lexmin.cc: use barvinok_options
[barvinok.git] / barvinok_enumerate_e.cc
blob99c2423e5464b893d94341978008e1afc9fe3502
1 #include <unistd.h>
2 #include <stdlib.h>
3 #include <polylib/polylibgmp.h>
4 #include <barvinok/util.h>
5 #include <barvinok/barvinok.h>
6 #include "config.h"
7 #include "scarf.h"
8 #ifdef HAVE_OMEGA
9 #include "omega/convert.h"
10 #endif
12 /* The input of this example program is a polytope in combined
13 * data and parameter space followed by two lines indicating
14 * the number of existential variables and parameters respectively.
15 * The first lines starts with "E ", followed by a number.
16 * The second lines starts with "P ", followed by a number.
17 * These two lines are (optionally) followed by the names of the parameters.
18 * The polytope is in PolyLib notation.
21 #ifdef HAVE_GROWING_CHERNIKOVA
22 #define MAXRAYS POL_NO_DUAL
23 #else
24 #define MAXRAYS 600
25 #endif
27 #ifndef HAVE_GETOPT_H
28 #define getopt_long(a,b,c,d,e) getopt(a,b,c)
29 #else
30 #include <getopt.h>
31 struct option options[] = {
32 #ifdef HAVE_OMEGA
33 { "omega", no_argument, 0, 'o' },
34 #endif
35 #ifdef HAVE_PIPLIB
36 { "pip", no_argument, 0, 'p' },
37 #endif
38 { "series", no_argument, 0, 's' },
39 { "scarf", no_argument, 0, 'S' },
40 { "convert", no_argument, 0, 'c' },
41 { "floor", no_argument, 0, 'f' },
42 { "range-reduction", no_argument, 0, 'R' },
43 { "verify", no_argument, 0, 'T' },
44 { "print-all", no_argument, 0, 'A' },
45 { "min", required_argument, 0, 'm' },
46 { "max", required_argument, 0, 'M' },
47 { "range", required_argument, 0, 'r' },
48 { "version", no_argument, 0, 'V' },
49 { 0, 0, 0, 0 }
51 #endif
53 #ifdef HAVE_PIPLIB
54 #define PIPLIB_OPT "p"
55 #else
56 #define PIPLIB_OPT ""
57 #endif
59 #ifdef HAVE_OMEGA
60 #define OMEGA_OPT "o"
62 Polyhedron *Omega_simplify(Polyhedron *P,
63 unsigned exist, unsigned nparam, char **parms)
65 varvector varv;
66 varvector paramv;
67 Relation r = Polyhedron2relation(P, exist, nparam, parms);
68 Polyhedron_Free(P);
69 return relation2Domain(r, varv, paramv);
71 #else
72 #define OMEGA_OPT ""
73 Polyhedron *Omega_simplify(Polyhedron *P,
74 unsigned exist, unsigned nparam, char **parms)
76 return P;
78 #endif
80 /* define this to continue the test after first error found */
81 /* #define DONT_BREAK_ON_ERROR */
83 /* RANGE : normal range for evalutations (-RANGE -> RANGE) */
84 #define RANGE 50
86 /* SRANGE : small range for evalutations */
87 #define SRANGE 15
89 /* if dimension >= BIDDIM, use SRANGE */
90 #define BIGDIM 5
92 /* VSRANGE : very small range for evalutations */
93 #define VSRANGE 5
95 /* if dimension >= VBIDDIM, use VSRANGE */
96 #define VBIGDIM 8
98 static Value min_val, max_val;
100 static char **params;
102 static int st;
104 static int check_poly(Polyhedron *S, Polyhedron *C, evalue *EP,
105 int exist, int nparam, int pos, Value *z, int print_all);
106 static void verify_results(Polyhedron *P, evalue *EP, int exist, int nparam,
107 int m, int M, int print_all);
109 int main(int argc, char **argv)
111 Polyhedron *A;
112 Matrix *MA;
113 char **param_name;
114 int exist, nparam, nvar;
115 char s[128];
116 evalue *EP;
117 int c, ind = 0;
118 int range = 0;
119 int convert = 0;
120 int omega = 0;
121 int pip = 0;
122 int scarf = 0;
123 int series = 0;
124 int floor = 0;
125 int verify = 0;
126 int print_all = 0;
127 int m = INT_MAX, M = INT_MIN, r;
128 int print_solution = 1;
130 while ((c = getopt_long(argc, argv,
131 OMEGA_OPT PIPLIB_OPT "sSfcRTAm:M:r:V", options, &ind)) != -1) {
132 switch (c) {
133 case 's':
134 series = 1;
135 break;
136 case 'S':
137 scarf = 1;
138 break;
139 case 'o':
140 omega = 1;
141 break;
142 case 'p':
143 pip = 1;
144 break;
145 case 'f':
146 floor = 1;
147 break;
148 case 'c':
149 convert = 1;
150 break;
151 case 'R':
152 range = 1;
153 break;
154 case 'T':
155 verify = 1;
156 break;
157 case 'A':
158 print_all = 1;
159 break;
160 case 'm':
161 m = atoi(optarg);
162 verify = 1;
163 break;
164 case 'M':
165 M = atoi(optarg);
166 verify = 1;
167 break;
168 case 'r':
169 M = atoi(optarg);
170 m = -M;
171 verify = 1;
172 break;
173 case 'V':
174 printf(barvinok_version());
175 exit(0);
176 break;
180 if (series && !scarf) {
181 fprintf(stderr,
182 "--series currently only available if --scarf is specified\n");
183 exit(1);
186 MA = Matrix_Read();
187 A = Constraints2Polyhedron(MA, MAXRAYS);
188 Matrix_Free(MA);
190 fgets(s, 128, stdin);
191 while ((*s=='#') || (sscanf(s, "E %d", &exist)<1))
192 fgets(s, 128, stdin);
194 fgets(s, 128, stdin);
195 while ((*s=='#') || (sscanf(s, "P %d", &nparam)<1))
196 fgets(s, 128, stdin);
198 /******* Read the options: initialize Min and Max ********/
199 if (A->Dimension >= VBIGDIM)
200 r = VSRANGE;
201 else if (A->Dimension >= BIGDIM)
202 r = SRANGE;
203 else
204 r = RANGE;
205 if (M == INT_MIN)
206 M = r;
207 if (m == INT_MAX)
208 m = -r;
210 if (verify && m > M) {
211 fprintf(stderr,"Nothing to do: min > max !\n");
212 return(0);
214 if (verify)
215 print_solution = 0;
217 if (print_solution) {
218 Polyhedron_Print(stdout, P_VALUE_FMT, A);
219 printf("exist: %d, nparam: %d\n", exist, nparam);
221 param_name = Read_ParamNames(stdin, nparam);
222 nvar = A->Dimension - exist - nparam;
223 if (omega) {
224 A = Omega_simplify(A, exist, nparam, param_name);
225 assert(!A->next);
226 exist = A->Dimension - nvar - nparam;
228 if (series) {
229 gen_fun *gf;
230 assert(scarf);
231 gf = barvinok_enumerate_scarf_series(A, exist, nparam, MAXRAYS);
232 if (print_solution) {
233 gf->print(std::cout, nparam, param_name);
234 puts("");
236 delete gf;
237 } else {
238 if (scarf) {
239 EP = barvinok_enumerate_scarf(A, exist, nparam, MAXRAYS);
240 } else if (pip && exist > 0)
241 EP = barvinok_enumerate_pip(A, exist, nparam, MAXRAYS);
242 else
243 EP = barvinok_enumerate_e(A, exist, nparam, MAXRAYS);
244 reduce_evalue(EP);
245 evalue_combine(EP);
246 if (range)
247 evalue_range_reduction(EP);
248 if (print_solution)
249 print_evalue(stdout, EP, param_name);
250 if (floor) {
251 fprintf(stderr, "WARNING: floor conversion not supported\n");
252 evalue_frac2floor(EP);
253 if (print_solution)
254 print_evalue(stdout, EP, param_name);
255 } else if (convert) {
256 evalue_mod2table(EP, nparam);
257 if (print_solution)
258 print_evalue(stdout, EP, param_name);
260 if (verify)
261 verify_results(A, EP, exist, nparam, m, M, print_all);
262 free_evalue_refs(EP);
263 free(EP);
265 Free_ParamNames(param_name, nparam);
266 Polyhedron_Free(A);
267 return 0;
270 void verify_results(Polyhedron *P, evalue *EP, int exist, int nparam, int m, int M,
271 int print_all)
273 int i;
274 int res;
275 Value *p, tmp;
276 Polyhedron *S;
277 Polyhedron *C = Polyhedron_Project(P, nparam);
278 value_init(min_val);
279 value_init(max_val);
280 value_set_si(min_val,m);
281 value_set_si(max_val,M);
282 value_init(tmp);
284 p = (Value *)malloc(sizeof(Value) * (P->Dimension+2));
285 for(i=0;i<=P->Dimension;i++) {
286 value_init(p[i]);
287 value_set_si(p[i],0);
289 value_init(p[i]);
290 value_set_si(p[i],1);
292 /* S = scanning list of polyhedra */
293 S = Polyhedron_Scan(P, C, MAXRAYS & POL_NO_DUAL ? 0 : MAXRAYS);
295 if (!print_all) {
296 if (C->Dimension > 0) {
297 value_subtract(tmp,max_val,min_val);
298 if (VALUE_TO_INT(tmp) > 80)
299 st = 1+(VALUE_TO_INT(tmp))/80;
300 else
301 st=1;
302 for(i=VALUE_TO_INT(min_val);i<=VALUE_TO_INT(max_val);i+=st)
303 printf(".");
304 printf( "\r" );
305 fflush(stdout);
309 /******* CHECK NOW *********/
310 res = 0;
311 if(S && !check_poly(S, C, EP, exist, nparam, 0, p, print_all)) {
312 fprintf(stderr,"Check failed !\n");
313 res = -1;
316 if (!print_all)
317 printf( "\n" );
319 for(i=0;i<=(P->Dimension+1);i++)
320 value_clear(p[i]);
321 free(p);
322 value_clear(tmp);
323 Domain_Free(S);
324 Polyhedron_Free(C);
327 /****************************************************/
328 /* function check_poly : */
329 /* scans the parameter space from min to max (all */
330 /* directions). Computes the number of points in */
331 /* the polytope using both methods, and compare them*/
332 /* returns 1 on success */
333 /****************************************************/
335 int check_poly(Polyhedron *S, Polyhedron *C, evalue *EP,
336 int exist, int nparam, int pos, Value *z, int print_all)
338 int k;
339 Value c,tmp;
341 value_init(c); value_init(tmp);
343 if(pos == nparam) {
345 /* Computes the ehrhart polynomial */
346 value_set_double(c, compute_evalue(EP,&z[S->Dimension-nparam+1])+.25);
347 /* if c=0 we may be out of context. */
348 /* scanning is useless in this case*/
349 if(!in_domain(C,&z[S->Dimension-nparam+1])) {
351 /* ok */ ;
353 else {
355 if (print_all) {
356 printf("EP( ");
357 value_print(stdout,VALUE_FMT,z[S->Dimension-nparam+1]);
358 for(k=S->Dimension-nparam+2;k<=S->Dimension;++k) {
359 printf(", ");
360 value_print(stdout,VALUE_FMT,z[k]);
362 printf(" ) = ");
363 value_print(stdout,VALUE_FMT,c);
364 printf(" ");
367 /* Manually count the number of points */
368 count_points_e(1, S, exist, nparam, z, &tmp);
369 if (print_all) {
370 printf(", count = ");
371 value_print(stdout, P_VALUE_FMT, tmp);
372 printf(". ");
375 if(value_ne(tmp,c)) {
376 printf("\n");
377 fflush(stdout);
378 fprintf(stderr,"Error !\n");
379 fprintf(stderr,"EP( ");
380 value_print(stderr,VALUE_FMT,z[S->Dimension-nparam+1]);
381 for(k=S->Dimension-nparam+2;k<=S->Dimension;++k) {
382 fprintf(stderr,", ");
383 value_print(stderr,VALUE_FMT,z[k]);
385 fprintf(stderr," ) should be ");
386 value_print(stderr,VALUE_FMT,tmp);
387 fprintf(stderr,", while EP eval gives ");
388 value_print(stderr,VALUE_FMT,c);
389 fprintf(stderr,".\n");
390 print_evalue(stderr, EP, params);
391 #ifndef DONT_BREAK_ON_ERROR
392 value_clear(c); value_clear(tmp);
393 return(0);
394 #endif
396 else if (print_all)
397 printf("OK.\n");
400 else
401 for(value_assign(tmp,min_val); value_le(tmp,max_val); value_increment(tmp,tmp)) {
402 if (!print_all) {
403 k = VALUE_TO_INT(tmp);
404 if(!pos && !(k%st)) {
405 printf("o");
406 fflush(stdout);
410 value_assign(z[pos+S->Dimension-nparam+1],tmp);
411 if(!check_poly(S, C, EP, exist, nparam, pos+1, z, print_all)) {
412 value_clear(c); value_clear(tmp);
413 return(0);
416 value_clear(c); value_clear(tmp);
417 return(1);
418 } /* check_poly */