6 #include <NTL/vec_ZZ.h>
7 #include <NTL/mat_ZZ.h>
9 #include <polylib/polylibgmp.h>
11 #include <barvinok/barvinok.h>
12 #include <barvinok/evalue.h>
13 #include <barvinok/options.h>
14 #include <barvinok/util.h>
15 #include <barvinok/sample.h>
16 #include "conversion.h"
17 #include "decomposer.h"
18 #include "lattice_point.h"
19 #include "reduce_domain.h"
23 #include "evalue_util.h"
37 /* RANGE : normal range for evalutations (-RANGE -> RANGE) */
40 /* SRANGE : small range for evalutations */
43 /* if dimension >= BIDDIM, use SRANGE */
46 /* VSRANGE : very small range for evalutations */
49 /* if dimension >= VBIDDIM, use VSRANGE */
53 #define getopt_long(a,b,c,d,e) getopt(a,b,c)
56 #define NO_EMPTINESS_CHECK 256
57 struct option lexmin_options
[] = {
58 { "verify", no_argument
, 0, 'T' },
59 { "print-all", no_argument
, 0, 'A' },
60 { "no-emptiness-check", no_argument
, 0, NO_EMPTINESS_CHECK
},
61 { "min", required_argument
, 0, 'm' },
62 { "max", required_argument
, 0, 'M' },
63 { "range", required_argument
, 0, 'r' },
64 { "version", no_argument
, 0, 'V' },
69 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
71 static int type_offset(enode
*p
)
73 return p
->type
== fractional
? 1 :
74 p
->type
== flooring
? 1 : 0;
77 struct indicator_term
{
83 indicator_term(unsigned dim
, int pos
) {
85 vertex
= new evalue
* [dim
];
89 indicator_term(unsigned dim
) {
90 den
.SetDims(dim
, dim
);
91 vertex
= new evalue
* [dim
];
94 indicator_term(const indicator_term
& src
) {
98 unsigned dim
= den
.NumCols();
99 vertex
= new evalue
* [dim
];
100 for (int i
= 0; i
< dim
; ++i
) {
101 vertex
[i
] = new evalue();
102 value_init(vertex
[i
]->d
);
103 evalue_copy(vertex
[i
], src
.vertex
[i
]);
107 unsigned dim
= den
.NumCols();
108 for (int i
= 0; i
< dim
; ++i
) {
109 free_evalue_refs(vertex
[i
]);
114 void print(ostream
& os
, char **p
) const;
115 void substitute(Matrix
*T
);
117 void substitute(evalue
*fract
, evalue
*val
);
118 void substitute(int pos
, evalue
*val
);
119 void reduce_in_domain(Polyhedron
*D
);
120 bool is_opposite(indicator_term
*neg
);
123 bool indicator_term::is_opposite(indicator_term
*neg
)
125 if (sign
+ neg
->sign
!= 0)
129 for (int k
= 0; k
< den
.NumCols(); ++k
)
130 if (!eequal(vertex
[k
], neg
->vertex
[k
]))
135 void indicator_term::reduce_in_domain(Polyhedron
*D
)
137 for (int k
= 0; k
< den
.NumCols(); ++k
) {
138 reduce_evalue_in_domain(vertex
[k
], D
);
139 if (evalue_range_reduction_in_domain(vertex
[k
], D
))
140 reduce_evalue(vertex
[k
]);
144 void indicator_term::print(ostream
& os
, char **p
) const
146 unsigned dim
= den
.NumCols();
147 unsigned factors
= den
.NumRows();
155 for (int i
= 0; i
< dim
; ++i
) {
158 evalue_print(os
, vertex
[i
], p
);
161 for (int i
= 0; i
< factors
; ++i
) {
162 os
<< " + t" << i
<< "*[";
163 for (int j
= 0; j
< dim
; ++j
) {
171 os
<< " (" << pos
<< ")";
174 /* Perform the substitution specified by T on the variables.
175 * T has dimension (newdim+nparam+1) x (olddim + nparam + 1).
176 * The substitution is performed as in gen_fun::substitute
178 void indicator_term::substitute(Matrix
*T
)
180 unsigned dim
= den
.NumCols();
181 unsigned nparam
= T
->NbColumns
- dim
- 1;
182 unsigned newdim
= T
->NbRows
- nparam
- 1;
185 matrix2zz(T
, trans
, newdim
, dim
);
186 trans
= transpose(trans
);
188 newvertex
= new evalue
* [newdim
];
191 v
.SetLength(nparam
+1);
194 value_init(factor
.d
);
195 value_set_si(factor
.d
, 1);
196 value_init(factor
.x
.n
);
197 for (int i
= 0; i
< newdim
; ++i
) {
198 values2zz(T
->p
[i
]+dim
, v
, nparam
+1);
199 newvertex
[i
] = multi_monom(v
);
201 for (int j
= 0; j
< dim
; ++j
) {
202 if (value_zero_p(T
->p
[i
][j
]))
206 evalue_copy(&term
, vertex
[j
]);
207 value_assign(factor
.x
.n
, T
->p
[i
][j
]);
208 emul(&factor
, &term
);
209 eadd(&term
, newvertex
[i
]);
210 free_evalue_refs(&term
);
213 free_evalue_refs(&factor
);
214 for (int i
= 0; i
< dim
; ++i
) {
215 free_evalue_refs(vertex
[i
]);
222 static void evalue_add_constant(evalue
*e
, ZZ v
)
227 /* go down to constant term */
228 while (value_zero_p(e
->d
))
229 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)];
232 value_multiply(tmp
, tmp
, e
->d
);
233 value_addto(e
->x
.n
, e
->x
.n
, tmp
);
238 /* Make all powers in denominator lexico-positive */
239 void indicator_term::normalize()
242 extra_vertex
.SetLength(den
.NumCols());
243 for (int r
= 0; r
< den
.NumRows(); ++r
) {
244 for (int k
= 0; k
< den
.NumCols(); ++k
) {
251 extra_vertex
+= den
[r
];
255 for (int k
= 0; k
< extra_vertex
.length(); ++k
)
256 if (extra_vertex
[k
] != 0)
257 evalue_add_constant(vertex
[k
], extra_vertex
[k
]);
260 static void substitute(evalue
*e
, evalue
*fract
, evalue
*val
)
264 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
265 if (t
->x
.p
->type
== fractional
&& eequal(&t
->x
.p
->arr
[0], fract
))
268 if (value_notzero_p(t
->d
))
271 free_evalue_refs(&t
->x
.p
->arr
[0]);
272 evalue
*term
= &t
->x
.p
->arr
[2];
279 free_evalue_refs(term
);
285 void indicator_term::substitute(evalue
*fract
, evalue
*val
)
287 unsigned dim
= den
.NumCols();
288 for (int i
= 0; i
< dim
; ++i
) {
289 ::substitute(vertex
[i
], fract
, val
);
293 static void substitute(evalue
*e
, int pos
, evalue
*val
)
297 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
298 if (t
->x
.p
->type
== polynomial
&& t
->x
.p
->pos
== pos
)
301 if (value_notzero_p(t
->d
))
304 evalue
*term
= &t
->x
.p
->arr
[1];
311 free_evalue_refs(term
);
317 void indicator_term::substitute(int pos
, evalue
*val
)
319 unsigned dim
= den
.NumCols();
320 for (int i
= 0; i
< dim
; ++i
) {
321 ::substitute(vertex
[i
], pos
, val
);
325 struct indicator_constructor
: public polar_decomposer
, public vertex_decomposer
{
327 vector
<indicator_term
*> *terms
;
328 Matrix
*T
; /* Transformation to original space */
329 Param_Polyhedron
*PP
;
331 indicator_constructor(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
,
333 vertex_decomposer(P
, PP
->nbV
, this), T(T
), PP(PP
) {
334 vertex
.SetLength(dim
);
335 terms
= new vector
<indicator_term
*>[nbV
];
337 ~indicator_constructor() {
338 for (int i
= 0; i
< nbV
; ++i
)
339 for (int j
= 0; j
< terms
[i
].size(); ++j
)
343 void substitute(Matrix
*T
);
345 void print(ostream
& os
, char **p
);
347 virtual void handle_polar(Polyhedron
*P
, int sign
);
350 void indicator_constructor::handle_polar(Polyhedron
*C
, int s
)
352 unsigned dim
= vertex
.length();
354 assert(C
->NbRays
-1 == dim
);
356 indicator_term
*term
= new indicator_term(dim
);
358 terms
[vert
].push_back(term
);
360 lattice_point(V
, C
, vertex
, term
->vertex
);
362 for (int r
= 0; r
< dim
; ++r
) {
363 values2zz(C
->Ray
[r
]+1, term
->den
[r
], dim
);
364 for (int j
= 0; j
< dim
; ++j
) {
365 if (term
->den
[r
][j
] == 0)
367 if (term
->den
[r
][j
] > 0)
369 term
->sign
= -term
->sign
;
370 term
->den
[r
] = -term
->den
[r
];
371 vertex
+= term
->den
[r
];
376 for (int i
= 0; i
< dim
; ++i
) {
377 if (!term
->vertex
[i
]) {
378 term
->vertex
[i
] = new evalue();
379 value_init(term
->vertex
[i
]->d
);
380 value_init(term
->vertex
[i
]->x
.n
);
381 zz2value(vertex
[i
], term
->vertex
[i
]->x
.n
);
382 value_set_si(term
->vertex
[i
]->d
, 1);
387 evalue_add_constant(term
->vertex
[i
], vertex
[i
]);
395 lex_order_rows(term
->den
);
398 void indicator_constructor::print(ostream
& os
, char **p
)
400 for (int i
= 0; i
< nbV
; ++i
)
401 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
402 os
<< "i: " << i
<< ", j: " << j
<< endl
;
403 terms
[i
][j
]->print(os
, p
);
408 void indicator_constructor::normalize()
410 for (int i
= 0; i
< nbV
; ++i
)
411 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
413 vertex
.SetLength(terms
[i
][j
]->den
.NumCols());
414 for (int r
= 0; r
< terms
[i
][j
]->den
.NumRows(); ++r
) {
415 for (int k
= 0; k
< terms
[i
][j
]->den
.NumCols(); ++k
) {
416 if (terms
[i
][j
]->den
[r
][k
] == 0)
418 if (terms
[i
][j
]->den
[r
][k
] > 0)
420 terms
[i
][j
]->sign
= -terms
[i
][j
]->sign
;
421 terms
[i
][j
]->den
[r
] = -terms
[i
][j
]->den
[r
];
422 vertex
+= terms
[i
][j
]->den
[r
];
426 lex_order_rows(terms
[i
][j
]->den
);
427 for (int k
= 0; k
< vertex
.length(); ++k
)
429 evalue_add_constant(terms
[i
][j
]->vertex
[k
], vertex
[k
]);
435 enum order_sign
{ order_lt
, order_le
, order_eq
, order_ge
, order_gt
, order_unknown
};
437 struct partial_order
{
440 map
<indicator_term
*, int > pred
;
441 map
<indicator_term
*, vector
<indicator_term
* > > lt
;
442 map
<indicator_term
*, vector
<indicator_term
* > > le
;
443 map
<indicator_term
*, vector
<indicator_term
* > > eq
;
445 map
<indicator_term
*, vector
<indicator_term
* > > pending
;
447 partial_order(indicator
*ind
) : ind(ind
) {}
448 void copy(const partial_order
& order
,
449 map
< indicator_term
*, indicator_term
* > old2new
);
451 order_sign
compare(indicator_term
*a
, indicator_term
*b
);
452 void set_equal(indicator_term
*a
, indicator_term
*b
);
453 void unset_le(indicator_term
*a
, indicator_term
*b
);
455 bool compared(indicator_term
* a
, indicator_term
* b
);
456 void add(indicator_term
* it
, std::set
<indicator_term
*> *filter
);
457 void remove(indicator_term
* it
);
459 void print(ostream
& os
, char **p
);
462 void partial_order::unset_le(indicator_term
*a
, indicator_term
*b
)
464 vector
<indicator_term
*>::iterator i
;
465 i
= find(le
[a
].begin(), le
[a
].end(), b
);
468 i
= find(pending
[a
].begin(), pending
[a
].end(), b
);
469 if (i
!= pending
[a
].end())
473 void partial_order::set_equal(indicator_term
*a
, indicator_term
*b
)
475 if (eq
[a
].size() == 0)
477 if (eq
[b
].size() == 0)
483 indicator_term
*c
= a
;
488 indicator_term
*base
= a
;
490 map
<indicator_term
*, vector
<indicator_term
* > >::iterator i
;
492 for (int j
= 0; j
< eq
[b
].size(); ++j
) {
493 eq
[base
].push_back(eq
[b
][j
]);
494 eq
[eq
[b
][j
]][0] = base
;
500 for (int j
= 0; j
< lt
[b
].size(); ++j
) {
501 if (find(eq
[base
].begin(), eq
[base
].end(), lt
[b
][j
]) != eq
[base
].end())
503 else if (find(lt
[base
].begin(), lt
[base
].end(), lt
[b
][j
])
507 lt
[base
].push_back(lt
[b
][j
]);
514 for (int j
= 0; j
< le
[b
].size(); ++j
) {
515 if (find(eq
[base
].begin(), eq
[base
].end(), le
[b
][j
]) != eq
[base
].end())
517 else if (find(le
[base
].begin(), le
[base
].end(), le
[b
][j
])
521 le
[base
].push_back(le
[b
][j
]);
526 i
= pending
.find(base
);
527 if (i
!= pending
.end()) {
528 vector
<indicator_term
* > old
= pending
[base
];
529 pending
[base
].clear();
530 for (int j
= 0; j
< old
.size(); ++j
) {
531 if (find(eq
[base
].begin(), eq
[base
].end(), old
[j
]) == eq
[base
].end())
532 pending
[base
].push_back(old
[j
]);
537 if (i
!= pending
.end()) {
538 for (int j
= 0; j
< pending
[b
].size(); ++j
) {
539 if (find(eq
[base
].begin(), eq
[base
].end(), pending
[b
][j
]) == eq
[base
].end())
540 pending
[base
].push_back(pending
[b
][j
]);
546 void partial_order::copy(const partial_order
& order
,
547 map
< indicator_term
*, indicator_term
* > old2new
)
549 map
<indicator_term
*, vector
<indicator_term
* > >::const_iterator i
;
550 map
<indicator_term
*, int >::const_iterator j
;
552 for (j
= order
.pred
.begin(); j
!= order
.pred
.end(); ++j
)
553 pred
[old2new
[(*j
).first
]] = (*j
).second
;
555 for (i
= order
.lt
.begin(); i
!= order
.lt
.end(); ++i
) {
556 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
557 lt
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
559 for (i
= order
.le
.begin(); i
!= order
.le
.end(); ++i
) {
560 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
561 le
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
563 for (i
= order
.eq
.begin(); i
!= order
.eq
.end(); ++i
) {
564 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
565 eq
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
567 for (i
= order
.pending
.begin(); i
!= order
.pending
.end(); ++i
) {
568 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
569 pending
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
573 static void interval_minmax(Polyhedron
*I
, int *min
, int *max
)
575 assert(I
->Dimension
== 1);
578 POL_ENSURE_VERTICES(I
);
579 for (int i
= 0; i
< I
->NbRays
; ++i
) {
580 if (value_pos_p(I
->Ray
[i
][1]))
582 else if (value_neg_p(I
->Ray
[i
][1]))
593 static void interval_minmax(Polyhedron
*D
, Matrix
*T
, int *min
, int *max
,
596 Polyhedron
*I
= Polyhedron_Image(D
, T
, MaxRays
);
597 if (MaxRays
& POL_INTEGER
)
598 I
= DomainConstraintSimplify(I
, MaxRays
);
601 I
= Polyhedron_Image(D
, T
, MaxRays
);
603 interval_minmax(I
, min
, max
);
610 vector
<evalue
*> max
;
612 void print(ostream
& os
, char **p
, barvinok_options
*options
) const;
613 void substitute(Matrix
*T
, unsigned MaxRays
);
614 Vector
*eval(Value
*val
, unsigned MaxRays
) const;
617 for (int i
= 0; i
< max
.size(); ++i
) {
618 free_evalue_refs(max
[i
]);
626 * Project on first dim dimensions
628 Polyhedron
* Polyhedron_Project_Initial(Polyhedron
*P
, int dim
)
634 if (P
->Dimension
== dim
)
635 return Polyhedron_Copy(P
);
637 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
638 for (i
= 0; i
< dim
; ++i
)
639 value_set_si(T
->p
[i
][i
], 1);
640 value_set_si(T
->p
[dim
][P
->Dimension
], 1);
641 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
647 vector
<indicator_term
*> term
;
648 indicator_constructor
& ic
;
653 barvinok_options
*options
;
655 indicator(indicator_constructor
& ic
, Param_Domain
*PD
, EDomain
*D
,
656 barvinok_options
*options
) :
657 ic(ic
), PD(PD
), D(D
), order(this), options(options
), P(NULL
) {}
658 indicator(const indicator
& ind
, EDomain
*D
) :
659 ic(ind
.ic
), PD(ind
.PD
), D(NULL
), order(this), options(ind
.options
),
660 P(Polyhedron_Copy(ind
.P
)) {
661 map
< indicator_term
*, indicator_term
* > old2new
;
662 for (int i
= 0; i
< ind
.term
.size(); ++i
) {
663 indicator_term
*it
= new indicator_term(*ind
.term
[i
]);
664 old2new
[ind
.term
[i
]] = it
;
667 order
.copy(ind
.order
, old2new
);
671 for (int i
= 0; i
< term
.size(); ++i
)
679 void set_domain(EDomain
*D
) {
683 int nparam
= ic
.P
->Dimension
- ic
.vertex
.length();
684 Polyhedron
*Q
= Polyhedron_Project_Initial(D
->D
, nparam
);
685 Q
= DomainConstraintSimplify(Q
, options
->MaxRays
);
686 if (!P
|| !PolyhedronIncludes(Q
, P
))
693 void add(const indicator_term
* it
);
694 void remove(indicator_term
* it
);
695 void remove_initial_rational_vertices();
696 void expand_rational_vertex(indicator_term
*initial
);
698 void print(ostream
& os
, char **p
);
700 void peel(int i
, int j
);
701 void combine(indicator_term
*a
, indicator_term
*b
);
702 void substitute(evalue
*equation
);
703 void reduce_in_domain(Polyhedron
*D
);
704 bool handle_equal_numerators(indicator_term
*base
);
706 max_term
* create_max_term(indicator_term
*it
);
709 max_term
* indicator::create_max_term(indicator_term
*it
)
711 int dim
= it
->den
.NumCols();
712 int nparam
= ic
.P
->Dimension
- ic
.vertex
.length();
713 max_term
*maximum
= new max_term
;
714 maximum
->dim
= nparam
;
715 maximum
->domain
= new EDomain(D
);
716 for (int j
= 0; j
< dim
; ++j
) {
717 evalue
*E
= new evalue
;
719 evalue_copy(E
, it
->vertex
[j
]);
720 if (evalue_frac2floor_in_domain(E
, D
->D
))
722 maximum
->max
.push_back(E
);
728 static evalue
*ediff(const evalue
*a
, const evalue
*b
)
732 evalue_set_si(&mone
, -1, 1);
733 evalue
*diff
= new evalue
;
735 evalue_copy(diff
, b
);
739 free_evalue_refs(&mone
);
743 static order_sign
evalue_sign(evalue
*diff
, EDomain
*D
, unsigned MaxRays
)
745 order_sign sign
= order_eq
;
748 evalue_set_si(&mone
, -1, 1);
749 int len
= 1 + D
->D
->Dimension
+ 1;
750 Vector
*c
= Vector_Alloc(len
);
751 Matrix
*T
= Matrix_Alloc(2, len
-1);
753 int fract
= evalue2constraint(D
, diff
, c
->p
, len
);
754 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
755 value_assign(T
->p
[1][len
-2], c
->p
[0]);
758 interval_minmax(D
->D
, T
, &min
, &max
, MaxRays
);
764 evalue2constraint(D
, diff
, c
->p
, len
);
766 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
767 value_assign(T
->p
[1][len
-2], c
->p
[0]);
770 interval_minmax(D
->D
, T
, &negmin
, &negmax
, MaxRays
);
775 else if (max
== 0 && min
== 0)
777 else if (min
< 0 && max
> 0)
778 sign
= order_unknown
;
787 free_evalue_refs(&mone
);
792 order_sign
partial_order::compare(indicator_term
*a
, indicator_term
*b
)
794 unsigned dim
= a
->den
.NumCols();
795 order_sign sign
= order_eq
;
797 unsigned MaxRays
= ind
->options
->MaxRays
;
798 if (MaxRays
& POL_INTEGER
&& (a
->sign
== 0 || b
->sign
== 0))
801 for (int k
= 0; k
< dim
; ++k
) {
802 /* compute a->vertex[k] - b->vertex[k] */
803 evalue
*diff
= ediff(a
->vertex
[k
], b
->vertex
[k
]);
804 order_sign diff_sign
= evalue_sign(diff
, D
, MaxRays
);
806 if (diff_sign
== order_lt
) {
807 if (sign
== order_eq
|| sign
== order_le
)
810 sign
= order_unknown
;
811 free_evalue_refs(diff
);
815 if (diff_sign
== order_gt
) {
816 if (sign
== order_eq
|| sign
== order_ge
)
819 sign
= order_unknown
;
820 free_evalue_refs(diff
);
824 if (diff_sign
== order_eq
) {
825 if (D
== ind
->D
&& !EVALUE_IS_ZERO(*diff
))
826 ind
->substitute(diff
);
827 free_evalue_refs(diff
);
831 if ((diff_sign
== order_unknown
) ||
832 ((diff_sign
== order_lt
|| diff_sign
== order_le
) && sign
== order_ge
) ||
833 ((diff_sign
== order_gt
|| diff_sign
== order_ge
) && sign
== order_le
)) {
834 free_evalue_refs(diff
);
836 sign
= order_unknown
;
843 vector
<EDomain_floor
*> new_floors
;
844 M
= D
->add_ge_constraint(diff
, new_floors
);
845 value_set_si(M
->p
[M
->NbRows
-1][0], 0);
846 Polyhedron
*D2
= Constraints2Polyhedron(M
, MaxRays
);
847 EDomain
*EDeq
= new EDomain(D2
, D
, new_floors
);
850 for (int i
= 0; i
< new_floors
.size(); ++i
)
851 EDomain_floor::unref(new_floors
[i
]);
857 free_evalue_refs(diff
);
867 bool partial_order::compared(indicator_term
* a
, indicator_term
* b
)
869 map
<indicator_term
*, vector
<indicator_term
* > >::iterator j
;
872 if (j
!= lt
.end() && find(lt
[a
].begin(), lt
[a
].end(), b
) != lt
[a
].end())
876 if (j
!= le
.end() && find(le
[a
].begin(), le
[a
].end(), b
) != le
[a
].end())
882 void partial_order::add(indicator_term
* it
, std::set
<indicator_term
*> *filter
)
884 if (eq
.find(it
) != eq
.end() && eq
[it
].size() == 1)
887 int it_pred
= filter
? pred
[it
] : 0;
889 map
<indicator_term
*, int >::iterator i
;
890 for (i
= pred
.begin(); i
!= pred
.end(); ++i
) {
891 if ((*i
).second
!= 0)
893 if (eq
.find((*i
).first
) != eq
.end() && eq
[(*i
).first
].size() == 1)
896 if ((*i
).first
== it
)
898 if (filter
->find((*i
).first
) == filter
->end())
900 if (compared((*i
).first
, it
))
903 order_sign sign
= compare(it
, (*i
).first
);
904 if (sign
== order_lt
) {
905 lt
[it
].push_back((*i
).first
);
907 } else if (sign
== order_le
) {
908 le
[it
].push_back((*i
).first
);
910 } else if (sign
== order_eq
) {
912 set_equal(it
, (*i
).first
);
914 } else if (sign
== order_gt
) {
915 pending
[(*i
).first
].push_back(it
);
916 lt
[(*i
).first
].push_back(it
);
918 } else if (sign
== order_ge
) {
919 pending
[(*i
).first
].push_back(it
);
920 le
[(*i
).first
].push_back(it
);
927 void partial_order::remove(indicator_term
* it
)
929 std::set
<indicator_term
*> filter
;
930 map
<indicator_term
*, vector
<indicator_term
* > >::iterator i
;
932 assert(pred
[it
] == 0);
936 assert(eq
[it
].size() >= 1);
937 indicator_term
*base
;
938 if (eq
[it
].size() == 1) {
942 vector
<indicator_term
* >::iterator j
;
943 j
= find(eq
[base
].begin(), eq
[base
].end(), it
);
944 assert(j
!= eq
[base
].end());
947 /* "it" may no longer be the smallest, since the order
948 * structure may have been copied from another one.
950 sort(eq
[it
].begin()+1, eq
[it
].end());
951 assert(eq
[it
][0] == it
);
952 eq
[it
].erase(eq
[it
].begin());
957 for (int j
= 1; j
< eq
[base
].size(); ++j
)
958 eq
[eq
[base
][j
]][0] = base
;
972 i
= pending
.find(it
);
973 if (i
!= pending
.end()) {
974 pending
[base
] = pending
[it
];
979 if (eq
[base
].size() == 1)
982 map
<indicator_term
*, int >::iterator j
;
991 for (int j
= 0; j
< lt
[it
].size(); ++j
) {
992 filter
.insert(lt
[it
][j
]);
1000 for (int j
= 0; j
< le
[it
].size(); ++j
) {
1001 filter
.insert(le
[it
][j
]);
1007 map
<indicator_term
*, int >::iterator j
;
1011 i
= pending
.find(it
);
1012 if (i
!= pending
.end()) {
1013 for (int j
= 0; j
< pending
[it
].size(); ++j
) {
1014 filter
.erase(pending
[it
][j
]);
1015 add(pending
[it
][j
], &filter
);
1021 void partial_order::print(ostream
& os
, char **p
)
1023 map
<indicator_term
*, vector
<indicator_term
* > >::iterator i
;
1024 for (i
= lt
.begin(); i
!= lt
.end(); ++i
) {
1025 (*i
).first
->print(os
, p
);
1026 assert(pred
.find((*i
).first
) != pred
.end());
1027 os
<< "(" << pred
[(*i
).first
] << ")";
1029 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1032 (*i
).second
[j
]->print(os
, p
);
1033 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1034 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1038 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1039 (*i
).first
->print(os
, p
);
1040 assert(pred
.find((*i
).first
) != pred
.end());
1041 os
<< "(" << pred
[(*i
).first
] << ")";
1043 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1046 (*i
).second
[j
]->print(os
, p
);
1047 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1048 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1052 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1053 if ((*i
).second
.size() <= 1)
1055 (*i
).first
->print(os
, p
);
1056 assert(pred
.find((*i
).first
) != pred
.end());
1057 os
<< "(" << pred
[(*i
).first
] << ")";
1058 for (int j
= 1; j
< (*i
).second
.size(); ++j
) {
1061 (*i
).second
[j
]->print(os
, p
);
1062 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1063 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1067 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1068 os
<< "pending on ";
1069 (*i
).first
->print(os
, p
);
1070 assert(pred
.find((*i
).first
) != pred
.end());
1071 os
<< "(" << pred
[(*i
).first
] << ")";
1073 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1076 (*i
).second
[j
]->print(os
, p
);
1077 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1078 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1084 void indicator::add(const indicator_term
* it
)
1086 indicator_term
*nt
= new indicator_term(*it
);
1087 nt
->reduce_in_domain(P
? P
: D
->D
);
1089 order
.add(nt
, NULL
);
1090 assert(term
.size() == order
.pred
.size());
1093 void indicator::remove(indicator_term
* it
)
1095 vector
<indicator_term
*>::iterator i
;
1096 i
= find(term
.begin(), term
.end(), it
);
1097 assert(i
!= term
.end());
1100 assert(term
.size() == order
.pred
.size());
1104 void indicator::expand_rational_vertex(indicator_term
*initial
)
1106 int pos
= initial
->pos
;
1108 if (ic
.terms
[pos
].size() == 0) {
1110 FORALL_PVertex_in_ParamPolyhedron(V
, PD
, ic
.PP
) // _i is internal counter
1112 ic
.decompose_at_vertex(V
, pos
, options
);
1115 END_FORALL_PVertex_in_ParamPolyhedron
;
1117 for (int j
= 0; j
< ic
.terms
[pos
].size(); ++j
)
1118 add(ic
.terms
[pos
][j
]);
1121 void indicator::remove_initial_rational_vertices()
1124 indicator_term
*initial
= NULL
;
1125 map
<indicator_term
*, int >::iterator i
;
1126 for (i
= order
.pred
.begin(); i
!= order
.pred
.end(); ++i
) {
1127 if ((*i
).second
!= 0)
1129 if ((*i
).first
->sign
!= 0)
1131 if (order
.eq
.find((*i
).first
) != order
.eq
.end() &&
1132 order
.eq
[(*i
).first
].size() <= 1)
1134 initial
= (*i
).first
;
1139 expand_rational_vertex(initial
);
1143 void indicator::reduce_in_domain(Polyhedron
*D
)
1145 for (int i
= 0; i
< term
.size(); ++i
)
1146 term
[i
]->reduce_in_domain(D
);
1149 void indicator::print(ostream
& os
, char **p
)
1151 assert(term
.size() == order
.pred
.size());
1152 for (int i
= 0; i
< term
.size(); ++i
) {
1153 term
[i
]->print(os
, p
);
1159 /* Remove pairs of opposite terms */
1160 void indicator::simplify()
1162 for (int i
= 0; i
< term
.size(); ++i
) {
1163 for (int j
= i
+1; j
< term
.size(); ++j
) {
1164 if (term
[i
]->sign
+ term
[j
]->sign
!= 0)
1166 if (term
[i
]->den
!= term
[j
]->den
)
1169 for (k
= 0; k
< term
[i
]->den
.NumCols(); ++k
)
1170 if (!eequal(term
[i
]->vertex
[k
], term
[j
]->vertex
[k
]))
1172 if (k
< term
[i
]->den
.NumCols())
1176 term
.erase(term
.begin()+j
);
1177 term
.erase(term
.begin()+i
);
1184 void indicator::peel(int i
, int j
)
1192 int dim
= term
[i
]->den
.NumCols();
1197 int n_common
= 0, n_i
= 0, n_j
= 0;
1199 common
.SetDims(min(term
[i
]->den
.NumRows(), term
[j
]->den
.NumRows()), dim
);
1200 rest_i
.SetDims(term
[i
]->den
.NumRows(), dim
);
1201 rest_j
.SetDims(term
[j
]->den
.NumRows(), dim
);
1204 for (k
= 0, l
= 0; k
< term
[i
]->den
.NumRows() && l
< term
[j
]->den
.NumRows(); ) {
1205 int s
= lex_cmp(term
[i
]->den
[k
], term
[j
]->den
[l
]);
1207 common
[n_common
++] = term
[i
]->den
[k
];
1211 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1213 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1215 while (k
< term
[i
]->den
.NumRows())
1216 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1217 while (l
< term
[j
]->den
.NumRows())
1218 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1219 common
.SetDims(n_common
, dim
);
1220 rest_i
.SetDims(n_i
, dim
);
1221 rest_j
.SetDims(n_j
, dim
);
1223 for (k
= 0; k
<= n_i
; ++k
) {
1224 indicator_term
*it
= new indicator_term(*term
[i
]);
1225 it
->den
.SetDims(n_common
+ k
, dim
);
1226 for (l
= 0; l
< n_common
; ++l
)
1227 it
->den
[l
] = common
[l
];
1228 for (l
= 0; l
< k
; ++l
)
1229 it
->den
[n_common
+l
] = rest_i
[l
];
1230 lex_order_rows(it
->den
);
1232 for (l
= 0; l
< dim
; ++l
)
1233 evalue_add_constant(it
->vertex
[l
], rest_i
[k
-1][l
]);
1237 for (k
= 0; k
<= n_j
; ++k
) {
1238 indicator_term
*it
= new indicator_term(*term
[j
]);
1239 it
->den
.SetDims(n_common
+ k
, dim
);
1240 for (l
= 0; l
< n_common
; ++l
)
1241 it
->den
[l
] = common
[l
];
1242 for (l
= 0; l
< k
; ++l
)
1243 it
->den
[n_common
+l
] = rest_j
[l
];
1244 lex_order_rows(it
->den
);
1246 for (l
= 0; l
< dim
; ++l
)
1247 evalue_add_constant(it
->vertex
[l
], rest_j
[k
-1][l
]);
1250 term
.erase(term
.begin()+j
);
1251 term
.erase(term
.begin()+i
);
1254 void indicator::combine(indicator_term
*a
, indicator_term
*b
)
1256 int dim
= a
->den
.NumCols();
1261 int n_common
= 0, n_i
= 0, n_j
= 0;
1263 common
.SetDims(min(a
->den
.NumRows(), b
->den
.NumRows()), dim
);
1264 rest_i
.SetDims(a
->den
.NumRows(), dim
);
1265 rest_j
.SetDims(b
->den
.NumRows(), dim
);
1268 for (k
= 0, l
= 0; k
< a
->den
.NumRows() && l
< b
->den
.NumRows(); ) {
1269 int s
= lex_cmp(a
->den
[k
], b
->den
[l
]);
1271 common
[n_common
++] = a
->den
[k
];
1275 rest_i
[n_i
++] = a
->den
[k
++];
1277 rest_j
[n_j
++] = b
->den
[l
++];
1279 while (k
< a
->den
.NumRows())
1280 rest_i
[n_i
++] = a
->den
[k
++];
1281 while (l
< b
->den
.NumRows())
1282 rest_j
[n_j
++] = b
->den
[l
++];
1283 common
.SetDims(n_common
, dim
);
1284 rest_i
.SetDims(n_i
, dim
);
1285 rest_j
.SetDims(n_j
, dim
);
1290 for (k
= (1 << n_i
)-1; k
>= 0; --k
) {
1291 indicator_term
*it
= k
? new indicator_term(*b
) : b
;
1292 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
1293 for (l
= 0; l
< n_common
; ++l
)
1294 it
->den
[l
] = common
[l
];
1295 for (l
= 0; l
< n_i
; ++l
)
1296 it
->den
[n_common
+l
] = rest_i
[l
];
1297 for (l
= 0; l
< n_j
; ++l
)
1298 it
->den
[n_common
+n_i
+l
] = rest_j
[l
];
1299 lex_order_rows(it
->den
);
1301 for (l
= 0; l
< n_i
; ++l
) {
1305 for (int m
= 0; m
< dim
; ++m
)
1306 evalue_add_constant(it
->vertex
[m
], rest_i
[l
][m
]);
1309 it
->sign
= -it
->sign
;
1312 order
.add(it
, NULL
);
1316 for (k
= (1 << n_j
)-1; k
>= 0; --k
) {
1317 indicator_term
*it
= k
? new indicator_term(*a
) : a
;
1318 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
1319 for (l
= 0; l
< n_common
; ++l
)
1320 it
->den
[l
] = common
[l
];
1321 for (l
= 0; l
< n_i
; ++l
)
1322 it
->den
[n_common
+l
] = rest_i
[l
];
1323 for (l
= 0; l
< n_j
; ++l
)
1324 it
->den
[n_common
+n_i
+l
] = rest_j
[l
];
1325 lex_order_rows(it
->den
);
1327 for (l
= 0; l
< n_j
; ++l
) {
1331 for (int m
= 0; m
< dim
; ++m
)
1332 evalue_add_constant(it
->vertex
[m
], rest_j
[l
][m
]);
1335 it
->sign
= -it
->sign
;
1338 order
.add(it
, NULL
);
1343 bool indicator::handle_equal_numerators(indicator_term
*base
)
1345 for (int i
= 0; i
< order
.eq
[base
].size(); ++i
) {
1346 for (int j
= i
+1; j
< order
.eq
[base
].size(); ++j
) {
1347 if (order
.eq
[base
][i
]->is_opposite(order
.eq
[base
][j
])) {
1348 remove(order
.eq
[base
][j
]);
1349 remove(i
? order
.eq
[base
][i
] : base
);
1354 for (int j
= 1; j
< order
.eq
[base
].size(); ++j
)
1355 if (order
.eq
[base
][j
]->sign
!= base
->sign
) {
1356 combine(base
, order
.eq
[base
][j
]);
1362 void indicator::substitute(evalue
*equation
)
1364 evalue
*fract
= NULL
;
1365 evalue
*val
= new evalue
;
1367 evalue_copy(val
, equation
);
1370 value_init(factor
.d
);
1371 value_init(factor
.x
.n
);
1374 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= fractional
;
1375 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1378 if (value_zero_p(e
->d
) && e
->x
.p
->type
== fractional
)
1379 fract
= &e
->x
.p
->arr
[0];
1381 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= polynomial
;
1382 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1384 assert(value_zero_p(e
->d
) && e
->x
.p
->type
== polynomial
);
1387 int offset
= type_offset(e
->x
.p
);
1389 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].d
));
1390 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].x
.n
));
1391 if (value_neg_p(e
->x
.p
->arr
[offset
+1].x
.n
)) {
1392 value_oppose(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1393 value_assign(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1395 value_assign(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1396 value_oppose(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1399 free_evalue_refs(&e
->x
.p
->arr
[offset
+1]);
1402 *e
= e
->x
.p
->arr
[offset
];
1407 for (int i
= 0; i
< term
.size(); ++i
)
1408 term
[i
]->substitute(fract
, val
);
1410 free_evalue_refs(&p
->arr
[0]);
1412 for (int i
= 0; i
< term
.size(); ++i
)
1413 term
[i
]->substitute(p
->pos
, val
);
1416 free_evalue_refs(&factor
);
1417 free_evalue_refs(val
);
1423 static void print_varlist(ostream
& os
, int n
, char **names
)
1427 for (i
= 0; i
< n
; ++i
) {
1435 void max_term::print(ostream
& os
, char **p
, barvinok_options
*options
) const
1438 print_varlist(os
, dim
, p
);
1441 for (int i
= 0; i
< max
.size(); ++i
) {
1444 evalue_print(os
, max
[i
], p
);
1448 domain
->print_constraints(os
, p
, options
);
1452 static void evalue_substitute(evalue
*e
, evalue
**subs
)
1456 if (value_notzero_p(e
->d
))
1460 for (int i
= 0; i
< p
->size
; ++i
)
1461 evalue_substitute(&p
->arr
[i
], subs
);
1463 if (p
->type
== polynomial
)
1468 value_set_si(v
->d
, 0);
1469 v
->x
.p
= new_enode(p
->type
, 3, -1);
1470 value_clear(v
->x
.p
->arr
[0].d
);
1471 v
->x
.p
->arr
[0] = p
->arr
[0];
1472 evalue_set_si(&v
->x
.p
->arr
[1], 0, 1);
1473 evalue_set_si(&v
->x
.p
->arr
[2], 1, 1);
1476 int offset
= type_offset(p
);
1478 for (int i
= p
->size
-1; i
>= offset
+1; i
--) {
1479 emul(v
, &p
->arr
[i
]);
1480 eadd(&p
->arr
[i
], &p
->arr
[i
-1]);
1481 free_evalue_refs(&(p
->arr
[i
]));
1484 if (p
->type
!= polynomial
) {
1485 free_evalue_refs(v
);
1490 *e
= p
->arr
[offset
];
1494 /* "align" matrix to have nrows by inserting
1495 * the necessary number of rows and an equal number of columns at the end
1496 * right before the constant row/column
1498 static Matrix
*align_matrix_initial(Matrix
*M
, int nrows
)
1501 int newrows
= nrows
- M
->NbRows
;
1502 Matrix
*M2
= Matrix_Alloc(nrows
, newrows
+ M
->NbColumns
);
1503 for (i
= 0; i
< newrows
; ++i
)
1504 value_set_si(M2
->p
[M
->NbRows
-1+i
][M
->NbColumns
-1+i
], 1);
1505 for (i
= 0; i
< M
->NbRows
-1; ++i
) {
1506 Vector_Copy(M
->p
[i
], M2
->p
[i
], M
->NbColumns
-1);
1507 value_assign(M2
->p
[i
][M2
->NbColumns
-1], M
->p
[i
][M
->NbColumns
-1]);
1509 value_assign(M2
->p
[M2
->NbRows
-1][M2
->NbColumns
-1],
1510 M
->p
[M
->NbRows
-1][M
->NbColumns
-1]);
1514 /* T maps the compressed parameters to the original parameters,
1515 * while this max_term is based on the compressed parameters
1516 * and we want get the original parameters back.
1518 void max_term::substitute(Matrix
*T
, unsigned MaxRays
)
1520 int nexist
= domain
->D
->Dimension
- (T
->NbColumns
-1);
1521 Matrix
*M
= align_matrix_initial(T
, T
->NbRows
+nexist
);
1523 Polyhedron
*D
= DomainImage(domain
->D
, M
, MaxRays
);
1524 Polyhedron_Free(domain
->D
);
1528 assert(T
->NbRows
== T
->NbColumns
);
1529 Matrix
*T2
= Matrix_Copy(T
);
1530 Matrix
*inv
= Matrix_Alloc(T
->NbColumns
, T
->NbRows
);
1531 int ok
= Matrix_Inverse(T2
, inv
);
1536 value_init(denom
.d
);
1537 value_init(denom
.x
.n
);
1538 value_set_si(denom
.x
.n
, 1);
1539 value_assign(denom
.d
, inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
1542 v
.SetLength(inv
->NbColumns
);
1543 evalue
* subs
[inv
->NbRows
-1];
1544 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
1545 values2zz(inv
->p
[i
], v
, v
.length());
1546 subs
[i
] = multi_monom(v
);
1547 emul(&denom
, subs
[i
]);
1549 free_evalue_refs(&denom
);
1551 for (int i
= 0; i
< max
.size(); ++i
) {
1552 evalue_substitute(max
[i
], subs
);
1553 reduce_evalue(max
[i
]);
1556 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
1557 free_evalue_refs(subs
[i
]);
1563 int Last_Non_Zero(Value
*p
, unsigned len
)
1565 for (int i
= len
-1; i
>= 0; --i
)
1566 if (value_notzero_p(p
[i
]))
1571 static void SwapColumns(Value
**V
, int n
, int i
, int j
)
1573 for (int r
= 0; r
< n
; ++r
)
1574 value_swap(V
[r
][i
], V
[r
][j
]);
1577 static void SwapColumns(Polyhedron
*P
, int i
, int j
)
1579 SwapColumns(P
->Constraint
, P
->NbConstraints
, i
, j
);
1580 SwapColumns(P
->Ray
, P
->NbRays
, i
, j
);
1583 void compute_evalue(evalue
*e
, Value
*val
, Value
*res
)
1585 double d
= compute_evalue(e
, val
);
1590 value_set_double(*res
, d
);
1593 Vector
*max_term::eval(Value
*val
, unsigned MaxRays
) const
1595 if (!domain
->contains(val
, dim
))
1597 Vector
*res
= Vector_Alloc(max
.size());
1598 for (int i
= 0; i
< max
.size(); ++i
) {
1599 compute_evalue(max
[i
], val
, &res
->p
[i
]);
1604 static Matrix
*remove_equalities(Polyhedron
**P
, unsigned nparam
, unsigned MaxRays
);
1606 Vector
*Polyhedron_not_empty(Polyhedron
*P
, unsigned MaxRays
)
1608 Polyhedron
*Porig
= P
;
1609 Vector
*sample
= NULL
;
1611 POL_ENSURE_VERTICES(P
);
1615 for (int i
= 0; i
< P
->NbRays
; ++i
)
1616 if (value_one_p(P
->Ray
[i
][1+P
->Dimension
])) {
1617 sample
= Vector_Alloc(P
->Dimension
+ 1);
1618 Vector_Copy(P
->Ray
[i
]+1, sample
->p
, P
->Dimension
+1);
1622 Matrix
*T
= remove_equalities(&P
, 0, MaxRays
);
1624 sample
= Polyhedron_Sample(P
, MaxRays
);
1627 Vector
*P_sample
= Vector_Alloc(Porig
->Dimension
+ 1);
1628 Matrix_Vector_Product(T
, sample
->p
, P_sample
->p
);
1629 Vector_Free(sample
);
1643 enum sign
{ le
, ge
, lge
} sign
;
1645 split (evalue
*c
, enum sign s
) : constraint(c
), sign(s
) {}
1648 static void split_on(const split
& sp
, EDomain
*D
,
1649 EDomain
**Dlt
, EDomain
**Deq
, EDomain
**Dgt
,
1650 barvinok_options
*options
)
1657 value_set_si(mone
, -1);
1661 vector
<EDomain_floor
*> new_floors
;
1662 M
= D
->add_ge_constraint(sp
.constraint
, new_floors
);
1663 if (sp
.sign
== split::lge
|| sp
.sign
== split::ge
) {
1664 M2
= Matrix_Copy(M
);
1665 value_decrement(M2
->p
[M2
->NbRows
-1][M2
->NbColumns
-1],
1666 M2
->p
[M2
->NbRows
-1][M2
->NbColumns
-1]);
1667 D2
= Constraints2Polyhedron(M2
, options
->MaxRays
);
1668 ED
[2] = new EDomain(D2
, D
, new_floors
);
1669 Polyhedron_Free(D2
);
1673 if (sp
.sign
== split::lge
|| sp
.sign
== split::le
) {
1674 M2
= Matrix_Copy(M
);
1675 Vector_Scale(M2
->p
[M2
->NbRows
-1]+1, M2
->p
[M2
->NbRows
-1]+1,
1676 mone
, M2
->NbColumns
-1);
1677 value_decrement(M2
->p
[M2
->NbRows
-1][M2
->NbColumns
-1],
1678 M2
->p
[M2
->NbRows
-1][M2
->NbColumns
-1]);
1679 D2
= Constraints2Polyhedron(M2
, options
->MaxRays
);
1680 ED
[0] = new EDomain(D2
, D
, new_floors
);
1681 Polyhedron_Free(D2
);
1686 assert(sp
.sign
== split::lge
|| sp
.sign
== split::ge
|| sp
.sign
== split::le
);
1687 value_set_si(M
->p
[M
->NbRows
-1][0], 0);
1688 D2
= Constraints2Polyhedron(M
, options
->MaxRays
);
1689 ED
[1] = new EDomain(D2
, D
, new_floors
);
1690 Polyhedron_Free(D2
);
1693 Vector
*sample
= D
->sample
;
1694 if (sample
&& new_floors
.size() > 0) {
1695 assert(sample
->Size
== D
->D
->Dimension
+1);
1696 sample
= Vector_Alloc(D
->D
->Dimension
+new_floors
.size()+1);
1697 Vector_Copy(D
->sample
->p
, sample
->p
, D
->D
->Dimension
);
1698 value_set_si(sample
->p
[D
->D
->Dimension
+new_floors
.size()], 1);
1699 for (int i
= 0; i
< new_floors
.size(); ++i
)
1700 new_floors
[i
]->eval(sample
->p
, &sample
->p
[D
->D
->Dimension
+i
]);
1703 for (int i
= 0; i
< new_floors
.size(); ++i
)
1704 EDomain_floor::unref(new_floors
[i
]);
1706 for (int i
= 0; i
< 3; ++i
) {
1709 if (sample
&& ED
[i
]->contains(sample
->p
, sample
->Size
-1)) {
1710 ED
[i
]->sample
= Vector_Alloc(sample
->Size
);
1711 Vector_Copy(sample
->p
, ED
[i
]->sample
->p
, sample
->Size
);
1712 } else if (emptyQ2(ED
[i
]->D
) ||
1713 (options
->lexmin_emptiness_check
== 1 &&
1714 !(ED
[i
]->sample
= Polyhedron_not_empty(ED
[i
]->D
,
1715 options
->MaxRays
)))) {
1724 if (sample
!= D
->sample
)
1725 Vector_Free(sample
);
1728 ostream
& operator<< (ostream
& os
, const vector
<int> & v
)
1731 for (int i
= 0; i
< v
.size(); ++i
) {
1740 static bool isTranslation(Matrix
*M
)
1743 if (M
->NbRows
!= M
->NbColumns
)
1746 for (i
= 0;i
< M
->NbRows
; i
++)
1747 for (j
= 0; j
< M
->NbColumns
-1; j
++)
1749 if(value_notone_p(M
->p
[i
][j
]))
1752 if(value_notzero_p(M
->p
[i
][j
]))
1755 return value_one_p(M
->p
[M
->NbRows
-1][M
->NbColumns
-1]);
1758 static Matrix
*compress_parameters(Polyhedron
**P
, Polyhedron
**C
,
1759 unsigned nparam
, unsigned MaxRays
)
1763 /* compress_parms doesn't like equalities that only involve parameters */
1764 for (int i
= 0; i
< (*P
)->NbEq
; ++i
)
1765 assert(First_Non_Zero((*P
)->Constraint
[i
]+1, (*P
)->Dimension
-nparam
) != -1);
1767 M
= Matrix_Alloc((*P
)->NbEq
, (*P
)->Dimension
+2);
1768 Vector_Copy((*P
)->Constraint
[0], M
->p
[0], (*P
)->NbEq
* ((*P
)->Dimension
+2));
1769 CP
= compress_parms(M
, nparam
);
1772 if (isTranslation(CP
)) {
1777 T
= align_matrix(CP
, (*P
)->Dimension
+1);
1778 *P
= Polyhedron_Preimage(*P
, T
, MaxRays
);
1781 *C
= Polyhedron_Preimage(*C
, CP
, MaxRays
);
1786 static Matrix
*remove_equalities(Polyhedron
**P
, unsigned nparam
, unsigned MaxRays
)
1788 /* Matrix "view" of equalities */
1790 M
.NbRows
= (*P
)->NbEq
;
1791 M
.NbColumns
= (*P
)->Dimension
+2;
1792 M
.p_Init
= (*P
)->p_Init
;
1793 M
.p
= (*P
)->Constraint
;
1795 Matrix
*T
= compress_variables(&M
, nparam
);
1801 if (isIdentity(T
)) {
1805 *P
= Polyhedron_Preimage(*P
, T
, MaxRays
);
1810 void construct_rational_vertices(Param_Polyhedron
*PP
, Matrix
*T
, unsigned dim
,
1811 int nparam
, vector
<indicator_term
*>& vertices
)
1820 v
.SetLength(nparam
+1);
1823 value_init(factor
.d
);
1824 value_init(factor
.x
.n
);
1825 value_set_si(factor
.x
.n
, 1);
1826 value_set_si(factor
.d
, 1);
1828 for (i
= 0, PV
= PP
->V
; PV
; ++i
, PV
= PV
->next
) {
1829 indicator_term
*term
= new indicator_term(dim
, i
);
1830 vertices
.push_back(term
);
1831 Matrix
*M
= Matrix_Alloc(PV
->Vertex
->NbRows
+nparam
+1, nparam
+1);
1832 value_set_si(lcm
, 1);
1833 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
)
1834 value_lcm(lcm
, PV
->Vertex
->p
[j
][nparam
+1], &lcm
);
1835 value_assign(M
->p
[M
->NbRows
-1][M
->NbColumns
-1], lcm
);
1836 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
) {
1837 value_division(tmp
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
1838 Vector_Scale(PV
->Vertex
->p
[j
], M
->p
[j
], tmp
, nparam
+1);
1840 for (int j
= 0; j
< nparam
; ++j
)
1841 value_assign(M
->p
[PV
->Vertex
->NbRows
+j
][j
], lcm
);
1843 Matrix
*M2
= Matrix_Alloc(T
->NbRows
, M
->NbColumns
);
1844 Matrix_Product(T
, M
, M2
);
1848 for (int j
= 0; j
< dim
; ++j
) {
1849 values2zz(M
->p
[j
], v
, nparam
+1);
1850 term
->vertex
[j
] = multi_monom(v
);
1851 value_assign(factor
.d
, lcm
);
1852 emul(&factor
, term
->vertex
[j
]);
1856 assert(i
== PP
->nbV
);
1857 free_evalue_refs(&factor
);
1862 /* An auxiliary class that keeps a reference to an evalue
1863 * and frees it when it goes out of scope.
1865 struct temp_evalue
{
1867 temp_evalue() : E(NULL
) {}
1868 temp_evalue(evalue
*e
) : E(e
) {}
1869 operator evalue
* () const { return E
; }
1870 evalue
*operator=(evalue
*e
) {
1872 free_evalue_refs(E
);
1880 free_evalue_refs(E
);
1886 static vector
<max_term
*> lexmin(indicator
& ind
, unsigned nparam
,
1889 vector
<max_term
*> maxima
;
1890 map
<indicator_term
*, int >::iterator i
;
1891 vector
<int> best_score
;
1892 vector
<int> second_score
;
1893 vector
<int> neg_score
;
1896 indicator_term
*best
= NULL
, *second
= NULL
, *neg
= NULL
,
1897 *neg_eq
= NULL
, *neg_le
= NULL
;
1898 for (i
= ind
.order
.pred
.begin(); i
!= ind
.order
.pred
.end(); ++i
) {
1900 if ((*i
).second
!= 0)
1902 indicator_term
*term
= (*i
).first
;
1903 if (term
->sign
== 0) {
1904 ind
.expand_rational_vertex(term
);
1908 if (ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
1910 if (ind
.order
.eq
[term
].size() <= 1)
1912 for (j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
1913 if (ind
.order
.pred
[ind
.order
.eq
[term
][j
]] != 0)
1915 if (j
< ind
.order
.eq
[term
].size())
1917 score
.push_back(ind
.order
.eq
[term
].size());
1920 if (ind
.order
.le
.find(term
) != ind
.order
.le
.end())
1921 score
.push_back(ind
.order
.le
[term
].size());
1924 if (ind
.order
.lt
.find(term
) != ind
.order
.lt
.end())
1925 score
.push_back(-ind
.order
.lt
[term
].size());
1929 if (term
->sign
> 0) {
1930 if (!best
|| score
< best_score
) {
1932 second_score
= best_score
;
1935 } else if (!second
|| score
< second_score
) {
1937 second_score
= score
;
1940 if (!neg_eq
&& ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
1941 for (int j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
1942 if (ind
.order
.eq
[term
][j
]->sign
!= term
->sign
) {
1947 if (!neg_le
&& ind
.order
.le
.find(term
) != ind
.order
.le
.end())
1949 if (!neg
|| score
< neg_score
) {
1955 if (i
!= ind
.order
.pred
.end())
1958 if (!best
&& neg_eq
) {
1959 assert(ind
.order
.eq
[neg_eq
].size() != 0);
1960 bool handled
= ind
.handle_equal_numerators(neg_eq
);
1965 if (!best
&& neg_le
) {
1966 /* The smallest term is negative and <= some positive term */
1972 /* apparently there can be negative initial term on empty domains */
1973 if (ind
.options
->lexmin_emptiness_check
== 1)
1978 if (!second
&& !neg
) {
1979 indicator_term
*rat
= NULL
;
1981 if (ind
.order
.le
[best
].size() == 0) {
1982 if (ind
.order
.eq
[best
].size() != 0) {
1983 bool handled
= ind
.handle_equal_numerators(best
);
1984 if (ind
.options
->lexmin_emptiness_check
== 1)
1986 /* If !handled then the leading coefficient is bigger than one;
1987 * must be an empty domain
1994 maxima
.push_back(ind
.create_max_term(best
));
1997 for (int j
= 0; j
< ind
.order
.le
[best
].size(); ++j
) {
1998 if (ind
.order
.le
[best
][j
]->sign
== 0) {
1999 if (!rat
&& ind
.order
.pred
[ind
.order
.le
[best
][j
]] == 1)
2000 rat
= ind
.order
.le
[best
][j
];
2001 } else if (ind
.order
.le
[best
][j
]->sign
> 0) {
2002 second
= ind
.order
.le
[best
][j
];
2005 neg
= ind
.order
.le
[best
][j
];
2008 if (!second
&& !neg
) {
2010 ind
.order
.unset_le(best
, rat
);
2011 ind
.expand_rational_vertex(rat
);
2018 ind
.order
.unset_le(best
, second
);
2024 unsigned dim
= best
->den
.NumCols();
2027 for (int k
= 0; k
< dim
; ++k
) {
2028 diff
= ediff(best
->vertex
[k
], second
->vertex
[k
]);
2029 sign
= evalue_sign(diff
, ind
.D
, ind
.options
->MaxRays
);
2031 /* neg can never be smaller than best, unless it may still cancel.
2032 * This can happen if positive terms have been determined to
2033 * be equal or less than or equal to some negative term.
2035 if (second
== neg
&& !neg_eq
&& !neg_le
) {
2036 if (sign
== order_ge
)
2038 if (sign
== order_unknown
)
2042 if (sign
!= order_eq
)
2044 if (!EVALUE_IS_ZERO(*diff
))
2045 ind
.substitute(diff
);
2047 if (sign
== order_eq
) {
2048 ind
.order
.set_equal(best
, second
);
2051 if (sign
== order_lt
) {
2052 ind
.order
.lt
[best
].push_back(second
);
2053 ind
.order
.pred
[second
]++;
2056 if (sign
== order_gt
) {
2057 ind
.order
.lt
[second
].push_back(best
);
2058 ind
.order
.pred
[best
]++;
2062 split
sp(diff
, sign
== order_le
? split::le
:
2063 sign
== order_ge
? split::ge
: split::lge
);
2065 EDomain
*Dlt
, *Deq
, *Dgt
;
2066 split_on(sp
, ind
.D
, &Dlt
, &Deq
, &Dgt
, ind
.options
);
2067 if (ind
.options
->lexmin_emptiness_check
== 1)
2068 assert(Dlt
|| Deq
|| Dgt
);
2069 else if (!(Dlt
|| Deq
|| Dgt
))
2070 /* Must have been empty all along */
2073 if (Deq
&& (Dlt
|| Dgt
)) {
2074 int locsize
= loc
.size();
2076 indicator
indeq(ind
, Deq
);
2078 indeq
.substitute(diff
);
2079 vector
<max_term
*> maxeq
= lexmin(indeq
, nparam
, loc
);
2080 maxima
.insert(maxima
.end(), maxeq
.begin(), maxeq
.end());
2081 loc
.resize(locsize
);
2084 int locsize
= loc
.size();
2086 indicator
indgt(ind
, Dgt
);
2088 /* we don't know the new location of these terms in indgt */
2090 indgt.order.lt[second].push_back(best);
2091 indgt.order.pred[best]++;
2093 vector
<max_term
*> maxgt
= lexmin(indgt
, nparam
, loc
);
2094 maxima
.insert(maxima
.end(), maxgt
.begin(), maxgt
.end());
2095 loc
.resize(locsize
);
2100 ind
.substitute(diff
);
2101 ind
.set_domain(Deq
);
2105 ind
.order
.lt
[best
].push_back(second
);
2106 ind
.order
.pred
[second
]++;
2107 ind
.set_domain(Dlt
);
2111 ind
.order
.lt
[second
].push_back(best
);
2112 ind
.order
.pred
[best
]++;
2113 ind
.set_domain(Dgt
);
2120 static vector
<max_term
*> lexmin(Polyhedron
*P
, Polyhedron
*C
,
2121 barvinok_options
*options
)
2123 unsigned nparam
= C
->Dimension
;
2124 Param_Polyhedron
*PP
= NULL
;
2125 Polyhedron
*CEq
= NULL
, *pVD
;
2127 Matrix
*T
= NULL
, *CP
= NULL
;
2128 Param_Domain
*D
, *next
;
2130 Polyhedron
*Porig
= P
;
2131 Polyhedron
*Corig
= C
;
2132 vector
<max_term
*> all_max
;
2134 unsigned P2PSD_MaxRays
;
2139 POL_ENSURE_VERTICES(P
);
2144 assert(P
->NbBid
== 0);
2148 CP
= compress_parameters(&P
, &C
, nparam
, options
->MaxRays
);
2150 T
= remove_equalities(&P
, nparam
, options
->MaxRays
);
2151 if (P
!= Q
&& Q
!= Porig
)
2160 if (options
->MaxRays
& POL_NO_DUAL
)
2163 P2PSD_MaxRays
= options
->MaxRays
;
2166 PP
= Polyhedron2Param_SimplifiedDomain(&P
, C
, P2PSD_MaxRays
, &CEq
, &CT
);
2167 if (P
!= Q
&& Q
!= Porig
)
2171 if (isIdentity(CT
)) {
2175 nparam
= CT
->NbRows
- 1;
2179 unsigned dim
= P
->Dimension
- nparam
;
2182 for (nd
= 0, D
=PP
->D
; D
; ++nd
, D
=D
->next
);
2183 Polyhedron
**fVD
= new Polyhedron
*[nd
];
2185 indicator_constructor
ic(P
, dim
, PP
, T
);
2187 vector
<indicator_term
*> all_vertices
;
2188 construct_rational_vertices(PP
, T
, T
? T
->NbRows
-nparam
-1 : dim
,
2189 nparam
, all_vertices
);
2191 for (nd
= 0, D
=PP
->D
; D
; D
=next
) {
2194 Polyhedron
*rVD
= reduce_domain(D
->Domain
, CT
, CEq
,
2195 fVD
, nd
, options
->MaxRays
);
2199 pVD
= CT
? DomainImage(rVD
,CT
,options
->MaxRays
) : rVD
;
2201 EDomain
*epVD
= new EDomain(pVD
);
2202 indicator
ind(ic
, D
, epVD
, options
);
2204 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
2205 ind
.add(all_vertices
[_i
]);
2206 END_FORALL_PVertex_in_ParamPolyhedron
;
2208 ind
.remove_initial_rational_vertices();
2211 vector
<max_term
*> maxima
= lexmin(ind
, nparam
, loc
);
2213 for (int j
= 0; j
< maxima
.size(); ++j
)
2214 maxima
[j
]->substitute(CP
, options
->MaxRays
);
2215 all_max
.insert(all_max
.end(), maxima
.begin(), maxima
.end());
2222 for (int i
= 0; i
< all_vertices
.size(); ++i
)
2223 delete all_vertices
[i
];
2228 Param_Polyhedron_Free(PP
);
2230 Polyhedron_Free(CEq
);
2231 for (--nd
; nd
>= 0; --nd
) {
2232 Domain_Free(fVD
[nd
]);
2243 static void verify_results(Polyhedron
*A
, Polyhedron
*C
,
2244 vector
<max_term
*>& maxima
, int m
, int M
,
2245 int print_all
, unsigned MaxRays
);
2247 int main(int argc
, char **argv
)
2252 char **iter_names
, **param_names
;
2257 int m
= INT_MAX
, M
= INT_MIN
, r
;
2258 int print_solution
= 1;
2259 struct barvinok_options
*options
;
2261 options
= barvinok_options_new_with_defaults();
2263 while ((c
= getopt_long(argc
, argv
, "TAm:M:r:V", lexmin_options
, &ind
)) != -1) {
2265 case NO_EMPTINESS_CHECK
:
2266 options
->lexmin_emptiness_check
= 0;
2288 printf(barvinok_version());
2295 C
= Constraints2Polyhedron(MA
, options
->MaxRays
);
2297 fscanf(stdin
, " %d", &bignum
);
2298 assert(bignum
== -1);
2300 A
= Constraints2Polyhedron(MA
, options
->MaxRays
);
2303 if (A
->Dimension
>= VBIGDIM
)
2305 else if (A
->Dimension
>= BIGDIM
)
2314 if (verify
&& m
> M
) {
2315 fprintf(stderr
,"Nothing to do: min > max !\n");
2321 iter_names
= util_generate_names(A
->Dimension
- C
->Dimension
, "i");
2322 param_names
= util_generate_names(C
->Dimension
, "p");
2323 if (print_solution
) {
2324 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
2325 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
2327 vector
<max_term
*> maxima
= lexmin(A
, C
, options
);
2329 for (int i
= 0; i
< maxima
.size(); ++i
)
2330 maxima
[i
]->print(cout
, param_names
, options
);
2333 verify_results(A
, C
, maxima
, m
, M
, print_all
, options
->MaxRays
);
2335 for (int i
= 0; i
< maxima
.size(); ++i
)
2338 util_free_names(A
->Dimension
- C
->Dimension
, iter_names
);
2339 util_free_names(C
->Dimension
, param_names
);
2348 static bool lexmin(int pos
, Polyhedron
*P
, Value
*context
)
2357 value_init(LB
); value_init(UB
); value_init(k
);
2360 lu_flags
= lower_upper_bounds(pos
,P
,context
,&LB
,&UB
);
2361 assert(!(lu_flags
& LB_INFINITY
));
2363 value_set_si(context
[pos
],0);
2364 if (!lu_flags
&& value_lt(UB
,LB
)) {
2365 value_clear(LB
); value_clear(UB
); value_clear(k
);
2369 value_assign(context
[pos
], LB
);
2370 value_clear(LB
); value_clear(UB
); value_clear(k
);
2373 for (value_assign(k
,LB
); lu_flags
|| value_le(k
,UB
); value_increment(k
,k
)) {
2374 value_assign(context
[pos
],k
);
2375 if ((found
= lexmin(pos
+1, P
->next
, context
)))
2379 value_set_si(context
[pos
],0);
2380 value_clear(LB
); value_clear(UB
); value_clear(k
);
2384 static void print_list(FILE *out
, Value
*z
, char* brackets
, int len
)
2386 fprintf(out
, "%c", brackets
[0]);
2387 value_print(out
, VALUE_FMT
,z
[0]);
2388 for (int k
= 1; k
< len
; ++k
) {
2390 value_print(out
, VALUE_FMT
,z
[k
]);
2392 fprintf(out
, "%c", brackets
[1]);
2395 static int check_poly(Polyhedron
*S
, Polyhedron
*CS
, vector
<max_term
*>& maxima
,
2396 int nparam
, int pos
, Value
*z
, int print_all
, int st
,
2399 if (pos
== nparam
) {
2401 bool found
= lexmin(1, S
, z
);
2405 print_list(stdout
, z
+S
->Dimension
-nparam
+1, "()", nparam
);
2408 print_list(stdout
, z
+1, "[]", S
->Dimension
-nparam
);
2413 for (int i
= 0; i
< maxima
.size(); ++i
)
2414 if ((min
= maxima
[i
]->eval(z
+S
->Dimension
-nparam
+1, MaxRays
)))
2417 int ok
= !(found
^ !!min
);
2419 for (int i
= 0; i
< S
->Dimension
-nparam
; ++i
)
2420 if (value_ne(z
[1+i
], min
->p
[i
])) {
2427 fprintf(stderr
, "Error !\n");
2428 fprintf(stderr
, "lexmin");
2429 print_list(stderr
, z
+S
->Dimension
-nparam
+1, "()", nparam
);
2430 fprintf(stderr
, " should be ");
2432 print_list(stderr
, z
+1, "[]", S
->Dimension
-nparam
);
2433 fprintf(stderr
, " while digging gives ");
2435 print_list(stderr
, min
->p
, "[]", S
->Dimension
-nparam
);
2436 fprintf(stderr
, ".\n");
2438 } else if (print_all
)
2443 for (k
= 1; k
<= S
->Dimension
-nparam
; ++k
)
2444 value_set_si(z
[k
], 0);
2452 !(lower_upper_bounds(1+pos
, CS
, &z
[S
->Dimension
-nparam
], &LB
, &UB
));
2453 for (value_assign(tmp
,LB
); value_le(tmp
,UB
); value_increment(tmp
,tmp
)) {
2455 int k
= VALUE_TO_INT(tmp
);
2456 if (!pos
&& !(k
%st
)) {
2461 value_assign(z
[pos
+S
->Dimension
-nparam
+1],tmp
);
2462 if (!check_poly(S
, CS
->next
, maxima
, nparam
, pos
+1, z
, print_all
, st
,
2470 value_set_si(z
[pos
+S
->Dimension
-nparam
+1],0);
2478 void verify_results(Polyhedron
*A
, Polyhedron
*C
, vector
<max_term
*>& maxima
,
2479 int m
, int M
, int print_all
, unsigned MaxRays
)
2481 Polyhedron
*CC
, *CC2
, *CS
, *S
;
2482 unsigned nparam
= C
->Dimension
;
2487 CC
= Polyhedron_Project(A
, nparam
);
2488 CC2
= DomainIntersection(C
, CC
, MaxRays
);
2492 /* Intersect context with range */
2497 MM
= Matrix_Alloc(2*C
->Dimension
, C
->Dimension
+2);
2498 for (int i
= 0; i
< C
->Dimension
; ++i
) {
2499 value_set_si(MM
->p
[2*i
][0], 1);
2500 value_set_si(MM
->p
[2*i
][1+i
], 1);
2501 value_set_si(MM
->p
[2*i
][1+C
->Dimension
], -m
);
2502 value_set_si(MM
->p
[2*i
+1][0], 1);
2503 value_set_si(MM
->p
[2*i
+1][1+i
], -1);
2504 value_set_si(MM
->p
[2*i
+1][1+C
->Dimension
], M
);
2506 CC2
= AddConstraints(MM
->p
[0], 2*CC
->Dimension
, CC
, MaxRays
);
2507 U
= Universe_Polyhedron(0);
2508 CS
= Polyhedron_Scan(CC2
, U
, MaxRays
& POL_NO_DUAL
? 0 : MaxRays
);
2510 Polyhedron_Free(CC2
);
2515 p
= ALLOCN(Value
, A
->Dimension
+2);
2516 for (i
=0; i
<= A
->Dimension
; i
++) {
2518 value_set_si(p
[i
],0);
2521 value_set_si(p
[i
], 1);
2523 S
= Polyhedron_Scan(A
, C
, MaxRays
& POL_NO_DUAL
? 0 : MaxRays
);
2525 if (!print_all
&& C
->Dimension
> 0) {
2530 for (int i
= m
; i
<= M
; i
+= st
)
2537 if (!(CS
&& emptyQ2(CS
)))
2538 check_poly(S
, CS
, maxima
, nparam
, 0, p
, print_all
, st
, MaxRays
);
2545 for (i
=0; i
<= (A
->Dimension
+1); i
++)
2550 Polyhedron_Free(CC
);