if (value_one_p(S->Constraint[j][1+nvar+i]))
2048 continue;
2049 value_lcm(lcm, S->Constraint[j][1+nvar+i], &lcm);
2052 for (int j = 0; j < S->NbConstraints; ++j) {
2053 if (value_negz_p(S->Constraint[j][1+nvar+i]))
2054 continue;
2055 if (value_one_p(S->Constraint[j][1+nvar+i]))
2056 continue;
2057 value_division(f, lcm, S->Constraint[j][1+nvar+i]);
2058 Vector_Scale(S->Constraint[j], M->p[c], f, S->Dimension+2);
2059 value_substract(M->p[c][S->Dimension+1],
2060 M->p[c][S->Dimension+1],
2061 lcm);
2062 value_increment(M->p[c][S->Dimension+1],
2063 M->p[c][S->Dimension+1]);
2064 ++c;
2066 Polyhedron *O = S;
2067 S = AddConstraints(M->p[0], c, S, MaxRays);
2068 if (O != P)
2069 Polyhedron_Free(O);
2070 Matrix_Free(M);
2071 if (emptyQ(S)) {
2072 Polyhedron_Free(S);
2073 value_clear(lcm);
2074 value_clear(f);
2075 return 0;
2078 value_clear(lcm);
2079 value_clear(f);
2081 #ifdef DEBUG_ER
2082 fprintf(stderr, "\nER: Sure\n");
2083 #endif /* DEBUG_ER */
2085 return split_sure(P, S, exist, nparam, MaxRays);
2088 static evalue* enumerate_sure2(Polyhedron *P,
2089 unsigned exist, unsigned nparam, unsigned MaxRays)
2091 int nvar = P->Dimension - exist - nparam;
2092 int r;
2093 for (r = 0; r < P->NbRays; ++r)
2094 if (value_one_p(P->Ray[r][0]) &&
2095 value_one_p(P->Ray[r][P->Dimension+1]))
2096 break;
2098 if (r >= P->NbRays)
2099 return 0;
2101 Matrix *M = Matrix_Alloc(nvar + 1 + nparam, P->Dimension+2);
2102 for (int i = 0; i < nvar; ++i)
2103 value_set_si(M->p[i][1+i], 1);
2104 for (int i = 0; i < nparam; ++i)
2105 value_set_si(M->p[i+nvar][1+nvar+exist+i], 1);
2106 Vector_Copy(P->Ray[r]+1+nvar, M->p[nvar+nparam]+1+nvar, exist);
2107 value_set_si(M->p[nvar+nparam][0], 1);
2108 value_set_si(M->p[nvar+nparam][P->Dimension+1], 1);
2109 Polyhedron * F = Rays2Polyhedron(M, MaxRays);
2110 Matrix_Free(M);
2112 Polyhedron *I = DomainIntersection(F, P, MaxRays);
2113 Polyhedron_Free(F);
2115 #ifdef DEBUG_ER
2116 fprintf(stderr, "\nER: Sure2\n");
2117 #endif /* DEBUG_ER */
2119 return split_sure(P, I, exist, nparam, MaxRays);
2122 static evalue* new_zero_ep()
2124 evalue *EP;
2125 ALLOC(EP);
2126 value_init(EP->d);
2127 evalue_set_si(EP, 0, 1);
2128 return EP;
2131 static evalue* enumerate_vd(Polyhedron **PA,
2132 unsigned exist, unsigned nparam, unsigned MaxRays)
2134 Polyhedron *P = *PA;
2135 int nvar = P->Dimension - exist - nparam;
2136 Param_Polyhedron *PP = NULL;
2137 Polyhedron *C = Universe_Polyhedron(nparam);
2138 Polyhedron *CEq;
2139 Matrix *CT;
2140 Polyhedron *PR = P;
2141 PP = Polyhedron2Param_SimplifiedDomain(&PR,C,MaxRays,&CEq,&CT);
2142 Polyhedron_Free(C);
2144 int nd;
2145 Param_Domain *D, *last;
2146 Value c;
2147 value_init(c);
2148 for (nd = 0, D=PP->D; D; D=D->next, ++nd)
2151 Polyhedron **VD = new (Polyhedron*)[nd];
2152 Polyhedron **fVD = new (Polyhedron*)[nd];
2153 for(nd = 0, D=PP->D; D; D=D->next) {
2154 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
2155 fVD, nd, MaxRays);
2156 if (!rVD)
2157 continue;
2159 VD[nd++] = rVD;
2160 last = D;
2163 evalue *EP = 0;
2165 if (nd == 0)
2166 EP = new_zero_ep();
2168 /* This doesn't seem to have any effect */
2169 if (nd == 1) {
2170 Polyhedron *CA = align_context(VD[0], P->Dimension, MaxRays);
2171 Polyhedron *O = P;
2172 P = DomainIntersection(P, CA, MaxRays);
2173 if (O != *PA)
2174 Polyhedron_Free(O);
2175 Polyhedron_Free(CA);
2176 if (emptyQ(P))
2177 EP = new_zero_ep();
2180 if (!EP && CT->NbColumns != CT->NbRows) {
2181 Polyhedron *CEqr = DomainImage(CEq, CT, MaxRays);
2182 Polyhedron *CA = align_context(CEqr, PR->Dimension, MaxRays);
2183 Polyhedron *I = DomainIntersection(PR, CA, MaxRays);
2184 Polyhedron_Free(CEqr);
2185 Polyhedron_Free(CA);
2186 #ifdef DEBUG_ER
2187 fprintf(stderr, "\nER: Eliminate\n");
2188 #endif /* DEBUG_ER */
2189 nparam -= CT->NbColumns - CT->NbRows;
2190 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2191 addeliminatedparams_enum(EP, CT, CEq, MaxRays, nparam);
2192 Polyhedron_Free(I);
2194 if (PR != *PA)
2195 Polyhedron_Free(PR);
2196 PR = 0;
2198 if (!EP && nd > 1) {
2199 #ifdef DEBUG_ER
2200 fprintf(stderr, "\nER: VD\n");
2201 #endif /* DEBUG_ER */
2202 for (int i = 0; i < nd; ++i) {
2203 Polyhedron *CA = align_context(VD[i], P->Dimension, MaxRays);
2204 Polyhedron *I = DomainIntersection(P, CA, MaxRays);
2206 if (i == 0)
2207 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2208 else {
2209 evalue *E = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2210 eadd(E, EP);
2211 free_evalue_refs(E);
2212 free(E);
2214 Polyhedron_Free(I);
2215 Polyhedron_Free(CA);
2219 for (int i = 0; i < nd; ++i) {
2220 Polyhedron_Free(VD[i]);
2221 Polyhedron_Free(fVD[i]);
2223 delete [] VD;
2224 delete [] fVD;
2225 value_clear(c);
2227 if (!EP && nvar == 0) {
2228 Value f;
2229 value_init(f);
2230 Param_Vertices *V, *V2;
2231 Matrix* M = Matrix_Alloc(1, P->Dimension+2);
2233 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2234 bool found = false;
2235 FORALL_PVertex_in_ParamPolyhedron(V2, last, PP) {
2236 if (V == V2) {
2237 found = true;
2238 continue;
2240 if (!found)
2241 continue;
2242 for (int i = 0; i < exist; ++i) {
2243 value_oppose(f, V->Vertex->p[i][nparam+1]);
2244 Vector_Combine(V->Vertex->p[i],
2245 V2->Vertex->p[i],
2246 M->p[0] + 1 + nvar + exist,
2247 V2->Vertex->p[i][nparam+1],
2249 nparam+1);
2250 int j;
2251 for (j = 0; j < nparam; ++j)
2252 if (value_notzero_p(M->p[0][1+nvar+exist+j]))
2253 break;
2254 if (j >= nparam)
2255 continue;
2256 ConstraintSimplify(M->p[0], M->p[0],
2257 P->Dimension+2, &f);
2258 value_set_si(M->p[0][0], 0);
2259 Polyhedron *para = AddConstraints(M->p[0], 1, P,
2260 MaxRays);
2261 if (emptyQ(para)) {
2262 Polyhedron_Free(para);
2263 continue;
2265 Polyhedron *pos, *neg;
2266 value_set_si(M->p[0][0], 1);
2267 value_decrement(M->p[0][P->Dimension+1],
2268 M->p[0][P->Dimension+1]);
2269 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2270 value_set_si(f, -1);
2271 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2272 P->Dimension+1);
2273 value_decrement(M->p[0][P->Dimension+1],
2274 M->p[0][P->Dimension+1]);
2275 value_decrement(M->p[0][P->Dimension+1],
2276 M->p[0][P->Dimension+1]);
2277 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2278 if (emptyQ(neg) && emptyQ(pos)) {
2279 Polyhedron_Free(para);
2280 Polyhedron_Free(pos);
2281 Polyhedron_Free(neg);
2282 continue;
2284 #ifdef DEBUG_ER
2285 fprintf(stderr, "\nER: Order\n");
2286 #endif /* DEBUG_ER */
2287 EP = barvinok_enumerate_e(para, exist, nparam, MaxRays);
2288 evalue *E;
2289 if (!emptyQ(pos)) {
2290 E = barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2291 eadd(E, EP);
2292 free_evalue_refs(E);
2293 free(E);
2295 if (!emptyQ(neg)) {
2296 E = barvinok_enumerate_e(neg, exist, nparam, MaxRays);
2297 eadd(E, EP);
2298 free_evalue_refs(E);
2299 free(E);
2301 Polyhedron_Free(para);
2302 Polyhedron_Free(pos);
2303 Polyhedron_Free(neg);
2304 break;
2306 if (EP)
2307 break;
2308 } END_FORALL_PVertex_in_ParamPolyhedron;
2309 if (EP)
2310 break;
2311 } END_FORALL_PVertex_in_ParamPolyhedron;
2313 if (!EP) {
2314 /* Search for vertex coordinate to split on */
2315 /* First look for one independent of the parameters */
2316 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2317 for (int i = 0; i < exist; ++i) {
2318 int j;
2319 for (j = 0; j < nparam; ++j)
2320 if (value_notzero_p(V->Vertex->p[i][j]))
2321 break;
2322 if (j < nparam)
2323 continue;
2324 value_set_si(M->p[0][0], 1);
2325 Vector_Set(M->p[0]+1, 0, nvar+exist);
2326 Vector_Copy(V->Vertex->p[i],
2327 M->p[0] + 1 + nvar + exist, nparam+1);
2328 value_oppose(M->p[0][1+nvar+i],
2329 V->Vertex->p[i][nparam+1]);
2331 Polyhedron *pos, *neg;
2332 value_set_si(M->p[0][0], 1);
2333 value_decrement(M->p[0][P->Dimension+1],
2334 M->p[0][P->Dimension+1]);
2335 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2336 value_set_si(f, -1);
2337 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2338 P->Dimension+1);
2339 value_decrement(M->p[0][P->Dimension+1],
2340 M->p[0][P->Dimension+1]);
2341 value_decrement(M->p[0][P->Dimension+1],
2342 M->p[0][P->Dimension+1]);
2343 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2344 if (emptyQ(neg) || emptyQ(pos)) {
2345 Polyhedron_Free(pos);
2346 Polyhedron_Free(neg);
2347 continue;
2349 Polyhedron_Free(pos);
2350 value_increment(M->p[0][P->Dimension+1],
2351 M->p[0][P->Dimension+1]);
2352 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2353 #ifdef DEBUG_ER
2354 fprintf(stderr, "\nER: Vertex\n");
2355 #endif /* DEBUG_ER */
2356 EP = enumerate_or(pos, neg, exist, nparam, MaxRays);
2357 break;
2359 if (EP)
2360 break;
2361 } END_FORALL_PVertex_in_ParamPolyhedron;
2364 if (!EP) {
2365 /* Search for vertex coordinate to split on */
2366 /* Now look for one that depends on the parameters */
2367 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2368 for (int i = 0; i < exist; ++i) {
2369 value_set_si(M->p[0][0], 1);
2370 Vector_Set(M->p[0]+1, 0, nvar+exist);
2371 Vector_Copy(V->Vertex->p[i],
2372 M->p[0] + 1 + nvar + exist, nparam+1);
2373 value_oppose(M->p[0][1+nvar+i],
2374 V->Vertex->p[i][nparam+1]);
2376 Polyhedron *pos, *neg;
2377 value_set_si(M->p[0][0], 1);
2378 value_decrement(M->p[0][P->Dimension+1],
2379 M->p[0][P->Dimension+1]);
2380 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2381 value_set_si(f, -1);
2382 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2383 P->Dimension+1);
2384 value_decrement(M->p[0][P->Dimension+1],
2385 M->p[0][P->Dimension+1]);
2386 value_decrement(M->p[0][P->Dimension+1],
2387 M->p[0][P->Dimension+1]);
2388 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2389 if (emptyQ(neg) || emptyQ(pos)) {
2390 Polyhedron_Free(pos);
2391 Polyhedron_Free(neg);
2392 continue;
2394 Polyhedron_Free(pos);
2395 value_increment(M->p[0][P->Dimension+1],
2396 M->p[0][P->Dimension+1]);
2397 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2398 #ifdef DEBUG_ER
2399 fprintf(stderr, "\nER: ParamVertex\n");
2400 #endif /* DEBUG_ER */
2401 EP = enumerate_or(pos, neg, exist, nparam, MaxRays);
2402 break;
2404 if (EP)
2405 break;
2406 } END_FORALL_PVertex_in_ParamPolyhedron;
2409 Matrix_Free(M);
2410 value_clear(f);
2413 if (CEq)
2414 Polyhedron_Free(CEq);
2415 if (CT)
2416 Matrix_Free(CT);
2417 if (PP)
2418 Param_Polyhedron_Free(PP);
2419 *PA = P;
2421 return EP;
2424 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2425 unsigned exist, unsigned nparam, unsigned MaxRays);
2427 #ifdef DEBUG_ER
2428 static int er_level = 0;
2430 evalue* barvinok_enumerate_e(Polyhedron *P,
2431 unsigned exist, unsigned nparam, unsigned MaxRays)
2433 fprintf(stderr, "\nER: level %i\n", er_level);
2434 int nvar = P->Dimension - exist - nparam;
2435 fprintf(stderr, "%d %d %d\n", nvar, exist, nparam);
2437 Polyhedron_Print(stderr, P_VALUE_FMT, P);
2438 ++er_level;
2439 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2440 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2441 Polyhedron_Free(P);
2442 --er_level;
2443 return EP;
2445 #else
2446 evalue* barvinok_enumerate_e(Polyhedron *P,
2447 unsigned exist, unsigned nparam, unsigned MaxRays)
2449 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2450 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2451 Polyhedron_Free(P);
2452 return EP;
2454 #endif
2456 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2457 unsigned exist, unsigned nparam, unsigned MaxRays)
2459 if (exist == 0) {
2460 Polyhedron *U = Universe_Polyhedron(nparam);
2461 evalue *EP = barvinok_enumerate_ev(P, U, MaxRays);
2462 //char *param_name[] = {"P", "Q", "R", "S", "T" };
2463 //print_evalue(stdout, EP, param_name);
2464 Polyhedron_Free(U);
2465 return EP;
2468 int nvar = P->Dimension - exist - nparam;
2469 int len = P->Dimension + 2;
2471 if (emptyQ(P))
2472 return new_zero_ep();
2474 if (nvar == 0 && nparam == 0) {
2475 evalue *EP = new_zero_ep();
2476 barvinok_count(P, &EP->x.n, MaxRays);
2477 if (value_pos_p(EP->x.n))
2478 value_set_si(EP->x.n, 1);
2479 return EP;
2482 int r;
2483 for (r = 0; r < P->NbRays; ++r)
2484 if (value_zero_p(P->Ray[r][0]) ||
2485 value_zero_p(P->Ray[r][P->Dimension+1])) {
2486 int i;
2487 for (i = 0; i < nvar; ++i)
2488 if (value_notzero_p(P->Ray[r][i+1]))
2489 break;
2490 if (i >= nvar)
2491 continue;
2492 for (i = nvar + exist; i < nvar + exist + nparam; ++i)
2493 if (value_notzero_p(P->Ray[r][i+1]))
2494 break;
2495 if (i >= nvar + exist + nparam)
2496 break;
2498 if (r < P->NbRays) {
2499 evalue *EP = new_zero_ep();
2500 value_set_si(EP->x.n, -1);
2501 return EP;
2504 int first;
2505 for (r = 0; r < P->NbEq; ++r)
2506 if ((first = First_Non_Zero(P->Constraint[r]+1+nvar, exist)) != -1)
2507 break;
2508 if (r < P->NbEq) {
2509 if (First_Non_Zero(P->Constraint[r]+1+nvar+first+1,
2510 exist-first-1) != -1) {
2511 Polyhedron *T = rotate_along(P, r, nvar, exist, MaxRays);
2512 #ifdef DEBUG_ER
2513 fprintf(stderr, "\nER: Equality\n");
2514 #endif /* DEBUG_ER */
2515 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2516 Polyhedron_Free(T);
2517 return EP;
2518 } else {
2519 #ifdef DEBUG_ER
2520 fprintf(stderr, "\nER: Fixed\n");
2521 #endif /* DEBUG_ER */
2522 if (first == 0)
2523 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
2524 else {
2525 Polyhedron *T = Polyhedron_Copy(P);
2526 SwapColumns(T, nvar+1, nvar+1+first);
2527 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2528 Polyhedron_Free(T);
2529 return EP;
2534 Vector *row = Vector_Alloc(len);
2535 value_set_si(row->p[0], 1);
2537 Value f;
2538 value_init(f);
2540 enum constraint info[exist];
2541 for (int i = 0; i < exist; ++i) {
2542 info[i] = ALL_POS;
2543 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
2544 if (value_negz_p(P->Constraint[l][nvar+i+1]))
2545 continue;
2546 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
2547 if (value_posz_p(P->Constraint[u][nvar+i+1]))
2548 continue;
2549 value_oppose(f, P->Constraint[u][nvar+i+1]);
2550 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1, row->p+1,
2551 f, P->Constraint[l][nvar+i+1], len-1);
2552 if (!(info[i] & INDEPENDENT)) {
2553 int j;
2554 for (j = 0; j < exist; ++j)
2555 if (j != i && value_notzero_p(row->p[nvar+j+1]))
2556 break;
2557 if (j == exist) {
2558 //printf("independent: i: %d, l: %d, u: %d\n", i, l, u);
2559 info[i] = (constraint)(info[i] | INDEPENDENT);
2562 if (info[i] & ALL_POS) {
2563 value_addto(row->p[len-1], row->p[len-1],
2564 P->Constraint[l][nvar+i+1]);
2565 value_addto(row->p[len-1], row->p[len-1], f);
2566 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
2567 value_substract(row->p[len-1], row->p[len-1], f);
2568 value_decrement(row->p[len-1], row->p[len-1]);
2569 Vector_Gcd(row->p+1, len - 2, &f);
2570 if (value_notone_p(f)) {
2571 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
2572 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
2574 value_set_si(f, -1);
2575 Vector_Scale(row->p+1, row->p+1, f, len-1);
2576 value_decrement(row->p[len-1], row->p[len-1]);
2577 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
2578 if (!emptyQ(T)) {
2579 //printf("not all_pos: i: %d, l: %d, u: %d\n", i, l, u);
2580 info[i] = (constraint)(info[i] ^ ALL_POS);
2582 //puts("pos remainder");
2583 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
2584 Polyhedron_Free(T);
2586 if (!(info[i] & ONE_NEG)) {
2587 int j;
2588 for (j = 0; j < exist; ++j)
2589 if (j != i &&
2590 value_notzero_p(P->Constraint[l][nvar+j+1]))
2591 break;
2592 if (j != exist)
2593 for (j = 0; j < exist; ++j)
2594 if (j != i &&
2595 value_notzero_p(P->Constraint[u][nvar+j+1]))
2596 break;
2597 if (j == exist) {
2598 /* recalculate constant */
2599 /* We actually recalculate the whole row for
2600 * now, because it may have already been scaled
2602 value_oppose(f, P->Constraint[u][nvar+i+1]);
2603 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1,
2604 row->p+1,
2605 f, P->Constraint[l][nvar+i+1], len-1);
2607 Vector_Combine(P->Constraint[l]+len-1,
2608 P->Constraint[u]+len-1, row->p+len-1,
2609 f, P->Constraint[l][nvar+i+1], 1);
2611 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
2612 value_substract(row->p[len-1], row->p[len-1], f);
2613 value_set_si(f, -1);
2614 Vector_Scale(row->p+1, row->p+1, f, len-1);
2615 value_decrement(row->p[len-1], row->p[len-1]);
2616 Vector_Gcd(row->p+1, len - 2, &f);
2617 if (value_notone_p(f)) {
2618 Vector_AntiScale(row->p+1, row->p+1, f, len-2);
2619 mpz_fdiv_q(row->p[len-1], row->p[len-1], f);
2621 value_set_si(f, -1);
2622 Vector_Scale(row->p+1, row->p+1, f, len-1);
2623 value_decrement(row->p[len-1], row->p[len-1]);
2624 //puts("row");
2625 //Vector_Print(stdout, P_VALUE_FMT, row);
2626 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
2627 if (emptyQ(T)) {
2628 //printf("one_neg i: %d, l: %d, u: %d\n", i, l, u);
2629 info[i] = (constraint)(info[i] | ONE_NEG);
2631 //puts("neg remainder");
2632 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
2633 Polyhedron_Free(T);
2636 if (!(info[i] & ALL_POS) && (info[i] & ONE_NEG))
2637 goto next;
2640 if (info[i] & ALL_POS)
2641 break;
2642 next:
2647 for (int i = 0; i < exist; ++i)
2648 printf("%i: %i\n", i, info[i]);
2650 for (int i = 0; i < exist; ++i)
2651 if (info[i] & ALL_POS) {
2652 #ifdef DEBUG_ER
2653 fprintf(stderr, "\nER: Positive\n");
2654 #endif /* DEBUG_ER */
2655 // Eliminate
2656 // Maybe we should chew off some of the fat here
2657 Matrix *M = Matrix_Alloc(P->Dimension, P->Dimension+1);
2658 for (int j = 0; j < P->Dimension; ++j)
2659 value_set_si(M->p[j][j + (j >= i+nvar)], 1);
2660 Polyhedron *T = Polyhedron_Image(P, M, MaxRays);
2661 Matrix_Free(M);
2662 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2663 Polyhedron_Free(T);
2664 value_clear(f);
2665 Vector_Free(row);
2666 return EP;
2668 for (int i = 0; i < exist; ++i)
2669 if (info[i] & ONE_NEG) {
2670 #ifdef DEBUG_ER
2671 fprintf(stderr, "\nER: Negative\n");
2672 #endif /* DEBUG_ER */
2673 Vector_Free(row);
2674 value_clear(f);
2675 if (i == 0)
2676 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
2677 else {
2678 Polyhedron *T = Polyhedron_Copy(P);
2679 SwapColumns(T, nvar+1, nvar+1+i);
2680 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
2681 Polyhedron_Free(T);
2682 return EP;
2685 for (int i = 0; i < exist; ++i)
2686 if (info[i] & INDEPENDENT) {
2687 Polyhedron *pos, *neg;
2689 /* Find constraint again and split off negative part */
2691 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
2692 row, f, true, &pos, &neg)) {
2693 #ifdef DEBUG_ER
2694 fprintf(stderr, "\nER: Split\n");
2695 #endif /* DEBUG_ER */
2697 evalue *EP =
2698 barvinok_enumerate_e(neg, exist-1, nparam, MaxRays);
2699 evalue *E =
2700 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2701 eadd(E, EP);
2702 free_evalue_refs(E);
2703 free(E);
2704 Polyhedron_Free(neg);
2705 Polyhedron_Free(pos);
2706 value_clear(f);
2707 Vector_Free(row);
2708 return EP;
2712 Polyhedron *O = P;
2713 Polyhedron *F;
2715 evalue *EP;
2716 EP = enumerate_sure(P, exist, nparam, MaxRays);
2717 if (EP)
2718 goto out;
2720 EP = enumerate_sure2(P, exist, nparam, MaxRays);
2721 if (EP)
2722 goto out;
2724 F = unfringe(P, MaxRays);
2725 if (!PolyhedronIncludes(F, P)) {
2726 #ifdef DEBUG_ER
2727 fprintf(stderr, "\nER: Fringed\n");
2728 #endif /* DEBUG_ER */
2729 EP = barvinok_enumerate_e(F, exist, nparam, MaxRays);
2730 Polyhedron_Free(F);
2731 goto out;
2733 Polyhedron_Free(F);
2735 if (nparam)
2736 EP = enumerate_vd(&P, exist, nparam, MaxRays);
2737 if (EP)
2738 goto out2;
2740 if (nvar != 0) {
2741 EP = enumerate_sum(P, exist, nparam, MaxRays);
2742 goto out2;
2745 assert(nvar == 0);
2747 int i;
2748 Polyhedron *pos, *neg;
2749 for (i = 0; i < exist; ++i)
2750 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
2751 row, f, false, &pos, &neg))
2752 break;
2754 assert (i < exist);
2756 EP = enumerate_or(pos, neg, exist, nparam, MaxRays);
2758 out2:
2759 if (O != P)
2760 Polyhedron_Free(P);
2762 out:
2763 value_clear(f);
2764 Vector_Free(row);
2765 return EP;