iscc: add cross product operations
[barvinok.git] / semigroup_holes.cc
blob49944ccb58985b99b4652dc07554d392a806c328
1 #include <assert.h>
2 #include <iostream>
3 #include <barvinok/barvinok.h>
4 #include <barvinok/genfun.h>
5 #include "argp.h"
6 #include "progname.h"
8 /* This program computes the generating function of the holes in a semigroup.
9 * The input is a matrix with the generators m_i of the semigroup as columns.
10 * The output is the generating function for the set
12 * (L \cap \cone { m_i }_i) \setminus S,
14 * with
15 * S = { \sum_i \lambda_i m_i | \lambda_i \in \Z_+ }
16 * and
17 * L = { \sum_i \lambda_i m_i | \lambda_i \in \Z }
20 using std::cout;
21 using std::cerr;
22 using std::endl;
24 /* Compute cone { m_i }_i, with m_i the columsn of generators.
26 static Polyhedron *compute_cone(Matrix *generators, barvinok_options *options)
28 Matrix *M;
29 Polyhedron *cone;
31 M = Matrix_Alloc(generators->NbColumns + 1, 1 + generators->NbRows + 1);
32 assert(M);
33 value_set_si(M->p[0][0], 1);
34 value_set_si(M->p[0][M->NbColumns - 1], 1);
35 for (int i = 0; i < generators->NbColumns; ++i) {
36 value_set_si(M->p[1 + i][0], 1);
37 for (int j = 0; j < generators->NbRows; ++j)
38 value_assign(M->p[1 + i][1 + j], generators->p[j][i]);
40 cone = Rays2Polyhedron(M, options->MaxRays);
41 Matrix_Free(M);
42 return cone;
45 /* Compute the generating function of L \cap \cone { m_i }_i, with
46 * m_i the columns of generators and
48 * L = { \sum_i \lambda_i m_i | \lambda_i \in \Z }
50 * We first compute the cone C = \cone { m_i }_i = { x | A x + b >= 0 }.
51 * and we compute a minimal set of generators of the lattice by
52 * computing the Hermite normal form H of generators.
53 * Finally, we compute the generating function for the set
55 * { x | \exists y : A x + b >= 0, x = H y }
57 * Since the number of columns in H is less that or equal to the number
58 * of rows, no projection needs to be performed during the computation
59 * of this generating function.
61 static gen_fun *compute_lattice_gf(Matrix *generators,
62 barvinok_options *options)
64 Matrix *H;
65 Matrix *M;
66 Polyhedron *cone, *L;
67 int col, row;
68 gen_fun *gf;
70 cone = compute_cone(generators, options);
72 left_hermite(generators, &H, NULL, NULL);
74 for (row = col = 0; col < H->NbColumns; ++col) {
75 while (row < H->NbRows && value_zero_p(H->p[row][col]))
76 ++row;
77 if (row >= H->NbRows)
78 break;
81 M = Matrix_Alloc(cone->NbConstraints + cone->Dimension,
82 1 + col + cone->Dimension + 1);
83 assert(M);
84 for (int i = 0; i < cone->NbConstraints; ++i) {
85 value_assign(M->p[i][0], cone->Constraint[i][0]);
86 for (int j = 0; j < cone->Dimension + 1; ++j)
87 value_assign(M->p[i][1 + col + j],
88 cone->Constraint[i][1 + j]);
90 for (int i = 0; i < cone->Dimension; ++i) {
91 int row = cone->NbConstraints + i;
92 value_set_si(M->p[row][1 + col + i], -1);
93 for (int j = 0; j < col; ++j)
94 value_assign(M->p[row][1 + j], H->p[i][j]);
96 Matrix_Free(H);
97 Polyhedron_Free(cone);
98 L = Constraints2Polyhedron(M, options->MaxRays);
99 Matrix_Free(M);
100 gf = barvinok_enumerate_e_series(L, col, generators->NbRows, options);
101 Polyhedron_Free(L);
102 return gf;
105 /* Compute the generating function of
107 * S = { x | \exists \lambda_i: x = \sum_i \lambda_i m_i, \lambda_i >= 0 }
109 * with m_i the columns of generators.
111 static gen_fun *compute_semigroup_gf(Matrix *generators,
112 barvinok_options *options)
114 Matrix *M;
115 Polyhedron *S;
116 gen_fun *gf;
118 M = Matrix_Alloc(generators->NbRows + generators->NbColumns,
119 1 + generators->NbColumns + generators->NbRows + 1);
120 assert(M);
121 for (int i = 0; i < generators->NbRows; ++i) {
122 value_set_si(M->p[i][1 + generators->NbColumns + i], -1);
123 for (int j = 0; j < generators->NbColumns; ++j)
124 value_assign(M->p[i][1 + j], generators->p[i][j]);
126 for (int i = 0; i < generators->NbColumns; ++i) {
127 int row = generators->NbRows + i;
128 value_set_si(M->p[row][0], 1);
129 value_set_si(M->p[row][1 + i], 1);
131 S = Constraints2Polyhedron(M, options->MaxRays);
132 Matrix_Free(M);
133 gf = barvinok_enumerate_e_series(S, generators->NbColumns,
134 generators->NbRows, options);
135 Polyhedron_Free(S);
136 return gf;
139 /* Compute the generating function of
141 * (L \cap \cone { m_i }_i) \setminus S,
143 * Since S \subset (L \cap \cone { m_i }_i), this is simply computed as
145 * f_{(L \cap \cone { m_i }_i)} - f_S
147 static gen_fun *compute_holes_gf(Matrix *generators, barvinok_options *options)
149 gen_fun *lattice;
150 gen_fun *semigroup;
151 gen_fun *holes;
152 QQ mone(-1, 1);
154 lattice = compute_lattice_gf(generators, options);
156 semigroup = compute_semigroup_gf(generators, options);
158 holes = lattice;
159 holes->add(mone, semigroup, options);
160 delete semigroup;
162 return holes;
165 int main(int argc, char **argv)
167 Matrix *generators;
168 gen_fun *holes;
169 barvinok_options *options = barvinok_options_new_with_defaults();
171 set_program_name(argv[0]);
172 argp_parse(&barvinok_argp, argc, argv, 0, 0, options);
174 generators = Matrix_Read();
175 assert(generators);
176 holes = compute_holes_gf(generators, options);
177 Matrix_Free(generators);
179 holes->print(cout, 0, NULL);
180 cout << endl;
182 barvinok_options_free(options);
183 return 0;