occ: add dump for dumping in barvinok_enumerate_e format
[barvinok.git] / bernstein.cc
blobebe6809903a10b535ffb3b2b73cf18c1ddf44484
1 #include <assert.h>
2 #include <vector>
3 #include <bernstein/bernstein.h>
4 #include <bernstein/piecewise_lst.h>
5 #include <barvinok/barvinok.h>
6 #include <barvinok/util.h>
7 #include <barvinok/bernstein.h>
8 #include <barvinok/options.h>
9 #include "reduce_domain.h"
11 using namespace GiNaC;
12 using namespace bernstein;
14 using std::pair;
15 using std::vector;
16 using std::cerr;
17 using std::endl;
19 namespace barvinok {
21 ex evalue2ex(evalue *e, const exvector& vars)
23 if (value_pos_p(e->d))
24 return value2numeric(e->x.n)/value2numeric(e->d);
25 if (EVALUE_IS_NAN(*e))
26 return fail();
27 if (e->x.p->type != polynomial)
28 return fail();
29 ex poly = 0;
30 for (int i = e->x.p->size-1; i >= 0; --i) {
31 poly *= vars[e->x.p->pos-1];
32 ex t = evalue2ex(&e->x.p->arr[i], vars);
33 if (is_exactly_a<fail>(t))
34 return t;
35 poly += t;
37 return poly;
40 static int type_offset(enode *p)
42 return p->type == fractional ? 1 :
43 p->type == flooring ? 1 : 0;
46 typedef pair<bool, const evalue *> typed_evalue;
48 static ex evalue2ex_add_var(evalue *e, exvector& extravar,
49 vector<typed_evalue>& expr, bool is_fract)
51 ex base_var = 0;
53 for (int i = 0; i < expr.size(); ++i) {
54 if (is_fract == expr[i].first && eequal(e, expr[i].second)) {
55 base_var = extravar[i];
56 break;
59 if (base_var != 0)
60 return base_var;
62 char name[20];
63 snprintf(name, sizeof(name), "f%c%d", is_fract ? 'r' : 'l', expr.size());
64 extravar.push_back(base_var = symbol(name));
65 expr.push_back(typed_evalue(is_fract, e));
67 return base_var;
70 /* For the argument e=(f/d) of a fractional, return (d-1)/d times
71 * a variable in [0,1] (see setup_constraints).
73 static ex evalue2ex_get_fract(evalue *e, exvector& extravar,
74 vector<typed_evalue>& expr)
76 ex f;
77 Value d;
78 ex den;
79 value_init(d);
80 value_set_si(d, 1);
81 evalue_denom(e, &d);
82 den = value2numeric(d);
83 value_clear(d);
84 f = (den-1)/den;
86 ex base_var = evalue2ex_add_var(e, extravar, expr, true);
87 base_var *= f;
88 return base_var;
91 static ex evalue2ex_r(const evalue *e, const exvector& vars,
92 exvector& extravar, vector<typed_evalue>& expr,
93 Vector *coset)
95 if (value_notzero_p(e->d))
96 return value2numeric(e->x.n)/value2numeric(e->d);
97 ex base_var = 0;
98 ex poly = 0;
100 switch (e->x.p->type) {
101 case polynomial:
102 base_var = vars[e->x.p->pos-1];
103 break;
104 case flooring:
105 base_var = evalue2ex_add_var(&e->x.p->arr[0], extravar, expr, false);
106 break;
107 case fractional:
108 base_var = evalue2ex_get_fract(&e->x.p->arr[0], extravar, expr);
109 break;
110 case periodic:
111 assert(coset);
112 return evalue2ex_r(&e->x.p->arr[VALUE_TO_INT(coset->p[e->x.p->pos-1])],
113 vars, extravar, expr, coset);
114 default:
115 return fail();
118 int offset = type_offset(e->x.p);
119 for (int i = e->x.p->size-1; i >= offset; --i) {
120 poly *= base_var;
121 ex t = evalue2ex_r(&e->x.p->arr[i], vars, extravar, expr, coset);
122 if (is_exactly_a<fail>(t))
123 return t;
124 poly += t;
126 return poly;
129 /* For each t = floor(e/d), set up two constraints
131 * e - d t >= 0
132 * -e + d t + d-1 >= 0
134 * e is assumed to be an affine expression.
136 * For each t = fract(e/d), set up two constraints
138 * -d t + d-1 >= 0
139 * t >= 0
141 static Matrix *setup_constraints(const vector<typed_evalue> expr, int nvar)
143 int extra = expr.size();
144 if (!extra)
145 return NULL;
146 Matrix *M = Matrix_Alloc(2*extra, 1+extra+nvar+1);
147 for (int i = 0; i < extra; ++i) {
148 if (expr[i].first) {
149 value_set_si(M->p[2*i][0], 1);
150 value_set_si(M->p[2*i][1+i], -1);
151 value_set_si(M->p[2*i][1+extra+nvar], 1);
152 value_set_si(M->p[2*i+1][0], 1);
153 value_set_si(M->p[2*i+1][1+i], 1);
154 } else {
155 Value *d = &M->p[2*i][1+i];
156 evalue_extract_affine(expr[i].second, M->p[2*i]+1+extra,
157 M->p[2*i]+1+extra+nvar, d);
158 value_oppose(*d, *d);
159 value_set_si(M->p[2*i][0], -1);
160 Vector_Scale(M->p[2*i], M->p[2*i+1], M->p[2*i][0], 1+extra+nvar+1);
161 value_set_si(M->p[2*i][0], 1);
162 value_subtract(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar], *d);
163 value_decrement(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar]);
166 return M;
169 static bool evalue_is_periodic(const evalue *e, Vector *periods)
171 int i, offset;
172 bool is_periodic = false;
174 if (value_notzero_p(e->d))
175 return false;
177 assert(e->x.p->type != partition);
178 if (e->x.p->type == periodic) {
179 Value size;
180 value_init(size);
181 value_set_si(size, e->x.p->size);
182 value_lcm(periods->p[e->x.p->pos-1], periods->p[e->x.p->pos-1], size);
183 value_clear(size);
184 is_periodic = true;
186 offset = type_offset(e->x.p);
187 for (i = e->x.p->size-1; i >= offset; --i)
188 is_periodic = evalue_is_periodic(&e->x.p->arr[i], periods) || is_periodic;
189 return is_periodic;
192 static ex evalue2lst(const evalue *e, const exvector& vars,
193 exvector& extravar, vector<typed_evalue>& expr,
194 Vector *periods)
196 Vector *coset = Vector_Alloc(periods->Size);
197 lst list;
198 for (;;) {
199 int i;
200 list.append(evalue2ex_r(e, vars, extravar, expr, coset));
201 for (i = coset->Size-1; i >= 0; --i) {
202 value_increment(coset->p[i], coset->p[i]);
203 if (value_lt(coset->p[i], periods->p[i]))
204 break;
205 value_set_si(coset->p[i], 0);
207 if (i < 0)
208 break;
210 Vector_Free(coset);
211 return list;
214 ex evalue2ex(const evalue *e, const exvector& vars, exvector& floorvar,
215 Matrix **C, Vector **p)
217 vector<typed_evalue> expr;
218 Vector *periods = Vector_Alloc(vars.size());
219 assert(p);
220 assert(C);
221 for (int i = 0; i < periods->Size; ++i)
222 value_set_si(periods->p[i], 1);
223 if (evalue_is_periodic(e, periods)) {
224 *p = periods;
225 *C = NULL;
226 lst list;
227 return list;
228 } else {
229 Vector_Free(periods);
230 *p = NULL;
231 ex poly = evalue2ex_r(e, vars, floorvar, expr, NULL);
232 Matrix *M = setup_constraints(expr, vars.size());
233 *C = M;
234 return poly;
238 /* if the evalue is a relation, we use the relation to cut off the
239 * the edges of the domain
241 static Polyhedron *relation_domain(Polyhedron *D, evalue *fr, unsigned MaxRays)
243 assert(value_zero_p(fr->d));
244 assert(fr->x.p->type == fractional);
245 assert(fr->x.p->size == 3);
246 Matrix *T = Matrix_Alloc(2, D->Dimension+1);
247 value_set_si(T->p[1][D->Dimension], 1);
249 /* convert argument of fractional to polylib */
250 /* the argument is assumed to be linear */
251 evalue *p = &fr->x.p->arr[0];
252 evalue_denom(p, &T->p[1][D->Dimension]);
253 for (;value_zero_p(p->d); p = &p->x.p->arr[0]) {
254 assert(p->x.p->type == polynomial);
255 assert(p->x.p->size == 2);
256 assert(value_notzero_p(p->x.p->arr[1].d));
257 int pos = p->x.p->pos - 1;
258 value_assign(T->p[0][pos], p->x.p->arr[1].x.n);
259 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
260 value_division(T->p[0][pos], T->p[0][pos], p->x.p->arr[1].d);
262 int pos = D->Dimension;
263 value_assign(T->p[0][pos], p->x.n);
264 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
265 value_division(T->p[0][pos], T->p[0][pos], p->d);
267 Polyhedron *E = NULL;
268 for (Polyhedron *P = D; P; P = P->next) {
269 Polyhedron *I = Polyhedron_Image(P, T, MaxRays);
270 I = DomainConstraintSimplify(I, MaxRays);
271 Polyhedron *R = Polyhedron_Preimage(I, T, MaxRays);
272 Polyhedron_Free(I);
273 Polyhedron *next = P->next;
274 P->next = NULL;
275 Polyhedron *S = DomainIntersection(P, R, MaxRays);
276 Polyhedron_Free(R);
277 P->next = next;
278 if (emptyQ2(S))
279 Polyhedron_Free(S);
280 else
281 E = DomainConcat(S, E);
283 Matrix_Free(T);
285 return E;
288 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
289 Polyhedron *ctx, const exvector& params)
291 piecewise_lst *pl;
292 barvinok_options *options = barvinok_options_new_with_defaults();
293 pl = evalue_bernstein_coefficients(pl_all, e, ctx, params, options);
294 barvinok_options_free(options);
295 return pl;
298 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
299 Polyhedron *D, const ex& poly,
300 Polyhedron *ctx,
301 const exvector& params, const exvector& floorvar,
302 barvinok_options *options);
304 /* Recursively apply Bernstein expansion on P, optimizing over dims[i]
305 * variables in each level. The context ctx is assumed to have been adapted
306 * to the first level in the recursion.
308 static piecewise_lst *bernstein_coefficients_recursive(piecewise_lst *pl_all,
309 Polyhedron *P, const vector<int>& dims, const ex& poly,
310 Polyhedron *ctx,
311 const exvector& params, const exvector& vars,
312 barvinok_options *options)
314 assert(dims.size() > 0);
315 assert(ctx->Dimension == P->Dimension - dims[0]);
316 piecewise_lst *pl;
317 unsigned done = 0;
318 for (int j = 0; j < dims.size(); ++j) {
319 exvector pl_vars;
320 pl_vars.insert(pl_vars.end(), vars.begin()+done, vars.begin()+done+dims[j]);
321 exvector pl_params;
322 pl_params.insert(pl_params.end(), vars.begin()+done+dims[j], vars.end());
323 pl_params.insert(pl_params.end(), params.begin(), params.end());
325 if (!j)
326 pl = bernstein_coefficients(NULL, P, poly, ctx,
327 pl_params, pl_vars, options);
328 else {
329 piecewise_lst *new_pl = NULL;
330 Polyhedron *U = Universe_Polyhedron(pl_params.size());
332 for (int i = 0; i < pl->list.size(); ++i) {
333 Polyhedron *D = pl->list[i].first;
334 lst polys = pl->list[i].second;
335 new_pl = bernstein_coefficients(new_pl, D, polys, U, pl_params,
336 pl_vars, options);
339 Polyhedron_Free(U);
341 delete pl;
342 pl = new_pl;
345 done += dims[j];
348 if (!pl_all)
349 pl_all = pl;
350 else {
351 pl_all->combine(*pl);
352 delete pl;
355 return pl_all;
358 static piecewise_lst *bernstein_coefficients_full_recurse(piecewise_lst *pl_all,
359 Polyhedron *P, const ex& poly,
360 Polyhedron *ctx,
361 const exvector& params, const exvector& vars,
362 barvinok_options *options)
364 Polyhedron *CR = align_context(ctx, P->Dimension-1, options->MaxRays);
365 vector<int> dims(vars.size());
366 for (int i = 0; i < dims.size(); ++i)
367 dims[i] = 1;
368 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, poly, CR,
369 params, vars, options);
370 Polyhedron_Free(CR);
372 return pl_all;
375 static piecewise_lst *bernstein_coefficients_product(piecewise_lst *pl_all,
376 Polyhedron *F, Matrix *T, const ex& poly,
377 Polyhedron *ctx,
378 const exvector& params, const exvector& vars,
379 barvinok_options *options)
381 if (emptyQ2(ctx))
382 return pl_all;
383 for (Polyhedron *G = F; G; G = G->next)
384 if (emptyQ2(G))
385 return pl_all;
387 unsigned nparam = params.size();
388 unsigned nvar = vars.size();
389 unsigned constraints;
390 unsigned factors;
391 Polyhedron *C = NULL;
393 /* More context constraints */
394 if (F->Dimension == ctx->Dimension) {
395 C = F;
396 F = F->next;
398 assert(F);
399 assert(F->next);
401 Matrix *M;
402 Polyhedron *P;
403 Polyhedron *PC;
404 M = Matrix_Alloc(F->NbConstraints, 1+nvar+nparam+1);
405 for (int i = 0; i < F->NbConstraints; ++i) {
406 Vector_Copy(F->Constraint[i], M->p[i], 1+F->Dimension-nparam);
407 Vector_Copy(F->Constraint[i]+1+F->Dimension-nparam,
408 M->p[i]+1+nvar, nparam+1);
410 P = Constraints2Polyhedron(M, options->MaxRays);
411 Matrix_Free(M);
413 factors = 1;
414 constraints = C ? C->NbConstraints : 0;
415 constraints += ctx->NbConstraints;
416 for (Polyhedron *G = F->next; G; G = G->next) {
417 constraints += G->NbConstraints;
418 ++factors;
421 unsigned total_var = nvar-(F->Dimension-nparam);
422 unsigned skip = 0;
423 unsigned c = 0;
424 M = Matrix_Alloc(constraints, 1+total_var+nparam+1);
425 for (Polyhedron *G = F->next; G; G = G->next) {
426 unsigned this_var = G->Dimension - nparam;
427 for (int i = 0; i < G->NbConstraints; ++i) {
428 value_assign(M->p[c+i][0], G->Constraint[i][0]);
429 Vector_Copy(G->Constraint[i]+1, M->p[c+i]+1+skip, this_var);
430 Vector_Copy(G->Constraint[i]+1+this_var, M->p[c+i]+1+total_var,
431 nparam+1);
433 c += G->NbConstraints;
434 skip += this_var;
436 assert(skip == total_var);
437 if (C) {
438 for (int i = 0; i < C->NbConstraints; ++i) {
439 value_assign(M->p[c+i][0], C->Constraint[i][0]);
440 Vector_Copy(C->Constraint[i]+1, M->p[c+i]+1+total_var,
441 nparam+1);
443 c += C->NbConstraints;
445 for (int i = 0; i < ctx->NbConstraints; ++i) {
446 value_assign(M->p[c+i][0], ctx->Constraint[i][0]);
447 Vector_Copy(ctx->Constraint[i]+1, M->p[c+i]+1+total_var, nparam+1);
449 PC = Constraints2Polyhedron(M, options->MaxRays);
450 Matrix_Free(M);
452 exvector newvars = constructVariableVector(nvar, "t");
453 matrix subs(1, nvar);
454 for (int i = 0; i < nvar; ++i)
455 for (int j = 0; j < nvar; ++j)
456 subs(0,i) += value2numeric(T->p[i][j]) * newvars[j];
458 ex newpoly = replaceVariablesInPolynomial(poly, vars, subs);
460 vector<int> dims(factors);
461 for (int i = 0; F; ++i, F = F->next)
462 dims[i] = F->Dimension-nparam;
464 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, newpoly, PC,
465 params, newvars, options);
467 Polyhedron_Free(P);
468 Polyhedron_Free(PC);
470 return pl_all;
473 static piecewise_lst *bernstein_coefficients_polyhedron(piecewise_lst *pl_all,
474 Polyhedron *P, const ex& poly,
475 Polyhedron *ctx,
476 const exvector& params, const exvector& floorvar,
477 barvinok_options *options)
479 if (Polyhedron_is_unbounded(P, ctx->Dimension, options->MaxRays)) {
480 fprintf(stderr, "warning: unbounded domain skipped\n");
481 Polyhedron_Print(stderr, P_VALUE_FMT, P);
482 return pl_all;
485 if (options->bernstein_recurse & BV_BERNSTEIN_FACTORS) {
486 Matrix *T = NULL;
487 Polyhedron *F = Polyhedron_Factor(P, ctx->Dimension, &T, options->MaxRays);
488 if (F) {
489 pl_all = bernstein_coefficients_product(pl_all, F, T, poly, ctx, params,
490 floorvar, options);
491 Domain_Free(F);
492 Matrix_Free(T);
493 return pl_all;
496 if (floorvar.size() > 1 &&
497 options->bernstein_recurse & BV_BERNSTEIN_INTERVALS)
498 return bernstein_coefficients_full_recurse(pl_all, P, poly, ctx,
499 params, floorvar, options);
501 unsigned PP_MaxRays = options->MaxRays;
502 if (PP_MaxRays & POL_NO_DUAL)
503 PP_MaxRays = 0;
505 Param_Polyhedron *PP = Polyhedron2Param_Domain(P, ctx, PP_MaxRays);
506 assert(PP);
507 piecewise_lst *pl = new piecewise_lst(params, options->bernstein_optimize);
509 int nd = -1;
510 Polyhedron *TC = true_context(P, ctx, options->MaxRays);
511 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, PD, rVD)
512 matrix VM = domainVertices(PP, PD, params);
513 lst coeffs = bernsteinExpansion(VM, poly, floorvar, params);
514 pl->add_guarded_lst(rVD, coeffs);
515 END_FORALL_REDUCED_DOMAIN
516 Polyhedron_Free(TC);
518 Param_Polyhedron_Free(PP);
519 if (!pl_all)
520 pl_all = pl;
521 else {
522 pl_all->combine(*pl);
523 delete pl;
526 return pl_all;
529 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
530 Polyhedron *D, const ex& poly,
531 Polyhedron *ctx,
532 const exvector& params, const exvector& floorvar,
533 barvinok_options *options)
535 if (!D->next && emptyQ2(D))
536 return pl_all;
538 for (Polyhedron *P = D; P; P = P->next) {
539 /* This shouldn't happen */
540 if (emptyQ2(P))
541 continue;
542 Polyhedron *next = P->next;
543 P->next = NULL;
544 pl_all = bernstein_coefficients_polyhedron(pl_all, P, poly, ctx,
545 params, floorvar, options);
546 P->next = next;
548 return pl_all;
551 /* Compute the coefficients of the polynomial corresponding to each coset
552 * on its own domain. This allows us to cut the domain on multiples of
553 * the period.
554 * To perform the cutting for a coset "i mod n = c" we map the domain
555 * to the quotient space trough "i = i' n + c", simplify the constraints
556 * (implicitly) and then map back to the original space.
558 static piecewise_lst *bernstein_coefficients_periodic(piecewise_lst *pl_all,
559 Polyhedron *D, const evalue *e,
560 Polyhedron *ctx, const exvector& vars,
561 const exvector& params, Vector *periods,
562 barvinok_options *options)
564 assert(D->Dimension == periods->Size);
565 Matrix *T = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
566 Matrix *T2 = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
567 Vector *coset = Vector_Alloc(periods->Size);
568 exvector extravar;
569 vector<typed_evalue> expr;
570 exvector allvars = vars;
571 allvars.insert(allvars.end(), params.begin(), params.end());
573 value_set_si(T2->p[D->Dimension][D->Dimension], 1);
574 for (int i = 0; i < D->Dimension; ++i) {
575 value_assign(T->p[i][i], periods->p[i]);
576 value_lcm(T2->p[D->Dimension][D->Dimension],
577 T2->p[D->Dimension][D->Dimension], periods->p[i]);
579 value_set_si(T->p[D->Dimension][D->Dimension], 1);
580 for (int i = 0; i < D->Dimension; ++i)
581 value_division(T2->p[i][i], T2->p[D->Dimension][D->Dimension],
582 periods->p[i]);
583 for (;;) {
584 int i;
585 ex poly = evalue2ex_r(e, allvars, extravar, expr, coset);
586 assert(extravar.size() == 0);
587 assert(expr.size() == 0);
588 Polyhedron *E = DomainPreimage(D, T, options->MaxRays);
589 Polyhedron *F = DomainPreimage(E, T2, options->MaxRays);
590 Polyhedron_Free(E);
591 if (!emptyQ2(F))
592 pl_all = bernstein_coefficients(pl_all, F, poly, ctx, params,
593 vars, options);
594 Polyhedron_Free(F);
595 for (i = D->Dimension-1; i >= 0; --i) {
596 value_increment(coset->p[i], coset->p[i]);
597 value_increment(T->p[i][D->Dimension], T->p[i][D->Dimension]);
598 value_subtract(T2->p[i][D->Dimension], T2->p[i][D->Dimension],
599 T2->p[i][i]);
600 if (value_lt(coset->p[i], periods->p[i]))
601 break;
602 value_set_si(coset->p[i], 0);
603 value_set_si(T->p[i][D->Dimension], 0);
604 value_set_si(T2->p[i][D->Dimension], 0);
606 if (i < 0)
607 break;
609 Vector_Free(coset);
610 Matrix_Free(T);
611 Matrix_Free(T2);
612 return pl_all;
615 piecewise_lst *bernstein_coefficients_relation(piecewise_lst *pl_all,
616 Polyhedron *D, evalue *EP, Polyhedron *ctx,
617 const exvector& allvars, const exvector& vars,
618 const exvector& params, barvinok_options *options)
620 if (value_zero_p(EP->d) && EP->x.p->type == relation) {
621 Polyhedron *E = relation_domain(D, &EP->x.p->arr[0], options->MaxRays);
622 if (E) {
623 pl_all = bernstein_coefficients_relation(pl_all, E, &EP->x.p->arr[1],
624 ctx, allvars, vars, params,
625 options);
626 Domain_Free(E);
628 /* In principle, we could cut off the edges of this domain too */
629 if (EP->x.p->size > 2)
630 pl_all = bernstein_coefficients_relation(pl_all, D, &EP->x.p->arr[2],
631 ctx, allvars, vars, params,
632 options);
633 return pl_all;
636 Matrix *M;
637 exvector floorvar;
638 Vector *periods;
639 ex poly = evalue2ex(EP, allvars, floorvar, &M, &periods);
640 floorvar.insert(floorvar.end(), vars.begin(), vars.end());
641 Polyhedron *E = D;
642 if (M) {
643 Polyhedron *AE = align_context(D, M->NbColumns-2, options->MaxRays);
644 E = DomainAddConstraints(AE, M, options->MaxRays);
645 Matrix_Free(M);
646 Domain_Free(AE);
648 if (is_exactly_a<fail>(poly)) {
649 delete pl_all;
650 return NULL;
652 if (periods)
653 pl_all = bernstein_coefficients_periodic(pl_all, E, EP, ctx, vars,
654 params, periods, options);
655 else
656 pl_all = bernstein_coefficients(pl_all, E, poly, ctx, params,
657 floorvar, options);
658 if (periods)
659 Vector_Free(periods);
660 if (D != E)
661 Domain_Free(E);
663 return pl_all;
666 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
667 Polyhedron *ctx, const exvector& params,
668 barvinok_options *options)
670 unsigned nparam = ctx->Dimension;
671 if (EVALUE_IS_ZERO(*e))
672 return pl_all;
673 assert(value_zero_p(e->d));
674 assert(e->x.p->type == partition);
675 assert(e->x.p->size >= 2);
676 unsigned nvars = EVALUE_DOMAIN(e->x.p->arr[0])->Dimension - nparam;
678 exvector vars = constructVariableVector(nvars, "v");
679 exvector allvars = vars;
680 allvars.insert(allvars.end(), params.begin(), params.end());
682 for (int i = 0; i < e->x.p->size/2; ++i) {
683 pl_all = bernstein_coefficients_relation(pl_all,
684 EVALUE_DOMAIN(e->x.p->arr[2*i]), &e->x.p->arr[2*i+1],
685 ctx, allvars, vars, params, options);
687 return pl_all;