doc: document polytope_sample
[barvinok.git] / piputil.c
blobc28b3154ee4111c581592707b4d1a0951ef68e96
1 #include <polylib/polylibgmp.h>
2 #include <stdio.h> /* needed for piplib ! */
3 #include <piplib/piplibMP.h>
4 #include <assert.h>
5 #include "piputil.h"
6 #include "config.h"
8 #ifdef HAVE_GROWING_CHERNIKOVA
9 #define MAXRAYS POL_NO_DUAL
10 #else
11 #define MAXRAYS 600
12 #endif
14 static PipMatrix *poly2pip(Polyhedron *P, int pos, int n, int nparam)
16 PipMatrix * matrix;
17 int i, j;
18 unsigned int extra = P->Dimension - pos - n - nparam;
20 matrix = pip_matrix_alloc(P->NbConstraints, P->Dimension+2);
21 for (i = 0; i < P->NbConstraints; ++i) {
22 value_assign(matrix->p[i][0], P->Constraint[i][0]);
23 for (j = 0; j < n; ++j)
24 value_assign(matrix->p[i][1+j], P->Constraint[i][1+pos+j]);
25 for (j = 0; j < pos; ++j)
26 value_assign(matrix->p[i][1+n+j], P->Constraint[i][1+j]);
27 for (j = 0; j < extra; ++j)
28 value_assign(matrix->p[i][1+n+pos+j], P->Constraint[i][1+n+pos+j]);
29 for (j = 1+pos+n+extra; j < P->Dimension+2; ++j)
30 value_assign(matrix->p[i][j], P->Constraint[i][j]);
33 return matrix;
36 static int max_new(PipQuast *q, int max, int d, int *maxd)
38 PipNewparm *p;
40 for (p = q->newparm; p; p = p->next)
41 if (p->rank > max)
42 max = p->rank;
43 if (q->condition) {
44 if (++d > *maxd)
45 *maxd = d;
46 max = max_new(q->next_else, max, d, maxd);
47 max = max_new(q->next_then, max, d, maxd);
49 return max;
53 * v: total number of variables in original problem
54 * pos: position of minimized variables
55 * n: dimension of space in which minimum was taken
56 * i.e., number of minimized vars in original problem
57 * e: number of extra existential variables
58 * d: total dimension
60 struct scan_data {
61 Matrix *M;
62 int v;
63 int pos;
64 int n;
65 int e;
66 int d;
67 void (*f)(struct scan_data *data, PipQuast *q, int i);
70 static int vectorpos2cpos(struct scan_data *data, int j)
72 int np = data->d - data->v - data->e;
73 int l;
75 if (j < data->pos)
76 l = 1+j;
77 else if (j < data->v - data->n)
78 l = 1+data->n+j;
79 else if (j < data->v-data->n+np)
80 l = 1+data->n+data->e+j;
81 else
82 l = 1+data->n+j-np;
84 return l;
88 * returns true if some solution exist in the whole quast q
90 static int full_quast(PipQuast *q)
92 return q->condition ? full_quast(q->next_then) && full_quast(q->next_else)
93 : q->list != NULL;
97 * i: next row
99 * Dimensions in the resulting domain are:
100 * v n e (d-v-n-e)
102 static void scan_quast_r(struct scan_data *data, PipQuast *q, int i)
104 PipNewparm *p;
105 int skip;
107 /* Skip to a (random) leaf if we are only interested in whether
108 * a solution exists.
110 skip = data->n == 0 && full_quast(q);
111 while (skip && q->condition)
112 q = q->next_then;
114 for (p = q->newparm; !skip && p; p = p->next) {
115 int j, l;
116 PipVector *vec = p->vector;
118 value_set_si(data->M->p[i][0], 1);
119 Vector_Set(data->M->p[i]+1, 0, data->d);
121 for (j = 0; j < vec->nb_elements-1; ++j) {
122 l = vectorpos2cpos(data, j);
123 value_assign(data->M->p[i][l], vec->the_vector[j]);
125 l = vectorpos2cpos(data, p->rank);
126 value_oppose(data->M->p[i][l], p->deno);
127 value_assign(data->M->p[i][1+data->d], vec->the_vector[j]);
128 ++i;
130 value_set_si(data->M->p[i][0], 1);
131 Vector_Set(data->M->p[i]+1, 0, data->d);
133 for (j = 0; j < vec->nb_elements-1; ++j) {
134 l = vectorpos2cpos(data, j);
135 value_oppose(data->M->p[i][l], vec->the_vector[j]);
137 l = vectorpos2cpos(data, p->rank);
138 value_assign(data->M->p[i][l], p->deno);
139 value_oppose(data->M->p[i][1+data->d], vec->the_vector[j]);
140 value_addto(data->M->p[i][1+data->d], data->M->p[i][1+data->d], p->deno);
141 value_decrement(data->M->p[i][1+data->d], data->M->p[i][1+data->d]);
142 ++i;
145 if (q->condition) {
146 int j;
147 value_set_si(data->M->p[i][0], 1);
148 Vector_Set(data->M->p[i]+1, 0, data->d);
150 for (j = 0; j < q->condition->nb_elements-1; ++j) {
151 int l = vectorpos2cpos(data, j);
152 value_assign(data->M->p[i][l], q->condition->the_vector[j]);
154 value_assign(data->M->p[i][1+data->d], q->condition->the_vector[j]);
155 scan_quast_r(data, q->next_then, i+1);
157 for (j = 0; j < q->condition->nb_elements-1; ++j) {
158 int l = vectorpos2cpos(data, j);
159 value_oppose(data->M->p[i][l], q->condition->the_vector[j]);
161 value_oppose(data->M->p[i][1+data->d], q->condition->the_vector[j]);
162 value_decrement(data->M->p[i][1+data->d], data->M->p[i][1+data->d]);
163 scan_quast_r(data, q->next_else, i+1);
165 return;
168 /* if data->n is zero, we are only interested in the domains
169 * where a solution exists and not in the actual solution
171 if (q->list && data->n) {
172 PipList *l;
173 int j, k;
174 for (j = 0, l = q->list; l; ++j, l = l->next) {
175 Vector_Set(data->M->p[i], 0, data->d+1);
176 value_set_si(data->M->p[i][1+data->pos+j], -1);
178 for (k = 0; k < l->vector->nb_elements-1; ++k) {
179 int ll = vectorpos2cpos(data, k);
180 value_assign(data->M->p[i][ll], l->vector->the_vector[k]);
182 value_assign(data->M->p[i][1+data->d], l->vector->the_vector[k]);
184 ++i;
187 data->f(data, q, i);
190 static void scan_quast(struct scan_data *data, PipQuast *q)
192 int nparam, nexist, d, i, rows;
194 nparam = data->d - data->n;
196 d = 0;
197 nexist = max_new(q, nparam-1, 0, &d) - nparam+1;
198 rows = 2 * nexist + d + data->n;
200 /* nparam now refers to the number of parameters in the original polyhedron */
201 nparam -= data->v - data->n;
203 data->e = nexist;
204 data->d = data->v + nexist + nparam;
206 data->M = Matrix_Alloc(rows, 1+data->d+1);
208 scan_quast_r(data, q, 0);
209 Matrix_Free(data->M);
212 struct quast2poly_data {
213 struct scan_data scan;
214 Polyhedron* D;
217 static void add_quast_base(struct scan_data *data, PipQuast *q, int i)
219 struct quast2poly_data *qdata = (struct quast2poly_data *)data;
220 if (q->list) {
221 Matrix *C;
222 Polyhedron *P;
223 C = Matrix_Alloc(i, 1+data->d+1);
224 Vector_Copy(data->M->p[0], C->p[0], i * (1+data->d+1));
225 P = Constraints2Polyhedron(C, MAXRAYS);
226 Matrix_Free(C);
227 P->next = qdata->D;
228 qdata->D = P;
233 * nvar: total number of variables, including the minimized variables,
234 * but excluding the parameters
235 * nparam: the number of parameters in the PIP problem, excluding the "big parameter"
236 * for maximization problems, i.e., the
237 * total number of variables minus the minimized variables
238 * pos: position of the first minimized variable
239 * n: number of minimized variables
241 static Polyhedron *quast2poly(PipQuast *q, int nvar, int nparam, int pos, int n)
243 struct quast2poly_data data;
245 data.scan.v = nvar;
246 data.scan.pos = pos;
247 data.scan.n = n;
248 data.scan.d = n+nparam;
250 data.D = 0;
251 data.scan.f = add_quast_base;
253 scan_quast(&data.scan, q);
255 return data.D;
258 Polyhedron *pip_projectout(Polyhedron *P, int pos, int n, int nparam)
260 PipOptions *options;
261 PipMatrix * domain;
262 unsigned int nvar = P->Dimension - nparam;
263 PipMatrix *context = pip_matrix_alloc(0, P->Dimension - n + 2);
264 PipQuast *sol;
265 Polyhedron *min;
267 POL_ENSURE_INEQUALITIES(P);
269 domain = poly2pip(P, pos, n, nparam);
270 #ifdef PIP_DEBUG
271 pip_matrix_print(stderr, domain);
272 pip_matrix_print(stderr, context);
273 #endif
275 options = pip_options_init();
276 options->Urs_unknowns = -1;
277 options->Urs_parms = -1;
278 options->Simplify = 1;
279 sol = pip_solve(domain, context, -1, options);
281 #ifdef PIP_DEBUG
282 pip_quast_print(stderr, sol, 0);
283 #endif
285 min = quast2poly(sol, nvar - n, P->Dimension - n, 0, 0);
287 pip_quast_free(sol);
288 pip_matrix_free(context);
289 pip_matrix_free(domain);
290 pip_options_free(options);
292 return min;