4 #include <NTL/mat_ZZ.h>
5 #include <barvinok/NTL_QQ.h>
6 #include <barvinok/options.h>
7 #include "decomposer.h"
16 extern struct OrthogonalException
{} Orthogonal
;
18 /* base for non-parametric counting */
19 struct np_base
: public signed_cone_consumer
{
23 np_base(unsigned dim
) {
28 virtual void handle(const mat_ZZ
& rays
, Value
*vertex
, const QQ
& c
,
29 unsigned long det
, int *closed
,
30 barvinok_options
*options
) = 0;
31 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
32 virtual void start(Polyhedron
*P
, barvinok_options
*options
);
33 void do_vertex_cone(const QQ
& factor
, Polyhedron
*Cone
,
34 Value
*vertex
, barvinok_options
*options
) {
35 current_vertex
= vertex
;
36 this->factor
= factor
;
37 barvinok_decompose(Cone
, *this, options
);
39 virtual void init(Polyhedron
*P
) {
41 virtual void reset() {
44 virtual void get_count(Value
*result
) {
52 Value
*current_vertex
;
55 struct reducer
: public np_base
{
62 int lower
; // call base when only this many variables is left
64 reducer(unsigned dim
) : np_base(dim
) {
65 vertex
.SetDims(1, dim
);
78 virtual void handle(const mat_ZZ
& rays
, Value
*vertex
, const QQ
& c
,
79 unsigned long det
, int *closed
, barvinok_options
*options
);
80 void reduce(const vec_QQ
& c
, const mat_ZZ
& num
, const mat_ZZ
& den_f
);
81 virtual void base(const QQ
& c
, const vec_ZZ
& num
, const mat_ZZ
& den_f
) = 0;
82 virtual void base(const vec_QQ
& c
, const mat_ZZ
& num
, const mat_ZZ
& den_f
);
83 virtual void split(const mat_ZZ
& num
, vec_ZZ
& num_s
, mat_ZZ
& num_p
,
84 const mat_ZZ
& den_f
, vec_ZZ
& den_s
, mat_ZZ
& den_r
) = 0;
85 virtual gen_fun
*get_gf() {
91 void split_one(const mat_ZZ
& num
, vec_ZZ
& num_s
, mat_ZZ
& num_p
,
92 const mat_ZZ
& den_f
, vec_ZZ
& den_s
, mat_ZZ
& den_r
);
94 struct ireducer
: public reducer
{
95 ireducer(unsigned dim
) : reducer(dim
) {}
97 virtual void split(const mat_ZZ
& num
, vec_ZZ
& num_s
, mat_ZZ
& num_p
,
98 const mat_ZZ
& den_f
, vec_ZZ
& den_s
, mat_ZZ
& den_r
) {
99 split_one(num
, num_s
, num_p
, den_f
, den_s
, den_r
);
103 void normalize(ZZ
& sign
, vec_ZZ
& num_s
, mat_ZZ
& num_p
, vec_ZZ
& den_s
, vec_ZZ
& den_p
,
106 // incremental counter
107 struct icounter
: public ireducer
{
110 icounter(unsigned dim
) : ireducer(dim
) {
117 virtual void base(const QQ
& c
, const vec_ZZ
& num
, const mat_ZZ
& den_f
);
118 virtual void get_count(Value
*result
) {
119 assert(value_one_p(&count
[0]._mp_den
));
120 value_assign(*result
, &count
[0]._mp_num
);
124 void normalize(ZZ
& sign
, ZZ
& num
, vec_ZZ
& den
);
126 /* An incremental counter for possibly infinite sets.
127 * Rather than just keeping track of the constant term
128 * of the Laurent expansions, we also keep track of the
129 * coefficients of negative powers.
130 * If any of these is non-zero, then the counted set is infinite.
132 struct infinite_icounter
: public ireducer
{
133 /* an array of coefficients; count[i] is the coeffient of
134 * the term with power -i.
139 infinite_icounter(unsigned dim
, unsigned maxlen
) : ireducer(dim
), len(maxlen
+1) {
140 /* Not sure whether it works for dim != 1 */
142 count
= new mpq_t
[len
];
143 for (int i
= 0; i
< len
; ++i
)
147 ~infinite_icounter() {
148 for (int i
= 0; i
< len
; ++i
)
152 virtual void base(const QQ
& c
, const vec_ZZ
& num
, const mat_ZZ
& den_f
);