6 #define partition STL_PARTITION
10 #include <NTL/vec_ZZ.h>
11 #include <NTL/mat_ZZ.h>
12 #include <isl_set_polylib.h>
13 #include <barvinok/barvinok.h>
14 #include <barvinok/evalue.h>
15 #include <barvinok/options.h>
16 #include <barvinok/util.h>
17 #include "conversion.h"
18 #include "decomposer.h"
19 #include "lattice_point.h"
20 #include "reduce_domain.h"
23 #include "evalue_util.h"
24 #include "remove_equalities.h"
28 #include "param_util.h"
30 #undef CS /* for Solaris 10 */
41 #define ALLOC(type) (type*)malloc(sizeof(type))
42 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
44 static int type_offset(enode
*p
)
46 return p
->type
== fractional
? 1 :
47 p
->type
== flooring
? 1 : 0;
50 void compute_evalue(evalue
*e
, Value
*val
, Value
*res
)
52 double d
= compute_evalue(e
, val
);
57 value_set_double(*res
, d
);
60 struct indicator_term
{
62 int pos
; /* number of rational vertex */
63 int n
; /* number of cone associated to given rational vertex */
67 indicator_term(unsigned dim
, int pos
) {
69 vertex
= new evalue
* [dim
];
74 indicator_term(unsigned dim
, int pos
, int n
) {
75 den
.SetDims(dim
, dim
);
76 vertex
= new evalue
* [dim
];
80 indicator_term(const indicator_term
& src
) {
85 unsigned dim
= den
.NumCols();
86 vertex
= new evalue
* [dim
];
87 for (int i
= 0; i
< dim
; ++i
) {
88 vertex
[i
] = ALLOC(evalue
);
89 value_init(vertex
[i
]->d
);
90 evalue_copy(vertex
[i
], src
.vertex
[i
]);
93 void swap(indicator_term
*other
) {
95 tmp
= sign
; sign
= other
->sign
; other
->sign
= tmp
;
96 tmp
= pos
; pos
= other
->pos
; other
->pos
= tmp
;
97 tmp
= n
; n
= other
->n
; other
->n
= tmp
;
98 mat_ZZ tmp_den
= den
; den
= other
->den
; other
->den
= tmp_den
;
99 unsigned dim
= den
.NumCols();
100 for (int i
= 0; i
< dim
; ++i
) {
101 evalue
*tmp
= vertex
[i
];
102 vertex
[i
] = other
->vertex
[i
];
103 other
->vertex
[i
] = tmp
;
107 unsigned dim
= den
.NumCols();
108 for (int i
= 0; i
< dim
; ++i
)
109 evalue_free(vertex
[i
]);
112 void print(ostream
& os
, char **p
) const;
113 void substitute(Matrix
*T
);
115 void substitute(evalue
*fract
, evalue
*val
);
116 void substitute(int pos
, evalue
*val
);
117 void reduce_in_domain(Polyhedron
*D
);
118 bool is_opposite(const indicator_term
*neg
) const;
119 vec_ZZ
eval(Value
*val
) const {
121 unsigned dim
= den
.NumCols();
125 for (int i
= 0; i
< dim
; ++i
) {
126 compute_evalue(vertex
[i
], val
, &tmp
);
134 static int evalue_rational_cmp(const evalue
*e1
, const evalue
*e2
)
142 assert(value_notzero_p(e1
->d
));
143 assert(value_notzero_p(e2
->d
));
144 value_multiply(m
, e1
->x
.n
, e2
->d
);
145 value_multiply(m2
, e2
->x
.n
, e1
->d
);
148 else if (value_gt(m
, m2
))
158 static int evalue_cmp(const evalue
*e1
, const evalue
*e2
)
160 if (value_notzero_p(e1
->d
)) {
161 if (value_zero_p(e2
->d
))
163 return evalue_rational_cmp(e1
, e2
);
165 if (value_notzero_p(e2
->d
))
167 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
168 return e1
->x
.p
->type
- e2
->x
.p
->type
;
169 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
170 return e1
->x
.p
->size
- e2
->x
.p
->size
;
171 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
172 return e1
->x
.p
->pos
- e2
->x
.p
->pos
;
173 assert(e1
->x
.p
->type
== polynomial
||
174 e1
->x
.p
->type
== fractional
||
175 e1
->x
.p
->type
== flooring
);
176 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
) {
177 int s
= evalue_cmp(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]);
184 void evalue_length(evalue
*e
, int len
[2])
189 while (value_zero_p(e
->d
)) {
190 assert(e
->x
.p
->type
== polynomial
||
191 e
->x
.p
->type
== fractional
||
192 e
->x
.p
->type
== flooring
);
193 if (e
->x
.p
->type
== polynomial
)
197 int offset
= type_offset(e
->x
.p
);
198 assert(e
->x
.p
->size
== offset
+2);
199 e
= &e
->x
.p
->arr
[offset
];
203 static bool it_smaller(const indicator_term
* it1
, const indicator_term
* it2
)
207 int len1
[2], len2
[2];
208 unsigned dim
= it1
->den
.NumCols();
209 for (int i
= 0; i
< dim
; ++i
) {
210 evalue_length(it1
->vertex
[i
], len1
);
211 evalue_length(it2
->vertex
[i
], len2
);
212 if (len1
[0] != len2
[0])
213 return len1
[0] < len2
[0];
214 if (len1
[1] != len2
[1])
215 return len1
[1] < len2
[1];
217 if (it1
->pos
!= it2
->pos
)
218 return it1
->pos
< it2
->pos
;
219 if (it1
->n
!= it2
->n
)
220 return it1
->n
< it2
->n
;
221 int s
= lex_cmp(it1
->den
, it2
->den
);
224 for (int i
= 0; i
< dim
; ++i
) {
225 s
= evalue_cmp(it1
->vertex
[i
], it2
->vertex
[i
]);
229 assert(it1
->sign
!= 0);
230 assert(it2
->sign
!= 0);
231 if (it1
->sign
!= it2
->sign
)
232 return it1
->sign
> 0;
237 static const int requires_resort
;
238 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
239 return it_smaller(it1
, it2
);
242 const int smaller_it::requires_resort
= 1;
244 struct smaller_it_p
{
245 static const int requires_resort
;
246 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
250 const int smaller_it_p::requires_resort
= 0;
252 /* Returns true if this and neg are opposite using the knowledge
253 * that they have the same numerator.
254 * In particular, we check that the signs are different and that
255 * the denominator is the same.
257 bool indicator_term::is_opposite(const indicator_term
*neg
) const
259 if (sign
+ neg
->sign
!= 0)
266 void indicator_term::reduce_in_domain(Polyhedron
*D
)
268 for (int k
= 0; k
< den
.NumCols(); ++k
) {
269 reduce_evalue_in_domain(vertex
[k
], D
);
270 if (evalue_range_reduction_in_domain(vertex
[k
], D
))
271 reduce_evalue(vertex
[k
]);
275 void indicator_term::print(ostream
& os
, char **p
) const
277 unsigned dim
= den
.NumCols();
278 unsigned factors
= den
.NumRows();
286 for (int i
= 0; i
< dim
; ++i
) {
289 evalue_print(os
, vertex
[i
], p
);
292 for (int i
= 0; i
< factors
; ++i
) {
293 os
<< " + t" << i
<< "*[";
294 for (int j
= 0; j
< dim
; ++j
) {
301 os
<< " ((" << pos
<< ", " << n
<< ", " << (void*)this << "))";
304 /* Perform the substitution specified by T on the variables.
305 * T has dimension (newdim+nparam+1) x (olddim + nparam + 1).
306 * The substitution is performed as in gen_fun::substitute
308 void indicator_term::substitute(Matrix
*T
)
310 unsigned dim
= den
.NumCols();
311 unsigned nparam
= T
->NbColumns
- dim
- 1;
312 unsigned newdim
= T
->NbRows
- nparam
- 1;
315 matrix2zz(T
, trans
, newdim
, dim
);
316 trans
= transpose(trans
);
318 newvertex
= new evalue
* [newdim
];
321 v
.SetLength(nparam
+1);
324 value_init(factor
.d
);
325 value_set_si(factor
.d
, 1);
326 value_init(factor
.x
.n
);
327 for (int i
= 0; i
< newdim
; ++i
) {
328 values2zz(T
->p
[i
]+dim
, v
, nparam
+1);
329 newvertex
[i
] = multi_monom(v
);
331 for (int j
= 0; j
< dim
; ++j
) {
332 if (value_zero_p(T
->p
[i
][j
]))
336 evalue_copy(&term
, vertex
[j
]);
337 value_assign(factor
.x
.n
, T
->p
[i
][j
]);
338 emul(&factor
, &term
);
339 eadd(&term
, newvertex
[i
]);
340 free_evalue_refs(&term
);
343 free_evalue_refs(&factor
);
344 for (int i
= 0; i
< dim
; ++i
)
345 evalue_free(vertex
[i
]);
350 static void evalue_add_constant(evalue
*e
, ZZ v
)
355 /* go down to constant term */
356 while (value_zero_p(e
->d
))
357 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)];
360 value_multiply(tmp
, tmp
, e
->d
);
361 value_addto(e
->x
.n
, e
->x
.n
, tmp
);
366 /* Make all powers in denominator lexico-positive */
367 void indicator_term::normalize()
370 extra_vertex
.SetLength(den
.NumCols());
371 for (int r
= 0; r
< den
.NumRows(); ++r
) {
372 for (int k
= 0; k
< den
.NumCols(); ++k
) {
379 extra_vertex
+= den
[r
];
383 for (int k
= 0; k
< extra_vertex
.length(); ++k
)
384 if (extra_vertex
[k
] != 0)
385 evalue_add_constant(vertex
[k
], extra_vertex
[k
]);
388 static void substitute(evalue
*e
, evalue
*fract
, evalue
*val
)
392 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
393 if (t
->x
.p
->type
== fractional
&& eequal(&t
->x
.p
->arr
[0], fract
))
396 if (value_notzero_p(t
->d
))
399 free_evalue_refs(&t
->x
.p
->arr
[0]);
400 evalue
*term
= &t
->x
.p
->arr
[2];
407 free_evalue_refs(term
);
413 void indicator_term::substitute(evalue
*fract
, evalue
*val
)
415 unsigned dim
= den
.NumCols();
416 for (int i
= 0; i
< dim
; ++i
) {
417 ::substitute(vertex
[i
], fract
, val
);
421 static void substitute(evalue
*e
, int pos
, evalue
*val
)
425 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
426 if (t
->x
.p
->type
== polynomial
&& t
->x
.p
->pos
== pos
)
429 if (value_notzero_p(t
->d
))
432 evalue
*term
= &t
->x
.p
->arr
[1];
439 free_evalue_refs(term
);
445 void indicator_term::substitute(int pos
, evalue
*val
)
447 unsigned dim
= den
.NumCols();
448 for (int i
= 0; i
< dim
; ++i
) {
449 ::substitute(vertex
[i
], pos
, val
);
453 struct indicator_constructor
: public signed_cone_consumer
,
454 public vertex_decomposer
{
456 vector
<indicator_term
*> *terms
;
457 Matrix
*T
; /* Transformation to original space */
462 indicator_constructor(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
,
464 vertex_decomposer(PP
, *this), T(T
), nbV(PP
->nbV
) {
465 vertex
.SetLength(dim
);
466 terms
= new vector
<indicator_term
*>[PP
->nbV
];
468 ~indicator_constructor() {
469 for (int i
= 0; i
< nbV
; ++i
)
470 for (int j
= 0; j
< terms
[i
].size(); ++j
)
474 void substitute(Matrix
*T
);
476 void print(ostream
& os
, char **p
);
478 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
479 void decompose_at_vertex(Param_Vertices
*V
, int _i
,
480 barvinok_options
*options
) {
483 vertex_decomposer::decompose_at_vertex(V
, _i
, options
);
487 void indicator_constructor::handle(const signed_cone
& sc
, barvinok_options
*options
)
490 unsigned dim
= vertex
.length();
492 assert(sc
.rays
.NumRows() == dim
);
494 indicator_term
*term
= new indicator_term(dim
, pos
, n
++);
495 term
->sign
= sc
.sign
;
496 terms
[vert
].push_back(term
);
498 lattice_point(V
, sc
.rays
, vertex
, term
->vertex
, options
);
501 for (int r
= 0; r
< dim
; ++r
) {
502 for (int j
= 0; j
< dim
; ++j
) {
503 if (term
->den
[r
][j
] == 0)
505 if (term
->den
[r
][j
] > 0)
507 term
->sign
= -term
->sign
;
508 term
->den
[r
] = -term
->den
[r
];
509 vertex
+= term
->den
[r
];
514 for (int i
= 0; i
< dim
; ++i
) {
515 if (!term
->vertex
[i
]) {
516 term
->vertex
[i
] = ALLOC(evalue
);
517 value_init(term
->vertex
[i
]->d
);
518 value_init(term
->vertex
[i
]->x
.n
);
519 zz2value(vertex
[i
], term
->vertex
[i
]->x
.n
);
520 value_set_si(term
->vertex
[i
]->d
, 1);
525 evalue_add_constant(term
->vertex
[i
], vertex
[i
]);
533 lex_order_rows(term
->den
);
536 void indicator_constructor::print(ostream
& os
, char **p
)
538 for (int i
= 0; i
< PP
->nbV
; ++i
)
539 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
540 os
<< "i: " << i
<< ", j: " << j
<< endl
;
541 terms
[i
][j
]->print(os
, p
);
546 void indicator_constructor::normalize()
548 for (int i
= 0; i
< PP
->nbV
; ++i
)
549 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
551 vertex
.SetLength(terms
[i
][j
]->den
.NumCols());
552 for (int r
= 0; r
< terms
[i
][j
]->den
.NumRows(); ++r
) {
553 for (int k
= 0; k
< terms
[i
][j
]->den
.NumCols(); ++k
) {
554 if (terms
[i
][j
]->den
[r
][k
] == 0)
556 if (terms
[i
][j
]->den
[r
][k
] > 0)
558 terms
[i
][j
]->sign
= -terms
[i
][j
]->sign
;
559 terms
[i
][j
]->den
[r
] = -terms
[i
][j
]->den
[r
];
560 vertex
+= terms
[i
][j
]->den
[r
];
564 lex_order_rows(terms
[i
][j
]->den
);
565 for (int k
= 0; k
< vertex
.length(); ++k
)
567 evalue_add_constant(terms
[i
][j
]->vertex
[k
], vertex
[k
]);
571 struct order_cache_el
{
573 order_cache_el
copy() const {
575 for (int i
= 0; i
< e
.size(); ++i
) {
576 evalue
*c
= new evalue
;
578 evalue_copy(c
, e
[i
]);
584 for (int i
= 0; i
< e
.size(); ++i
) {
585 free_evalue_refs(e
[i
]);
592 evalue_set_si(&mone
, -1, 1);
593 for (int i
= 0; i
< e
.size(); ++i
)
595 free_evalue_refs(&mone
);
597 void print(ostream
& os
, char **p
);
600 void order_cache_el::print(ostream
& os
, char **p
)
603 for (int i
= 0; i
< e
.size(); ++i
) {
606 evalue_print(os
, e
[i
], p
);
612 vector
<order_cache_el
> lt
;
613 vector
<order_cache_el
> le
;
614 vector
<order_cache_el
> unknown
;
616 void clear_transients() {
617 for (int i
= 0; i
< le
.size(); ++i
)
619 for (int i
= 0; i
< unknown
.size(); ++i
)
626 for (int i
= 0; i
< lt
.size(); ++i
)
630 void add(order_cache_el
& cache_el
, order_sign sign
);
631 order_sign
check_lt(vector
<order_cache_el
>* list
,
632 const indicator_term
*a
, const indicator_term
*b
,
633 order_cache_el
& cache_el
);
634 order_sign
check_lt(const indicator_term
*a
, const indicator_term
*b
,
635 order_cache_el
& cache_el
);
636 order_sign
check_direct(const indicator_term
*a
, const indicator_term
*b
,
637 order_cache_el
& cache_el
);
638 order_sign
check(const indicator_term
*a
, const indicator_term
*b
,
639 order_cache_el
& cache_el
);
640 void copy(const order_cache
& cache
);
641 void print(ostream
& os
, char **p
);
644 void order_cache::copy(const order_cache
& cache
)
646 for (int i
= 0; i
< cache
.lt
.size(); ++i
) {
647 order_cache_el n
= cache
.lt
[i
].copy();
652 void order_cache::add(order_cache_el
& cache_el
, order_sign sign
)
654 if (sign
== order_lt
) {
655 lt
.push_back(cache_el
);
656 } else if (sign
== order_gt
) {
658 lt
.push_back(cache_el
);
659 } else if (sign
== order_le
) {
660 le
.push_back(cache_el
);
661 } else if (sign
== order_ge
) {
663 le
.push_back(cache_el
);
664 } else if (sign
== order_unknown
) {
665 unknown
.push_back(cache_el
);
667 assert(sign
== order_eq
);
674 static evalue
*ediff(const evalue
*a
, const evalue
*b
)
678 evalue_set_si(&mone
, -1, 1);
679 evalue
*diff
= new evalue
;
681 evalue_copy(diff
, b
);
685 free_evalue_refs(&mone
);
689 static bool evalue_first_difference(const evalue
*e1
, const evalue
*e2
,
690 const evalue
**d1
, const evalue
**d2
)
695 if (value_ne(e1
->d
, e2
->d
))
698 if (value_notzero_p(e1
->d
)) {
699 if (value_eq(e1
->x
.n
, e2
->x
.n
))
703 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
705 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
707 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
710 assert(e1
->x
.p
->type
== polynomial
||
711 e1
->x
.p
->type
== fractional
||
712 e1
->x
.p
->type
== flooring
);
713 int offset
= type_offset(e1
->x
.p
);
714 assert(e1
->x
.p
->size
== offset
+2);
715 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
)
716 if (i
!= type_offset(e1
->x
.p
) &&
717 !eequal(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]))
720 return evalue_first_difference(&e1
->x
.p
->arr
[offset
],
721 &e2
->x
.p
->arr
[offset
], d1
, d2
);
724 static order_sign
evalue_diff_constant_sign(const evalue
*e1
, const evalue
*e2
)
726 if (!evalue_first_difference(e1
, e2
, &e1
, &e2
))
728 if (value_zero_p(e1
->d
) || value_zero_p(e2
->d
))
729 return order_undefined
;
730 int s
= evalue_rational_cmp(e1
, e2
);
739 order_sign
order_cache::check_lt(vector
<order_cache_el
>* list
,
740 const indicator_term
*a
, const indicator_term
*b
,
741 order_cache_el
& cache_el
)
743 order_sign sign
= order_undefined
;
744 for (int i
= 0; i
< list
->size(); ++i
) {
746 for (j
= cache_el
.e
.size(); j
< (*list
)[i
].e
.size(); ++j
)
747 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
748 for (j
= 0; j
< (*list
)[i
].e
.size(); ++j
) {
749 order_sign diff_sign
;
750 diff_sign
= evalue_diff_constant_sign((*list
)[i
].e
[j
], cache_el
.e
[j
]);
751 if (diff_sign
== order_gt
) {
754 } else if (diff_sign
== order_lt
)
756 else if (diff_sign
== order_undefined
)
759 assert(diff_sign
== order_eq
);
761 if (j
== (*list
)[i
].e
.size())
762 sign
= list
== <
? order_lt
: order_le
;
763 if (sign
!= order_undefined
)
769 order_sign
order_cache::check_direct(const indicator_term
*a
,
770 const indicator_term
*b
,
771 order_cache_el
& cache_el
)
773 order_sign sign
= check_lt(<
, a
, b
, cache_el
);
774 if (sign
!= order_undefined
)
776 sign
= check_lt(&le
, a
, b
, cache_el
);
777 if (sign
!= order_undefined
)
780 for (int i
= 0; i
< unknown
.size(); ++i
) {
782 for (j
= cache_el
.e
.size(); j
< unknown
[i
].e
.size(); ++j
)
783 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
784 for (j
= 0; j
< unknown
[i
].e
.size(); ++j
) {
785 if (!eequal(unknown
[i
].e
[j
], cache_el
.e
[j
]))
788 if (j
== unknown
[i
].e
.size()) {
789 sign
= order_unknown
;
796 order_sign
order_cache::check(const indicator_term
*a
, const indicator_term
*b
,
797 order_cache_el
& cache_el
)
799 order_sign sign
= check_direct(a
, b
, cache_el
);
800 if (sign
!= order_undefined
)
802 int size
= cache_el
.e
.size();
804 sign
= check_direct(a
, b
, cache_el
);
806 assert(cache_el
.e
.size() == size
);
807 if (sign
== order_undefined
)
809 if (sign
== order_lt
)
811 else if (sign
== order_le
)
814 assert(sign
== order_unknown
);
820 struct partial_order
{
823 typedef std::set
<const indicator_term
*, smaller_it
> head_type
;
825 typedef map
<const indicator_term
*, int, smaller_it
> pred_type
;
827 typedef map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> order_type
;
836 partial_order(indicator
*ind
) : ind(ind
) {}
837 void copy(const partial_order
& order
,
838 map
< const indicator_term
*, indicator_term
* > old2new
);
840 order_type::iterator i
;
841 pred_type::iterator j
;
842 head_type::iterator k
;
844 if (head
.key_comp().requires_resort
) {
846 for (k
= head
.begin(); k
!= head
.end(); ++k
)
852 if (pred
.key_comp().requires_resort
) {
854 for (j
= pred
.begin(); j
!= pred
.end(); ++j
)
855 new_pred
[(*j
).first
] = (*j
).second
;
860 if (lt
.key_comp().requires_resort
) {
862 for (i
= lt
.begin(); i
!= lt
.end(); ++i
)
863 m
[(*i
).first
] = (*i
).second
;
868 if (le
.key_comp().requires_resort
) {
870 for (i
= le
.begin(); i
!= le
.end(); ++i
)
871 m
[(*i
).first
] = (*i
).second
;
876 if (eq
.key_comp().requires_resort
) {
878 for (i
= eq
.begin(); i
!= eq
.end(); ++i
)
879 m
[(*i
).first
] = (*i
).second
;
884 if (pending
.key_comp().requires_resort
) {
886 for (i
= pending
.begin(); i
!= pending
.end(); ++i
)
887 m
[(*i
).first
] = (*i
).second
;
893 order_sign
compare(const indicator_term
*a
, const indicator_term
*b
);
894 void set_equal(const indicator_term
*a
, const indicator_term
*b
);
895 void unset_le(const indicator_term
*a
, const indicator_term
*b
);
896 void dec_pred(const indicator_term
*it
) {
897 if (--pred
[it
] == 0) {
902 void inc_pred(const indicator_term
*it
) {
903 if (head
.find(it
) != head
.end())
908 bool compared(const indicator_term
* a
, const indicator_term
* b
);
909 void add(const indicator_term
* it
, std::set
<const indicator_term
*> *filter
);
910 void remove(const indicator_term
* it
);
912 void print(ostream
& os
, char **p
);
914 /* replace references to orig to references to replacement */
915 void replace(const indicator_term
* orig
, indicator_term
* replacement
);
916 void sanity_check() const;
919 /* We actually replace the contents of orig by that of replacement,
920 * but we have to be careful since replacing the content changes
921 * the order of orig in the maps.
923 void partial_order::replace(const indicator_term
* orig
, indicator_term
* replacement
)
925 head_type::iterator k
;
927 bool is_head
= k
!= head
.end();
932 orig_pred
= pred
[orig
];
935 vector
<const indicator_term
* > orig_lt
;
936 vector
<const indicator_term
* > orig_le
;
937 vector
<const indicator_term
* > orig_eq
;
938 vector
<const indicator_term
* > orig_pending
;
939 order_type::iterator i
;
940 bool in_lt
= ((i
= lt
.find(orig
)) != lt
.end());
942 orig_lt
= (*i
).second
;
945 bool in_le
= ((i
= le
.find(orig
)) != le
.end());
947 orig_le
= (*i
).second
;
950 bool in_eq
= ((i
= eq
.find(orig
)) != eq
.end());
952 orig_eq
= (*i
).second
;
955 bool in_pending
= ((i
= pending
.find(orig
)) != pending
.end());
957 orig_pending
= (*i
).second
;
960 indicator_term
*old
= const_cast<indicator_term
*>(orig
);
961 old
->swap(replacement
);
965 pred
[old
] = orig_pred
;
973 pending
[old
] = orig_pending
;
976 void partial_order::unset_le(const indicator_term
*a
, const indicator_term
*b
)
978 vector
<const indicator_term
*>::iterator i
;
979 i
= std::find(le
[a
].begin(), le
[a
].end(), b
);
981 if (le
[a
].size() == 0)
984 i
= std::find(pending
[a
].begin(), pending
[a
].end(), b
);
985 if (i
!= pending
[a
].end())
989 void partial_order::set_equal(const indicator_term
*a
, const indicator_term
*b
)
991 if (eq
[a
].size() == 0)
993 if (eq
[b
].size() == 0)
998 if (pred
.key_comp()(b
, a
)) {
999 const indicator_term
*c
= a
;
1004 const indicator_term
*base
= a
;
1006 order_type::iterator i
;
1008 for (int j
= 0; j
< eq
[b
].size(); ++j
) {
1009 eq
[base
].push_back(eq
[b
][j
]);
1010 eq
[eq
[b
][j
]][0] = base
;
1015 if (i
!= lt
.end()) {
1016 for (int j
= 0; j
< lt
[b
].size(); ++j
) {
1017 if (std::find(eq
[base
].begin(), eq
[base
].end(), lt
[b
][j
]) != eq
[base
].end())
1019 else if (std::find(lt
[base
].begin(), lt
[base
].end(), lt
[b
][j
])
1023 lt
[base
].push_back(lt
[b
][j
]);
1029 if (i
!= le
.end()) {
1030 for (int j
= 0; j
< le
[b
].size(); ++j
) {
1031 if (std::find(eq
[base
].begin(), eq
[base
].end(), le
[b
][j
]) != eq
[base
].end())
1033 else if (std::find(le
[base
].begin(), le
[base
].end(), le
[b
][j
])
1037 le
[base
].push_back(le
[b
][j
]);
1042 i
= pending
.find(base
);
1043 if (i
!= pending
.end()) {
1044 vector
<const indicator_term
* > old
= pending
[base
];
1045 pending
[base
].clear();
1046 for (int j
= 0; j
< old
.size(); ++j
) {
1047 if (std::find(eq
[base
].begin(), eq
[base
].end(), old
[j
]) == eq
[base
].end())
1048 pending
[base
].push_back(old
[j
]);
1052 i
= pending
.find(b
);
1053 if (i
!= pending
.end()) {
1054 for (int j
= 0; j
< pending
[b
].size(); ++j
) {
1055 if (std::find(eq
[base
].begin(), eq
[base
].end(), pending
[b
][j
]) == eq
[base
].end())
1056 pending
[base
].push_back(pending
[b
][j
]);
1062 void partial_order::copy(const partial_order
& order
,
1063 map
< const indicator_term
*, indicator_term
* > old2new
)
1065 cache
.copy(order
.cache
);
1067 order_type::const_iterator i
;
1068 pred_type::const_iterator j
;
1069 head_type::const_iterator k
;
1071 for (k
= order
.head
.begin(); k
!= order
.head
.end(); ++k
)
1072 head
.insert(old2new
[*k
]);
1074 for (j
= order
.pred
.begin(); j
!= order
.pred
.end(); ++j
)
1075 pred
[old2new
[(*j
).first
]] = (*j
).second
;
1077 for (i
= order
.lt
.begin(); i
!= order
.lt
.end(); ++i
) {
1078 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1079 lt
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1081 for (i
= order
.le
.begin(); i
!= order
.le
.end(); ++i
) {
1082 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1083 le
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1085 for (i
= order
.eq
.begin(); i
!= order
.eq
.end(); ++i
) {
1086 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1087 eq
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1089 for (i
= order
.pending
.begin(); i
!= order
.pending
.end(); ++i
) {
1090 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1091 pending
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1097 vector
<evalue
*> max
;
1099 void print(ostream
& os
, char **p
, barvinok_options
*options
) const;
1100 void substitute(Matrix
*T
, barvinok_options
*options
);
1101 Vector
*eval(Value
*val
, unsigned MaxRays
) const;
1104 for (int i
= 0; i
< max
.size(); ++i
) {
1105 free_evalue_refs(max
[i
]);
1113 * Project on first dim dimensions
1115 Polyhedron
* Polyhedron_Project_Initial(Polyhedron
*P
, int dim
)
1121 if (P
->Dimension
== dim
)
1122 return Polyhedron_Copy(P
);
1124 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
1125 for (i
= 0; i
< dim
; ++i
)
1126 value_set_si(T
->p
[i
][i
], 1);
1127 value_set_si(T
->p
[dim
][P
->Dimension
], 1);
1128 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
1134 vector
<indicator_term
*> term
;
1135 indicator_constructor
& ic
;
1136 partial_order order
;
1140 lexmin_options
*options
;
1141 vector
<evalue
*> substitutions
;
1143 indicator(indicator_constructor
& ic
, Param_Domain
*PD
, EDomain
*D
,
1144 lexmin_options
*options
) :
1145 ic(ic
), PD(PD
), D(D
), order(this), options(options
), P(NULL
) {}
1146 indicator(const indicator
& ind
, EDomain
*D
) :
1147 ic(ind
.ic
), PD(ind
.PD
), D(NULL
), order(this), options(ind
.options
),
1148 P(Polyhedron_Copy(ind
.P
)) {
1149 map
< const indicator_term
*, indicator_term
* > old2new
;
1150 for (int i
= 0; i
< ind
.term
.size(); ++i
) {
1151 indicator_term
*it
= new indicator_term(*ind
.term
[i
]);
1152 old2new
[ind
.term
[i
]] = it
;
1155 order
.copy(ind
.order
, old2new
);
1159 for (int i
= 0; i
< term
.size(); ++i
)
1167 void set_domain(EDomain
*D
) {
1168 order
.cache
.clear_transients();
1172 int nparam
= ic
.PP
->Constraints
->NbColumns
-2 - ic
.vertex
.length();
1173 if (options
->reduce
) {
1174 Polyhedron
*Q
= Polyhedron_Project_Initial(D
->D
, nparam
);
1175 Q
= DomainConstraintSimplify(Q
, options
->verify
->barvinok
->MaxRays
);
1176 if (!P
|| !PolyhedronIncludes(Q
, P
))
1177 reduce_in_domain(Q
);
1185 void add(const indicator_term
* it
);
1186 void remove(const indicator_term
* it
);
1187 void remove_initial_rational_vertices();
1188 void expand_rational_vertex(const indicator_term
*initial
);
1190 void print(ostream
& os
, char **p
);
1192 void peel(int i
, int j
);
1193 void combine(const indicator_term
*a
, const indicator_term
*b
);
1194 void add_substitution(evalue
*equation
);
1195 void perform_pending_substitutions();
1196 void reduce_in_domain(Polyhedron
*D
);
1197 bool handle_equal_numerators(const indicator_term
*base
);
1199 max_term
* create_max_term(const indicator_term
*it
);
1201 void substitute(evalue
*equation
);
1204 void partial_order::sanity_check() const
1206 order_type::const_iterator i
;
1207 order_type::const_iterator prev
;
1208 order_type::const_iterator l
;
1209 pred_type::const_iterator k
, prev_k
;
1211 for (k
= pred
.begin(); k
!= pred
.end(); prev_k
= k
, ++k
)
1212 if (k
!= pred
.begin())
1213 assert(pred
.key_comp()((*prev_k
).first
, (*k
).first
));
1214 for (i
= lt
.begin(); i
!= lt
.end(); prev
= i
, ++i
) {
1217 i_v
= (*i
).first
->eval(ind
->D
->sample
->p
);
1218 if (i
!= lt
.begin())
1219 assert(lt
.key_comp()((*prev
).first
, (*i
).first
));
1220 l
= eq
.find((*i
).first
);
1222 assert((*l
).second
.size() > 1);
1223 assert(head
.find((*i
).first
) != head
.end() ||
1224 pred
.find((*i
).first
) != pred
.end());
1225 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1226 k
= pred
.find((*i
).second
[j
]);
1227 assert(k
!= pred
.end());
1228 assert((*k
).second
!= 0);
1229 if ((*i
).first
->sign
!= 0 &&
1230 (*i
).second
[j
]->sign
!= 0 && ind
->D
->sample
) {
1231 vec_ZZ j_v
= (*i
).second
[j
]->eval(ind
->D
->sample
->p
);
1232 assert(lex_cmp(i_v
, j_v
) < 0);
1236 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1237 assert((*i
).second
.size() > 0);
1238 assert(head
.find((*i
).first
) != head
.end() ||
1239 pred
.find((*i
).first
) != pred
.end());
1240 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1241 k
= pred
.find((*i
).second
[j
]);
1242 assert(k
!= pred
.end());
1243 assert((*k
).second
!= 0);
1246 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1247 assert(head
.find((*i
).first
) != head
.end() ||
1248 pred
.find((*i
).first
) != pred
.end());
1249 assert((*i
).second
.size() >= 1);
1251 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1252 assert(head
.find((*i
).first
) != head
.end() ||
1253 pred
.find((*i
).first
) != pred
.end());
1254 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1255 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1256 pred
.find((*i
).second
[j
]) != pred
.end());
1260 max_term
* indicator::create_max_term(const indicator_term
*it
)
1262 int dim
= it
->den
.NumCols();
1263 int nparam
= ic
.PP
->Constraints
->NbColumns
-2 - ic
.vertex
.length();
1264 max_term
*maximum
= new max_term
;
1265 maximum
->domain
= new EDomain(D
);
1266 for (int j
= 0; j
< dim
; ++j
) {
1267 evalue
*E
= new evalue
;
1269 evalue_copy(E
, it
->vertex
[j
]);
1270 if (evalue_frac2floor_in_domain(E
, D
->D
))
1272 maximum
->max
.push_back(E
);
1277 static order_sign
evalue_sign(evalue
*diff
, EDomain
*D
, barvinok_options
*options
)
1279 order_sign sign
= order_eq
;
1282 evalue_set_si(&mone
, -1, 1);
1283 int len
= 1 + D
->D
->Dimension
+ 1;
1284 Vector
*c
= Vector_Alloc(len
);
1285 Matrix
*T
= Matrix_Alloc(2, len
-1);
1287 int fract
= evalue2constraint(D
, diff
, c
->p
, len
);
1288 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1289 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1291 order_sign upper_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1292 if (upper_sign
== order_lt
|| !fract
)
1296 evalue2constraint(D
, diff
, c
->p
, len
);
1298 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1299 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1301 order_sign neg_lower_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1303 if (neg_lower_sign
== order_lt
)
1305 else if (neg_lower_sign
== order_eq
|| neg_lower_sign
== order_le
) {
1306 if (upper_sign
== order_eq
|| upper_sign
== order_le
)
1311 if (upper_sign
== order_lt
|| upper_sign
== order_le
||
1312 upper_sign
== order_eq
)
1315 sign
= order_unknown
;
1321 free_evalue_refs(&mone
);
1326 /* An auxiliary class that keeps a reference to an evalue
1327 * and frees it when it goes out of scope.
1329 struct temp_evalue
{
1331 temp_evalue() : E(NULL
) {}
1332 temp_evalue(evalue
*e
) : E(e
) {}
1333 operator evalue
* () const { return E
; }
1334 evalue
*operator=(evalue
*e
) {
1336 free_evalue_refs(E
);
1344 free_evalue_refs(E
);
1350 static void substitute(vector
<indicator_term
*>& term
, evalue
*equation
)
1352 evalue
*fract
= NULL
;
1353 evalue
*val
= new evalue
;
1355 evalue_copy(val
, equation
);
1358 value_init(factor
.d
);
1359 value_init(factor
.x
.n
);
1362 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= fractional
;
1363 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1366 if (value_zero_p(e
->d
) && e
->x
.p
->type
== fractional
)
1367 fract
= &e
->x
.p
->arr
[0];
1369 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= polynomial
;
1370 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1372 assert(value_zero_p(e
->d
) && e
->x
.p
->type
== polynomial
);
1375 int offset
= type_offset(e
->x
.p
);
1377 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].d
));
1378 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].x
.n
));
1379 if (value_neg_p(e
->x
.p
->arr
[offset
+1].x
.n
)) {
1380 value_oppose(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1381 value_assign(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1383 value_assign(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1384 value_oppose(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1387 free_evalue_refs(&e
->x
.p
->arr
[offset
+1]);
1390 *e
= e
->x
.p
->arr
[offset
];
1395 for (int i
= 0; i
< term
.size(); ++i
)
1396 term
[i
]->substitute(fract
, val
);
1398 free_evalue_refs(&p
->arr
[0]);
1400 for (int i
= 0; i
< term
.size(); ++i
)
1401 term
[i
]->substitute(p
->pos
, val
);
1404 free_evalue_refs(&factor
);
1405 free_evalue_refs(val
);
1411 order_sign
partial_order::compare(const indicator_term
*a
, const indicator_term
*b
)
1413 unsigned dim
= a
->den
.NumCols();
1414 order_sign sign
= order_eq
;
1415 EDomain
*D
= ind
->D
;
1416 unsigned MaxRays
= ind
->options
->verify
->barvinok
->MaxRays
;
1417 bool rational
= a
->sign
== 0 || b
->sign
== 0;
1419 order_sign cached_sign
= order_eq
;
1420 for (int k
= 0; k
< dim
; ++k
) {
1421 cached_sign
= evalue_diff_constant_sign(a
->vertex
[k
], b
->vertex
[k
]);
1422 if (cached_sign
!= order_eq
)
1425 if (cached_sign
!= order_undefined
)
1428 order_cache_el cache_el
;
1429 cached_sign
= order_undefined
;
1431 cached_sign
= cache
.check(a
, b
, cache_el
);
1432 if (cached_sign
!= order_undefined
) {
1437 if (rational
&& POL_ISSET(MaxRays
, POL_INTEGER
)) {
1438 ind
->options
->verify
->barvinok
->MaxRays
&= ~POL_INTEGER
;
1439 if (ind
->options
->verify
->barvinok
->MaxRays
)
1440 ind
->options
->verify
->barvinok
->MaxRays
|= POL_HIGH_BIT
;
1445 vector
<indicator_term
*> term
;
1447 for (int k
= 0; k
< dim
; ++k
) {
1448 /* compute a->vertex[k] - b->vertex[k] */
1450 if (cache_el
.e
.size() <= k
) {
1451 diff
= ediff(a
->vertex
[k
], b
->vertex
[k
]);
1452 cache_el
.e
.push_back(diff
);
1454 diff
= cache_el
.e
[k
];
1457 tdiff
= diff
= ediff(term
[0]->vertex
[k
], term
[1]->vertex
[k
]);
1458 order_sign diff_sign
;
1460 diff_sign
= order_undefined
;
1461 else if (eequal(a
->vertex
[k
], b
->vertex
[k
]))
1462 diff_sign
= order_eq
;
1464 diff_sign
= evalue_sign(diff
, D
, ind
->options
->verify
->barvinok
);
1466 if (diff_sign
== order_undefined
) {
1467 assert(sign
== order_le
|| sign
== order_ge
);
1468 if (sign
== order_le
)
1474 if (diff_sign
== order_lt
) {
1475 if (sign
== order_eq
|| sign
== order_le
)
1478 sign
= order_unknown
;
1481 if (diff_sign
== order_gt
) {
1482 if (sign
== order_eq
|| sign
== order_ge
)
1485 sign
= order_unknown
;
1488 if (diff_sign
== order_eq
) {
1489 if (D
== ind
->D
&& term
.size() == 0 && !rational
&&
1490 !EVALUE_IS_ZERO(*diff
))
1491 ind
->add_substitution(diff
);
1494 if ((diff_sign
== order_unknown
) ||
1495 ((diff_sign
== order_lt
|| diff_sign
== order_le
) && sign
== order_ge
) ||
1496 ((diff_sign
== order_gt
|| diff_sign
== order_ge
) && sign
== order_le
)) {
1497 sign
= order_unknown
;
1504 term
.push_back(new indicator_term(*a
));
1505 term
.push_back(new indicator_term(*b
));
1507 substitute(term
, diff
);
1511 cache
.add(cache_el
, sign
);
1515 if (D
&& D
!= ind
->D
)
1523 ind
->options
->verify
->barvinok
->MaxRays
= MaxRays
;
1527 bool partial_order::compared(const indicator_term
* a
, const indicator_term
* b
)
1529 order_type::iterator j
;
1532 if (j
!= lt
.end() && std::find(lt
[a
].begin(), lt
[a
].end(), b
) != lt
[a
].end())
1536 if (j
!= le
.end() && std::find(le
[a
].begin(), le
[a
].end(), b
) != le
[a
].end())
1542 void partial_order::add(const indicator_term
* it
,
1543 std::set
<const indicator_term
*> *filter
)
1545 if (eq
.find(it
) != eq
.end() && eq
[it
].size() == 1)
1548 head_type
head_copy(head
);
1553 head_type::iterator i
;
1554 for (i
= head_copy
.begin(); i
!= head_copy
.end(); ++i
) {
1557 if (eq
.find(*i
) != eq
.end() && eq
[*i
].size() == 1)
1560 if (filter
->find(*i
) == filter
->end())
1562 if (compared(*i
, it
))
1565 order_sign sign
= compare(it
, *i
);
1566 if (sign
== order_lt
) {
1567 lt
[it
].push_back(*i
);
1569 } else if (sign
== order_le
) {
1570 le
[it
].push_back(*i
);
1572 } else if (sign
== order_eq
) {
1575 } else if (sign
== order_gt
) {
1576 pending
[*i
].push_back(it
);
1577 lt
[*i
].push_back(it
);
1579 } else if (sign
== order_ge
) {
1580 pending
[*i
].push_back(it
);
1581 le
[*i
].push_back(it
);
1587 void partial_order::remove(const indicator_term
* it
)
1589 std::set
<const indicator_term
*> filter
;
1590 order_type::iterator i
;
1592 assert(head
.find(it
) != head
.end());
1595 if (i
!= eq
.end()) {
1596 assert(eq
[it
].size() >= 1);
1597 const indicator_term
*base
;
1598 if (eq
[it
].size() == 1) {
1602 vector
<const indicator_term
* >::iterator j
;
1603 j
= std::find(eq
[base
].begin(), eq
[base
].end(), it
);
1604 assert(j
!= eq
[base
].end());
1607 /* "it" may no longer be the smallest, since the order
1608 * structure may have been copied from another one.
1610 std::sort(eq
[it
].begin()+1, eq
[it
].end(), pred
.key_comp());
1611 assert(eq
[it
][0] == it
);
1612 eq
[it
].erase(eq
[it
].begin());
1617 for (int j
= 1; j
< eq
[base
].size(); ++j
)
1618 eq
[eq
[base
][j
]][0] = base
;
1621 if (i
!= lt
.end()) {
1627 if (i
!= le
.end()) {
1632 i
= pending
.find(it
);
1633 if (i
!= pending
.end()) {
1634 pending
[base
] = pending
[it
];
1639 if (eq
[base
].size() == 1)
1648 if (i
!= lt
.end()) {
1649 for (int j
= 0; j
< lt
[it
].size(); ++j
) {
1650 filter
.insert(lt
[it
][j
]);
1651 dec_pred(lt
[it
][j
]);
1657 if (i
!= le
.end()) {
1658 for (int j
= 0; j
< le
[it
].size(); ++j
) {
1659 filter
.insert(le
[it
][j
]);
1660 dec_pred(le
[it
][j
]);
1667 i
= pending
.find(it
);
1668 if (i
!= pending
.end()) {
1669 vector
<const indicator_term
*> it_pending
= pending
[it
];
1671 for (int j
= 0; j
< it_pending
.size(); ++j
) {
1672 filter
.erase(it_pending
[j
]);
1673 add(it_pending
[j
], &filter
);
1678 void partial_order::print(ostream
& os
, char **p
)
1680 order_type::iterator i
;
1681 pred_type::iterator j
;
1682 head_type::iterator k
;
1683 for (k
= head
.begin(); k
!= head
.end(); ++k
) {
1687 for (j
= pred
.begin(); j
!= pred
.end(); ++j
) {
1688 (*j
).first
->print(os
, p
);
1689 os
<< ": " << (*j
).second
<< endl
;
1691 for (i
= lt
.begin(); i
!= lt
.end(); ++i
) {
1692 (*i
).first
->print(os
, p
);
1693 assert(head
.find((*i
).first
) != head
.end() ||
1694 pred
.find((*i
).first
) != pred
.end());
1695 if (pred
.find((*i
).first
) != pred
.end())
1696 os
<< "(" << pred
[(*i
).first
] << ")";
1698 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1701 (*i
).second
[j
]->print(os
, p
);
1702 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1703 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1707 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1708 (*i
).first
->print(os
, p
);
1709 assert(head
.find((*i
).first
) != head
.end() ||
1710 pred
.find((*i
).first
) != pred
.end());
1711 if (pred
.find((*i
).first
) != pred
.end())
1712 os
<< "(" << pred
[(*i
).first
] << ")";
1714 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1717 (*i
).second
[j
]->print(os
, p
);
1718 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1719 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1723 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1724 if ((*i
).second
.size() <= 1)
1726 (*i
).first
->print(os
, p
);
1727 assert(head
.find((*i
).first
) != head
.end() ||
1728 pred
.find((*i
).first
) != pred
.end());
1729 if (pred
.find((*i
).first
) != pred
.end())
1730 os
<< "(" << pred
[(*i
).first
] << ")";
1731 for (int j
= 1; j
< (*i
).second
.size(); ++j
) {
1734 (*i
).second
[j
]->print(os
, p
);
1735 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1736 pred
.find((*i
).second
[j
]) != pred
.end());
1737 if (pred
.find((*i
).second
[j
]) != pred
.end())
1738 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1742 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1743 os
<< "pending on ";
1744 (*i
).first
->print(os
, p
);
1745 assert(head
.find((*i
).first
) != head
.end() ||
1746 pred
.find((*i
).first
) != pred
.end());
1747 if (pred
.find((*i
).first
) != pred
.end())
1748 os
<< "(" << pred
[(*i
).first
] << ")";
1750 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1753 (*i
).second
[j
]->print(os
, p
);
1754 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1755 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1761 void indicator::add(const indicator_term
* it
)
1763 indicator_term
*nt
= new indicator_term(*it
);
1764 if (options
->reduce
)
1765 nt
->reduce_in_domain(P
? P
: D
->D
);
1767 order
.add(nt
, NULL
);
1768 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1771 void indicator::remove(const indicator_term
* it
)
1773 vector
<indicator_term
*>::iterator i
;
1774 i
= std::find(term
.begin(), term
.end(), it
);
1775 assert(i
!= term
.end());
1778 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1782 void indicator::expand_rational_vertex(const indicator_term
*initial
)
1784 int pos
= initial
->pos
;
1786 if (ic
.terms
[pos
].size() == 0) {
1788 FORALL_PVertex_in_ParamPolyhedron(V
, PD
, ic
.PP
) // _i is internal counter
1790 ic
.decompose_at_vertex(V
, pos
, options
->verify
->barvinok
);
1793 END_FORALL_PVertex_in_ParamPolyhedron
;
1795 for (int j
= 0; j
< ic
.terms
[pos
].size(); ++j
)
1796 add(ic
.terms
[pos
][j
]);
1799 void indicator::remove_initial_rational_vertices()
1802 const indicator_term
*initial
= NULL
;
1803 partial_order::head_type::iterator i
;
1804 for (i
= order
.head
.begin(); i
!= order
.head
.end(); ++i
) {
1805 if ((*i
)->sign
!= 0)
1807 if (order
.eq
.find(*i
) != order
.eq
.end() && order
.eq
[*i
].size() <= 1)
1814 expand_rational_vertex(initial
);
1818 void indicator::reduce_in_domain(Polyhedron
*D
)
1820 for (int i
= 0; i
< term
.size(); ++i
)
1821 term
[i
]->reduce_in_domain(D
);
1824 void indicator::print(ostream
& os
, char **p
)
1826 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1827 for (int i
= 0; i
< term
.size(); ++i
) {
1828 term
[i
]->print(os
, p
);
1830 os
<< ": " << term
[i
]->eval(D
->sample
->p
);
1837 /* Remove pairs of opposite terms */
1838 void indicator::simplify()
1840 for (int i
= 0; i
< term
.size(); ++i
) {
1841 for (int j
= i
+1; j
< term
.size(); ++j
) {
1842 if (term
[i
]->sign
+ term
[j
]->sign
!= 0)
1844 if (term
[i
]->den
!= term
[j
]->den
)
1847 for (k
= 0; k
< term
[i
]->den
.NumCols(); ++k
)
1848 if (!eequal(term
[i
]->vertex
[k
], term
[j
]->vertex
[k
]))
1850 if (k
< term
[i
]->den
.NumCols())
1854 term
.erase(term
.begin()+j
);
1855 term
.erase(term
.begin()+i
);
1862 void indicator::peel(int i
, int j
)
1870 int dim
= term
[i
]->den
.NumCols();
1875 int n_common
= 0, n_i
= 0, n_j
= 0;
1877 common
.SetDims(min(term
[i
]->den
.NumRows(), term
[j
]->den
.NumRows()), dim
);
1878 rest_i
.SetDims(term
[i
]->den
.NumRows(), dim
);
1879 rest_j
.SetDims(term
[j
]->den
.NumRows(), dim
);
1882 for (k
= 0, l
= 0; k
< term
[i
]->den
.NumRows() && l
< term
[j
]->den
.NumRows(); ) {
1883 int s
= lex_cmp(term
[i
]->den
[k
], term
[j
]->den
[l
]);
1885 common
[n_common
++] = term
[i
]->den
[k
];
1889 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1891 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1893 while (k
< term
[i
]->den
.NumRows())
1894 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1895 while (l
< term
[j
]->den
.NumRows())
1896 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1897 common
.SetDims(n_common
, dim
);
1898 rest_i
.SetDims(n_i
, dim
);
1899 rest_j
.SetDims(n_j
, dim
);
1901 for (k
= 0; k
<= n_i
; ++k
) {
1902 indicator_term
*it
= new indicator_term(*term
[i
]);
1903 it
->den
.SetDims(n_common
+ k
, dim
);
1904 for (l
= 0; l
< n_common
; ++l
)
1905 it
->den
[l
] = common
[l
];
1906 for (l
= 0; l
< k
; ++l
)
1907 it
->den
[n_common
+l
] = rest_i
[l
];
1908 lex_order_rows(it
->den
);
1910 for (l
= 0; l
< dim
; ++l
)
1911 evalue_add_constant(it
->vertex
[l
], rest_i
[k
-1][l
]);
1915 for (k
= 0; k
<= n_j
; ++k
) {
1916 indicator_term
*it
= new indicator_term(*term
[j
]);
1917 it
->den
.SetDims(n_common
+ k
, dim
);
1918 for (l
= 0; l
< n_common
; ++l
)
1919 it
->den
[l
] = common
[l
];
1920 for (l
= 0; l
< k
; ++l
)
1921 it
->den
[n_common
+l
] = rest_j
[l
];
1922 lex_order_rows(it
->den
);
1924 for (l
= 0; l
< dim
; ++l
)
1925 evalue_add_constant(it
->vertex
[l
], rest_j
[k
-1][l
]);
1928 term
.erase(term
.begin()+j
);
1929 term
.erase(term
.begin()+i
);
1932 void indicator::combine(const indicator_term
*a
, const indicator_term
*b
)
1934 int dim
= a
->den
.NumCols();
1937 mat_ZZ rest_i
; /* factors in a, but not in b */
1938 mat_ZZ rest_j
; /* factors in b, but not in a */
1939 int n_common
= 0, n_i
= 0, n_j
= 0;
1941 common
.SetDims(min(a
->den
.NumRows(), b
->den
.NumRows()), dim
);
1942 rest_i
.SetDims(a
->den
.NumRows(), dim
);
1943 rest_j
.SetDims(b
->den
.NumRows(), dim
);
1946 for (k
= 0, l
= 0; k
< a
->den
.NumRows() && l
< b
->den
.NumRows(); ) {
1947 int s
= lex_cmp(a
->den
[k
], b
->den
[l
]);
1949 common
[n_common
++] = a
->den
[k
];
1953 rest_i
[n_i
++] = a
->den
[k
++];
1955 rest_j
[n_j
++] = b
->den
[l
++];
1957 while (k
< a
->den
.NumRows())
1958 rest_i
[n_i
++] = a
->den
[k
++];
1959 while (l
< b
->den
.NumRows())
1960 rest_j
[n_j
++] = b
->den
[l
++];
1961 common
.SetDims(n_common
, dim
);
1962 rest_i
.SetDims(n_i
, dim
);
1963 rest_j
.SetDims(n_j
, dim
);
1965 assert(order
.eq
[a
].size() > 1);
1966 indicator_term
*prev
;
1969 for (int k
= n_i
-1; k
>= 0; --k
) {
1970 indicator_term
*it
= new indicator_term(*b
);
1971 it
->den
.SetDims(n_common
+ n_j
+ n_i
-k
, dim
);
1972 for (int l
= k
; l
< n_i
; ++l
)
1973 it
->den
[n_common
+n_j
+l
-k
] = rest_i
[l
];
1974 lex_order_rows(it
->den
);
1975 for (int m
= 0; m
< dim
; ++m
)
1976 evalue_add_constant(it
->vertex
[m
], rest_i
[k
][m
]);
1977 it
->sign
= -it
->sign
;
1979 order
.pending
[it
].push_back(prev
);
1980 order
.lt
[it
].push_back(prev
);
1981 order
.inc_pred(prev
);
1984 order
.head
.insert(it
);
1988 indicator_term
*it
= new indicator_term(*b
);
1989 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
1990 for (l
= 0; l
< n_i
; ++l
)
1991 it
->den
[n_common
+n_j
+l
] = rest_i
[l
];
1992 lex_order_rows(it
->den
);
1994 order
.pending
[a
].push_back(prev
);
1995 order
.lt
[a
].push_back(prev
);
1996 order
.inc_pred(prev
);
1997 order
.replace(b
, it
);
2002 for (int k
= n_j
-1; k
>= 0; --k
) {
2003 indicator_term
*it
= new indicator_term(*a
);
2004 it
->den
.SetDims(n_common
+ n_i
+ n_j
-k
, dim
);
2005 for (int l
= k
; l
< n_j
; ++l
)
2006 it
->den
[n_common
+n_i
+l
-k
] = rest_j
[l
];
2007 lex_order_rows(it
->den
);
2008 for (int m
= 0; m
< dim
; ++m
)
2009 evalue_add_constant(it
->vertex
[m
], rest_j
[k
][m
]);
2010 it
->sign
= -it
->sign
;
2012 order
.pending
[it
].push_back(prev
);
2013 order
.lt
[it
].push_back(prev
);
2014 order
.inc_pred(prev
);
2017 order
.head
.insert(it
);
2021 indicator_term
*it
= new indicator_term(*a
);
2022 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
2023 for (l
= 0; l
< n_j
; ++l
)
2024 it
->den
[n_common
+n_i
+l
] = rest_j
[l
];
2025 lex_order_rows(it
->den
);
2027 order
.pending
[a
].push_back(prev
);
2028 order
.lt
[a
].push_back(prev
);
2029 order
.inc_pred(prev
);
2030 order
.replace(a
, it
);
2034 assert(term
.size() == order
.head
.size() + order
.pred
.size());
2037 bool indicator::handle_equal_numerators(const indicator_term
*base
)
2039 for (int i
= 0; i
< order
.eq
[base
].size(); ++i
) {
2040 for (int j
= i
+1; j
< order
.eq
[base
].size(); ++j
) {
2041 if (order
.eq
[base
][i
]->is_opposite(order
.eq
[base
][j
])) {
2042 remove(order
.eq
[base
][j
]);
2043 remove(i
? order
.eq
[base
][i
] : base
);
2048 for (int j
= 1; j
< order
.eq
[base
].size(); ++j
)
2049 if (order
.eq
[base
][j
]->sign
!= base
->sign
) {
2050 combine(base
, order
.eq
[base
][j
]);
2056 void indicator::substitute(evalue
*equation
)
2058 ::substitute(term
, equation
);
2061 void indicator::add_substitution(evalue
*equation
)
2063 for (int i
= 0; i
< substitutions
.size(); ++i
)
2064 if (eequal(substitutions
[i
], equation
))
2066 evalue
*copy
= new evalue();
2067 value_init(copy
->d
);
2068 evalue_copy(copy
, equation
);
2069 substitutions
.push_back(copy
);
2072 void indicator::perform_pending_substitutions()
2074 if (substitutions
.size() == 0)
2077 for (int i
= 0; i
< substitutions
.size(); ++i
) {
2078 substitute(substitutions
[i
]);
2079 free_evalue_refs(substitutions
[i
]);
2080 delete substitutions
[i
];
2082 substitutions
.clear();
2086 static void print_varlist(ostream
& os
, int n
, char **names
)
2090 for (i
= 0; i
< n
; ++i
) {
2098 void max_term::print(ostream
& os
, char **p
, barvinok_options
*options
) const
2101 print_varlist(os
, domain
->dimension(), p
);
2104 for (int i
= 0; i
< max
.size(); ++i
) {
2107 evalue_print(os
, max
[i
], p
);
2111 domain
->print_constraints(os
, p
, options
);
2115 /* T maps the compressed parameters to the original parameters,
2116 * while this max_term is based on the compressed parameters
2117 * and we want get the original parameters back.
2119 void max_term::substitute(Matrix
*T
, barvinok_options
*options
)
2121 assert(domain
->dimension() == T
->NbColumns
-1);
2122 int nexist
= domain
->D
->Dimension
- (T
->NbColumns
-1);
2124 Matrix
*inv
= left_inverse(T
, &Eq
);
2127 value_init(denom
.d
);
2128 value_init(denom
.x
.n
);
2129 value_set_si(denom
.x
.n
, 1);
2130 value_assign(denom
.d
, inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
2133 v
.SetLength(inv
->NbColumns
);
2134 evalue
**subs
= new evalue
*[inv
->NbRows
-1];
2135 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2136 values2zz(inv
->p
[i
], v
, v
.length());
2137 subs
[i
] = multi_monom(v
);
2138 emul(&denom
, subs
[i
]);
2140 free_evalue_refs(&denom
);
2142 domain
->substitute(subs
, inv
, Eq
, options
->MaxRays
);
2145 for (int i
= 0; i
< max
.size(); ++i
) {
2146 evalue_substitute(max
[i
], subs
);
2147 reduce_evalue(max
[i
]);
2150 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2151 free_evalue_refs(subs
[i
]);
2158 Vector
*max_term::eval(Value
*val
, unsigned MaxRays
) const
2160 if (!domain
->contains(val
, domain
->dimension()))
2162 Vector
*res
= Vector_Alloc(max
.size());
2163 for (int i
= 0; i
< max
.size(); ++i
) {
2164 compute_evalue(max
[i
], val
, &res
->p
[i
]);
2171 enum sign
{ le
, ge
, lge
} sign
;
2173 split (evalue
*c
, enum sign s
) : constraint(c
), sign(s
) {}
2176 static void split_on(const split
& sp
, EDomain
*D
,
2177 EDomain
**Dlt
, EDomain
**Deq
, EDomain
**Dgt
,
2178 lexmin_options
*options
)
2184 ge_constraint
*ge
= D
->compute_ge_constraint(sp
.constraint
);
2185 if (sp
.sign
== split::lge
|| sp
.sign
== split::ge
)
2186 ED
[2] = EDomain::new_from_ge_constraint(ge
, 1, options
->verify
->barvinok
);
2189 if (sp
.sign
== split::lge
|| sp
.sign
== split::le
)
2190 ED
[0] = EDomain::new_from_ge_constraint(ge
, -1, options
->verify
->barvinok
);
2194 assert(sp
.sign
== split::lge
|| sp
.sign
== split::ge
|| sp
.sign
== split::le
);
2195 ED
[1] = EDomain::new_from_ge_constraint(ge
, 0, options
->verify
->barvinok
);
2199 for (int i
= 0; i
< 3; ++i
) {
2202 if (D
->sample
&& ED
[i
]->contains(D
->sample
->p
, D
->sample
->Size
-1)) {
2203 ED
[i
]->sample
= Vector_Alloc(D
->sample
->Size
);
2204 Vector_Copy(D
->sample
->p
, ED
[i
]->sample
->p
, D
->sample
->Size
);
2205 } else if (emptyQ2(ED
[i
]->D
) ||
2206 (options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2207 !(ED
[i
]->not_empty(options
)))) {
2217 ostream
& operator<< (ostream
& os
, const vector
<int> & v
)
2220 for (int i
= 0; i
< v
.size(); ++i
) {
2229 static bool isTranslation(Matrix
*M
)
2232 if (M
->NbRows
!= M
->NbColumns
)
2235 for (i
= 0;i
< M
->NbRows
; i
++)
2236 for (j
= 0; j
< M
->NbColumns
-1; j
++)
2238 if(value_notone_p(M
->p
[i
][j
]))
2241 if(value_notzero_p(M
->p
[i
][j
]))
2244 return value_one_p(M
->p
[M
->NbRows
-1][M
->NbColumns
-1]);
2247 static Matrix
*compress_parameters(Polyhedron
**P
, Polyhedron
**C
,
2248 unsigned nparam
, unsigned MaxRays
)
2252 /* compress_parms doesn't like equalities that only involve parameters */
2253 for (int i
= 0; i
< (*P
)->NbEq
; ++i
)
2254 assert(First_Non_Zero((*P
)->Constraint
[i
]+1, (*P
)->Dimension
-nparam
) != -1);
2256 M
= Matrix_Alloc((*P
)->NbEq
, (*P
)->Dimension
+2);
2257 Vector_Copy((*P
)->Constraint
[0], M
->p
[0], (*P
)->NbEq
* ((*P
)->Dimension
+2));
2258 CP
= compress_parms(M
, nparam
);
2261 if (isTranslation(CP
)) {
2266 T
= align_matrix(CP
, (*P
)->Dimension
+1);
2267 *P
= Polyhedron_Preimage(*P
, T
, MaxRays
);
2270 *C
= Polyhedron_Preimage(*C
, CP
, MaxRays
);
2275 void construct_rational_vertices(Param_Polyhedron
*PP
, Matrix
*T
, unsigned dim
,
2276 int nparam
, vector
<indicator_term
*>& vertices
)
2285 v
.SetLength(nparam
+1);
2288 value_init(factor
.d
);
2289 value_init(factor
.x
.n
);
2290 value_set_si(factor
.x
.n
, 1);
2291 value_set_si(factor
.d
, 1);
2293 for (i
= 0, PV
= PP
->V
; PV
; ++i
, PV
= PV
->next
) {
2294 indicator_term
*term
= new indicator_term(dim
, i
);
2295 vertices
.push_back(term
);
2296 Matrix
*M
= Matrix_Alloc(PV
->Vertex
->NbRows
+nparam
+1, nparam
+1);
2297 value_set_si(lcm
, 1);
2298 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
)
2299 value_lcm(lcm
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2300 value_assign(M
->p
[M
->NbRows
-1][M
->NbColumns
-1], lcm
);
2301 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
) {
2302 value_division(tmp
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2303 Vector_Scale(PV
->Vertex
->p
[j
], M
->p
[j
], tmp
, nparam
+1);
2305 for (int j
= 0; j
< nparam
; ++j
)
2306 value_assign(M
->p
[PV
->Vertex
->NbRows
+j
][j
], lcm
);
2308 Matrix
*M2
= Matrix_Alloc(T
->NbRows
, M
->NbColumns
);
2309 Matrix_Product(T
, M
, M2
);
2313 for (int j
= 0; j
< dim
; ++j
) {
2314 values2zz(M
->p
[j
], v
, nparam
+1);
2315 term
->vertex
[j
] = multi_monom(v
);
2316 value_assign(factor
.d
, lcm
);
2317 emul(&factor
, term
->vertex
[j
]);
2321 assert(i
== PP
->nbV
);
2322 free_evalue_refs(&factor
);
2327 static vector
<max_term
*> lexmin(indicator
& ind
, unsigned nparam
,
2330 vector
<max_term
*> maxima
;
2331 partial_order::head_type::iterator i
;
2332 vector
<int> best_score
;
2333 vector
<int> second_score
;
2334 vector
<int> neg_score
;
2337 ind
.perform_pending_substitutions();
2338 const indicator_term
*best
= NULL
, *second
= NULL
, *neg
= NULL
,
2339 *neg_eq
= NULL
, *neg_le
= NULL
;
2340 for (i
= ind
.order
.head
.begin(); i
!= ind
.order
.head
.end(); ++i
) {
2342 const indicator_term
*term
= *i
;
2343 if (term
->sign
== 0) {
2344 ind
.expand_rational_vertex(term
);
2348 if (ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2350 if (ind
.order
.eq
[term
].size() <= 1)
2352 for (j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2353 if (ind
.order
.pred
.find(ind
.order
.eq
[term
][j
]) !=
2354 ind
.order
.pred
.end())
2356 if (j
< ind
.order
.eq
[term
].size())
2358 score
.push_back(ind
.order
.eq
[term
].size());
2361 if (ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2362 score
.push_back(ind
.order
.le
[term
].size());
2365 if (ind
.order
.lt
.find(term
) != ind
.order
.lt
.end())
2366 score
.push_back(-ind
.order
.lt
[term
].size());
2370 if (term
->sign
> 0) {
2371 if (!best
|| score
< best_score
) {
2373 second_score
= best_score
;
2376 } else if (!second
|| score
< second_score
) {
2378 second_score
= score
;
2381 if (!neg_eq
&& ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2382 for (int j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2383 if (ind
.order
.eq
[term
][j
]->sign
!= term
->sign
) {
2388 if (!neg_le
&& ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2390 if (!neg
|| score
< neg_score
) {
2396 if (i
!= ind
.order
.head
.end())
2399 if (!best
&& neg_eq
) {
2400 assert(ind
.order
.eq
[neg_eq
].size() != 0);
2401 bool handled
= ind
.handle_equal_numerators(neg_eq
);
2406 if (!best
&& neg_le
) {
2407 /* The smallest term is negative and <= some positive term */
2413 /* apparently there can be negative initial term on empty domains */
2414 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2415 ind
.options
->verify
->barvinok
->lp_solver
== BV_LP_POLYLIB
)
2420 if (!second
&& !neg
) {
2421 const indicator_term
*rat
= NULL
;
2423 if (ind
.order
.le
.find(best
) == ind
.order
.le
.end()) {
2424 if (ind
.order
.eq
.find(best
) != ind
.order
.eq
.end()) {
2425 bool handled
= ind
.handle_equal_numerators(best
);
2426 if (ind
.options
->emptiness_check
!=
2427 BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2428 ind
.options
->verify
->barvinok
->lp_solver
== BV_LP_POLYLIB
)
2430 /* If !handled then the leading coefficient is bigger than one;
2431 * must be an empty domain
2438 maxima
.push_back(ind
.create_max_term(best
));
2441 for (int j
= 0; j
< ind
.order
.le
[best
].size(); ++j
) {
2442 if (ind
.order
.le
[best
][j
]->sign
== 0) {
2443 if (!rat
&& ind
.order
.pred
[ind
.order
.le
[best
][j
]] == 1)
2444 rat
= ind
.order
.le
[best
][j
];
2445 } else if (ind
.order
.le
[best
][j
]->sign
> 0) {
2446 second
= ind
.order
.le
[best
][j
];
2449 neg
= ind
.order
.le
[best
][j
];
2452 if (!second
&& !neg
) {
2454 ind
.order
.unset_le(best
, rat
);
2455 ind
.expand_rational_vertex(rat
);
2462 ind
.order
.unset_le(best
, second
);
2468 unsigned dim
= best
->den
.NumCols();
2471 for (int k
= 0; k
< dim
; ++k
) {
2472 diff
= ediff(best
->vertex
[k
], second
->vertex
[k
]);
2473 sign
= evalue_sign(diff
, ind
.D
, ind
.options
->verify
->barvinok
);
2475 /* neg can never be smaller than best, unless it may still cancel.
2476 * This can happen if positive terms have been determined to
2477 * be equal or less than or equal to some negative term.
2479 if (second
== neg
&& !neg_eq
&& !neg_le
) {
2480 if (sign
== order_ge
)
2482 if (sign
== order_unknown
)
2486 if (sign
!= order_eq
)
2488 if (!EVALUE_IS_ZERO(*diff
)) {
2489 ind
.add_substitution(diff
);
2490 ind
.perform_pending_substitutions();
2493 if (sign
== order_eq
) {
2494 ind
.order
.set_equal(best
, second
);
2497 if (sign
== order_lt
) {
2498 ind
.order
.lt
[best
].push_back(second
);
2499 ind
.order
.inc_pred(second
);
2502 if (sign
== order_gt
) {
2503 ind
.order
.lt
[second
].push_back(best
);
2504 ind
.order
.inc_pred(best
);
2508 split
sp(diff
, sign
== order_le
? split::le
:
2509 sign
== order_ge
? split::ge
: split::lge
);
2511 EDomain
*Dlt
, *Deq
, *Dgt
;
2512 split_on(sp
, ind
.D
, &Dlt
, &Deq
, &Dgt
, ind
.options
);
2513 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
)
2514 assert(Dlt
|| Deq
|| Dgt
);
2515 else if (!(Dlt
|| Deq
|| Dgt
))
2516 /* Must have been empty all along */
2519 if (Deq
&& (Dlt
|| Dgt
)) {
2520 int locsize
= loc
.size();
2522 indicator
indeq(ind
, Deq
);
2524 indeq
.add_substitution(diff
);
2525 indeq
.perform_pending_substitutions();
2526 vector
<max_term
*> maxeq
= lexmin(indeq
, nparam
, loc
);
2527 maxima
.insert(maxima
.end(), maxeq
.begin(), maxeq
.end());
2528 loc
.resize(locsize
);
2531 int locsize
= loc
.size();
2533 indicator
indgt(ind
, Dgt
);
2535 /* we don't know the new location of these terms in indgt */
2537 indgt.order.lt[second].push_back(best);
2538 indgt.order.inc_pred(best);
2540 vector
<max_term
*> maxgt
= lexmin(indgt
, nparam
, loc
);
2541 maxima
.insert(maxima
.end(), maxgt
.begin(), maxgt
.end());
2542 loc
.resize(locsize
);
2547 ind
.set_domain(Deq
);
2548 ind
.add_substitution(diff
);
2549 ind
.perform_pending_substitutions();
2553 ind
.set_domain(Dlt
);
2554 ind
.order
.lt
[best
].push_back(second
);
2555 ind
.order
.inc_pred(second
);
2559 ind
.set_domain(Dgt
);
2560 ind
.order
.lt
[second
].push_back(best
);
2561 ind
.order
.inc_pred(best
);
2568 static void lexmin_base(Polyhedron
*P
, Polyhedron
*C
,
2569 Matrix
*CP
, Matrix
*T
,
2570 vector
<max_term
*>& all_max
,
2571 lexmin_options
*options
)
2573 unsigned nparam
= C
->Dimension
;
2574 Param_Polyhedron
*PP
= NULL
;
2576 PP
= Polyhedron2Param_Polyhedron(P
, C
, options
->verify
->barvinok
);
2578 unsigned dim
= P
->Dimension
- nparam
;
2582 indicator_constructor
ic(P
, dim
, PP
, T
);
2584 vector
<indicator_term
*> all_vertices
;
2585 construct_rational_vertices(PP
, T
, T
? T
->NbRows
-nparam
-1 : dim
,
2586 nparam
, all_vertices
);
2588 Polyhedron
*TC
= true_context(P
, C
, options
->verify
->barvinok
->MaxRays
);
2589 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
->verify
->barvinok
, i
, D
, rVD
)
2592 EDomain
*epVD
= new EDomain(rVD
);
2593 indicator
ind(ic
, D
, epVD
, options
);
2595 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
2596 ind
.add(all_vertices
[_i
]);
2597 END_FORALL_PVertex_in_ParamPolyhedron
;
2599 ind
.remove_initial_rational_vertices();
2602 vector
<max_term
*> maxima
= lexmin(ind
, nparam
, loc
);
2604 for (int j
= 0; j
< maxima
.size(); ++j
)
2605 maxima
[j
]->substitute(CP
, options
->verify
->barvinok
);
2606 all_max
.insert(all_max
.end(), maxima
.begin(), maxima
.end());
2609 END_FORALL_REDUCED_DOMAIN
2610 Polyhedron_Free(TC
);
2611 for (int i
= 0; i
< all_vertices
.size(); ++i
)
2612 delete all_vertices
[i
];
2613 Param_Polyhedron_Free(PP
);
2616 static vector
<max_term
*> lexmin(Polyhedron
*P
, Polyhedron
*C
,
2617 lexmin_options
*options
)
2619 unsigned nparam
= C
->Dimension
;
2620 Matrix
*T
= NULL
, *CP
= NULL
;
2621 Polyhedron
*Porig
= P
;
2622 Polyhedron
*Corig
= C
;
2623 vector
<max_term
*> all_max
;
2628 POL_ENSURE_VERTICES(P
);
2633 assert(P
->NbBid
== 0);
2636 remove_all_equalities(&P
, &C
, &CP
, &T
, nparam
,
2637 options
->verify
->barvinok
->MaxRays
);
2639 lexmin_base(P
, C
, CP
, T
, all_max
, options
);
2652 static void verify_results(Polyhedron
*A
, Polyhedron
*C
,
2653 vector
<max_term
*>& maxima
,
2654 struct verify_options
*options
);
2656 /* Turn the set dimensions of "context" into parameters and return
2657 * the corresponding parameter domain.
2659 static struct isl_basic_set
*to_parameter_domain(struct isl_basic_set
*context
)
2661 context
= isl_basic_set_move_dims(context
, isl_dim_param
, 0,
2662 isl_dim_set
, 0, isl_basic_set_dim(context
, isl_dim_set
));
2663 context
= isl_basic_set_params(context
);
2667 int main(int argc
, char **argv
)
2670 isl_basic_set
*context
, *bset
;
2675 int urs_unknowns
= 0;
2676 int print_solution
= 1;
2677 struct lexmin_options
*options
= lexmin_options_new_with_defaults();
2679 options
->verify
->barvinok
->lookup_table
= 0;
2681 argc
= lexmin_options_parse(options
, argc
, argv
, ISL_ARG_ALL
);
2682 ctx
= isl_ctx_alloc_with_options(&lexmin_options_args
, options
);
2684 context
= isl_basic_set_read_from_file(ctx
, stdin
);
2686 n
= fscanf(stdin
, "%d", &neg_one
);
2688 assert(neg_one
== -1);
2689 bset
= isl_basic_set_read_from_file(ctx
, stdin
);
2691 while (fgets(s
, sizeof(s
), stdin
)) {
2692 if (strncasecmp(s
, "Maximize", 8) == 0) {
2693 fprintf(stderr
, "Maximize option not supported\n");
2696 if (strncasecmp(s
, "Rational", 8) == 0) {
2697 fprintf(stderr
, "Rational option not supported\n");
2700 if (strncasecmp(s
, "Urs_parms", 9) == 0)
2702 if (strncasecmp(s
, "Urs_unknowns", 12) == 0)
2706 context
= isl_basic_set_intersect(context
,
2707 isl_basic_set_positive_orthant(isl_basic_set_get_space(context
)));
2708 context
= to_parameter_domain(context
);
2709 nparam
= isl_basic_set_dim(context
, isl_dim_param
);
2710 if (nparam
!= isl_basic_set_dim(bset
, isl_dim_param
)) {
2711 int dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2712 bset
= isl_basic_set_move_dims(bset
, isl_dim_param
, 0,
2713 isl_dim_set
, dim
- nparam
, nparam
);
2716 bset
= isl_basic_set_intersect(bset
,
2717 isl_basic_set_positive_orthant(isl_basic_set_get_space(bset
)));
2719 if (options
->verify
->verify
)
2722 A
= isl_basic_set_to_polylib(bset
);
2723 verify_options_set_range(options
->verify
, A
->Dimension
);
2724 C
= isl_basic_set_to_polylib(context
);
2725 vector
<max_term
*> maxima
= lexmin(A
, C
, options
);
2726 if (print_solution
) {
2728 param_names
= util_generate_names(C
->Dimension
, "p");
2729 for (int i
= 0; i
< maxima
.size(); ++i
)
2730 maxima
[i
]->print(cout
, param_names
,
2731 options
->verify
->barvinok
);
2732 util_free_names(C
->Dimension
, param_names
);
2735 if (options
->verify
->verify
)
2736 verify_results(A
, C
, maxima
, options
->verify
);
2738 for (int i
= 0; i
< maxima
.size(); ++i
)
2744 isl_basic_set_free(bset
);
2745 isl_basic_set_free(context
);
2751 static bool lexmin(int pos
, Polyhedron
*P
, Value
*context
)
2760 value_init(LB
); value_init(UB
); value_init(k
);
2763 lu_flags
= lower_upper_bounds(pos
,P
,context
,&LB
,&UB
);
2764 assert(!(lu_flags
& LB_INFINITY
));
2766 value_set_si(context
[pos
],0);
2767 if (!lu_flags
&& value_lt(UB
,LB
)) {
2768 value_clear(LB
); value_clear(UB
); value_clear(k
);
2772 value_assign(context
[pos
], LB
);
2773 value_clear(LB
); value_clear(UB
); value_clear(k
);
2776 for (value_assign(k
,LB
); lu_flags
|| value_le(k
,UB
); value_increment(k
,k
)) {
2777 value_assign(context
[pos
],k
);
2778 if ((found
= lexmin(pos
+1, P
->next
, context
)))
2782 value_set_si(context
[pos
],0);
2783 value_clear(LB
); value_clear(UB
); value_clear(k
);
2787 static void print_list(FILE *out
, Value
*z
, const char* brackets
, int len
)
2789 fprintf(out
, "%c", brackets
[0]);
2790 value_print(out
, VALUE_FMT
,z
[0]);
2791 for (int k
= 1; k
< len
; ++k
) {
2793 value_print(out
, VALUE_FMT
,z
[k
]);
2795 fprintf(out
, "%c", brackets
[1]);
2798 static int check_poly_lexmin(const struct check_poly_data
*data
,
2799 int nparam
, Value
*z
,
2800 const struct verify_options
*options
);
2802 struct check_poly_lexmin_data
: public check_poly_data
{
2804 vector
<max_term
*>& maxima
;
2806 check_poly_lexmin_data(Polyhedron
*S
, Value
*z
,
2807 vector
<max_term
*>& maxima
) : S(S
), maxima(maxima
) {
2809 this->check
= &check_poly_lexmin
;
2813 static int check_poly_lexmin(const struct check_poly_data
*data
,
2814 int nparam
, Value
*z
,
2815 const struct verify_options
*options
)
2817 const check_poly_lexmin_data
*lexmin_data
;
2818 lexmin_data
= static_cast<const check_poly_lexmin_data
*>(data
);
2819 Polyhedron
*S
= lexmin_data
->S
;
2820 vector
<max_term
*>& maxima
= lexmin_data
->maxima
;
2822 bool found
= lexmin(1, S
, lexmin_data
->z
);
2824 if (options
->print_all
) {
2826 print_list(stdout
, z
, "()", nparam
);
2829 print_list(stdout
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2834 for (int i
= 0; i
< maxima
.size(); ++i
)
2835 if ((min
= maxima
[i
]->eval(z
, options
->barvinok
->MaxRays
)))
2838 int ok
= !(found
^ !!min
);
2840 for (int i
= 0; i
< S
->Dimension
-nparam
; ++i
)
2841 if (value_ne(lexmin_data
->z
[1+i
], min
->p
[i
])) {
2848 fprintf(stderr
, "Error !\n");
2849 fprintf(stderr
, "lexmin");
2850 print_list(stderr
, z
, "()", nparam
);
2851 fprintf(stderr
, " should be ");
2853 print_list(stderr
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2854 fprintf(stderr
, " while digging gives ");
2856 print_list(stderr
, min
->p
, "[]", S
->Dimension
-nparam
);
2857 fprintf(stderr
, ".\n");
2859 } else if (options
->print_all
)
2864 for (k
= 1; k
<= S
->Dimension
-nparam
; ++k
)
2865 value_set_si(lexmin_data
->z
[k
], 0);
2870 void verify_results(Polyhedron
*A
, Polyhedron
*C
, vector
<max_term
*>& maxima
,
2871 struct verify_options
*options
)
2874 unsigned nparam
= C
->Dimension
;
2875 unsigned MaxRays
= options
->barvinok
->MaxRays
;
2880 CS
= check_poly_context_scan(A
, &C
, nparam
, options
);
2882 p
= Vector_Alloc(A
->Dimension
+2);
2883 value_set_si(p
->p
[A
->Dimension
+1], 1);
2885 S
= Polyhedron_Scan(A
, C
, MaxRays
& POL_NO_DUAL
? 0 : MaxRays
);
2887 check_poly_init(C
, options
);
2890 if (!(CS
&& emptyQ2(CS
))) {
2891 check_poly_lexmin_data
data(S
, p
->p
, maxima
);
2892 check_poly(CS
, &data
, nparam
, 0, p
->p
+S
->Dimension
-nparam
+1, options
);
2897 if (!options
->print_all
)