2 #include <barvinok/options.h>
3 #include <barvinok/util.h>
6 #define ALLOC(type) (type*)malloc(sizeof(type))
7 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
8 #define REALLOCN(ptr,type,n) (type*)realloc(ptr, (n) * sizeof(type))
10 static struct bernoulli_coef bernoulli_coef
;
11 static struct poly_list bernoulli
;
12 static struct poly_list faulhaber
;
14 struct bernoulli_coef
*bernoulli_coef_compute(int n
)
19 if (n
< bernoulli_coef
.n
)
20 return &bernoulli_coef
;
22 if (n
>= bernoulli_coef
.size
) {
23 int size
= 3*(n
+ 5)/2;
26 b
= Vector_Alloc(size
);
27 if (bernoulli_coef
.n
) {
28 Vector_Copy(bernoulli_coef
.num
->p
, b
->p
, bernoulli_coef
.n
);
29 Vector_Free(bernoulli_coef
.num
);
31 bernoulli_coef
.num
= b
;
32 b
= Vector_Alloc(size
);
33 if (bernoulli_coef
.n
) {
34 Vector_Copy(bernoulli_coef
.den
->p
, b
->p
, bernoulli_coef
.n
);
35 Vector_Free(bernoulli_coef
.den
);
37 bernoulli_coef
.den
= b
;
38 b
= Vector_Alloc(size
);
39 if (bernoulli_coef
.n
) {
40 Vector_Copy(bernoulli_coef
.lcm
->p
, b
->p
, bernoulli_coef
.n
);
41 Vector_Free(bernoulli_coef
.lcm
);
43 bernoulli_coef
.lcm
= b
;
45 bernoulli_coef
.size
= size
;
49 for (i
= bernoulli_coef
.n
; i
<= n
; ++i
) {
51 value_set_si(bernoulli_coef
.num
->p
[0], 1);
52 value_set_si(bernoulli_coef
.den
->p
[0], 1);
53 value_set_si(bernoulli_coef
.lcm
->p
[0], 1);
56 value_set_si(bernoulli_coef
.num
->p
[i
], 0);
57 value_set_si(factor
, -(i
+1));
58 for (j
= i
-1; j
>= 0; --j
) {
59 mpz_mul_ui(factor
, factor
, j
+1);
60 mpz_divexact_ui(factor
, factor
, i
+1-j
);
61 value_division(tmp
, bernoulli_coef
.lcm
->p
[i
-1],
62 bernoulli_coef
.den
->p
[j
]);
63 value_multiply(tmp
, tmp
, bernoulli_coef
.num
->p
[j
]);
64 value_multiply(tmp
, tmp
, factor
);
65 value_addto(bernoulli_coef
.num
->p
[i
], bernoulli_coef
.num
->p
[i
], tmp
);
67 mpz_mul_ui(bernoulli_coef
.den
->p
[i
], bernoulli_coef
.lcm
->p
[i
-1], i
+1);
68 value_gcd(tmp
, bernoulli_coef
.num
->p
[i
], bernoulli_coef
.den
->p
[i
]);
69 if (value_notone_p(tmp
)) {
70 value_division(bernoulli_coef
.num
->p
[i
],
71 bernoulli_coef
.num
->p
[i
], tmp
);
72 value_division(bernoulli_coef
.den
->p
[i
],
73 bernoulli_coef
.den
->p
[i
], tmp
);
75 value_lcm(bernoulli_coef
.lcm
->p
[i
],
76 bernoulli_coef
.lcm
->p
[i
-1], bernoulli_coef
.den
->p
[i
]);
78 bernoulli_coef
.n
= n
+1;
82 return &bernoulli_coef
;
86 * Compute either Bernoulli B_n or Faulhaber F_n polynomials.
88 * B_n = sum_{k=0}^n { n \choose k } b_k x^{n-k}
89 * F_n = 1/(n+1) sum_{k=0}^n { n+1 \choose k } b_k x^{n+1-k}
91 static struct poly_list
*bernoulli_faulhaber_compute(int n
, struct poly_list
*pl
,
96 struct bernoulli_coef
*bc
;
102 int size
= 3*(n
+ 5)/2;
105 poly
= ALLOCN(Vector
*, size
);
106 for (i
= 0; i
< pl
->n
; ++i
)
107 poly
[i
] = pl
->poly
[i
];
114 bc
= bernoulli_coef_compute(n
);
117 for (i
= pl
->n
; i
<= n
; ++i
) {
118 pl
->poly
[i
] = Vector_Alloc(i
+faulhaber
+2);
119 value_assign(pl
->poly
[i
]->p
[i
+faulhaber
], bc
->lcm
->p
[i
]);
121 mpz_mul_ui(pl
->poly
[i
]->p
[i
+2], bc
->lcm
->p
[i
], i
+1);
123 value_assign(pl
->poly
[i
]->p
[i
+1], bc
->lcm
->p
[i
]);
124 value_set_si(factor
, 1);
125 for (j
= 1; j
<= i
; ++j
) {
126 mpz_mul_ui(factor
, factor
, i
+faulhaber
+1-j
);
127 mpz_divexact_ui(factor
, factor
, j
);
128 value_division(pl
->poly
[i
]->p
[i
+faulhaber
-j
],
129 bc
->lcm
->p
[i
], bc
->den
->p
[j
]);
130 value_multiply(pl
->poly
[i
]->p
[i
+faulhaber
-j
],
131 pl
->poly
[i
]->p
[i
+faulhaber
-j
], bc
->num
->p
[j
]);
132 value_multiply(pl
->poly
[i
]->p
[i
+faulhaber
-j
],
133 pl
->poly
[i
]->p
[i
+faulhaber
-j
], factor
);
135 Vector_Normalize(pl
->poly
[i
]->p
, i
+faulhaber
+2);
143 struct poly_list
*bernoulli_compute(int n
)
145 return bernoulli_faulhaber_compute(n
, &bernoulli
, 0);
148 struct poly_list
*faulhaber_compute(int n
)
150 return bernoulli_faulhaber_compute(n
, &faulhaber
, 1);
153 /* shift variables in polynomial one down */
154 static void shift(evalue
*e
)
157 if (value_notzero_p(e
->d
))
159 assert(e
->x
.p
->type
== polynomial
);
160 assert(e
->x
.p
->pos
> 1);
162 for (i
= 0; i
< e
->x
.p
->size
; ++i
)
163 shift(&e
->x
.p
->arr
[i
]);
166 static evalue
*shifted_copy(evalue
*src
)
168 evalue
*e
= ALLOC(evalue
);
175 static evalue
*power_sums(struct poly_list
*faulhaber
, evalue
*poly
,
176 Vector
*arg
, Value denom
, int neg
, int alt_neg
)
179 evalue
*base
= affine2evalue(arg
->p
, denom
, arg
->Size
-1);
180 evalue
*sum
= evalue_zero();
182 for (i
= 1; i
< poly
->x
.p
->size
; ++i
) {
183 evalue
*term
= evalue_polynomial(faulhaber
->poly
[i
], base
);
184 evalue
*factor
= shifted_copy(&poly
->x
.p
->arr
[i
]);
186 if (alt_neg
&& (i
% 2))
199 struct Bernoulli_data
{
201 struct evalue_section
*s
;
207 static void Bernoulli_init(unsigned n
, void *cb_data
)
209 struct Bernoulli_data
*data
= (struct Bernoulli_data
*)cb_data
;
212 if (cases
* n
<= data
->size
)
215 data
->size
= cases
* (n
+ 16);
216 data
->s
= REALLOCN(data
->s
, struct evalue_section
, data
->size
);
219 static void Bernoulli_cb(Matrix
*M
, Value
*lower
, Value
*upper
, void *cb_data
)
221 struct Bernoulli_data
*data
= (struct Bernoulli_data
*)cb_data
;
224 evalue
*factor
= NULL
;
225 evalue
*linear
= NULL
;
228 unsigned dim
= M
->NbColumns
-2;
234 assert(data
->ns
+ cases
<= data
->size
);
237 T
= Constraints2Polyhedron(M2
, data
->MaxRays
);
240 POL_ENSURE_VERTICES(T
);
246 assert(lower
!= upper
);
248 row
= Vector_Alloc(dim
+1);
250 if (value_notzero_p(data
->e
->d
)) {
254 assert(data
->e
->x
.p
->type
== polynomial
);
255 if (data
->e
->x
.p
->pos
> 1) {
256 factor
= shifted_copy(data
->e
);
259 factor
= shifted_copy(&data
->e
->x
.p
->arr
[0]);
261 if (!EVALUE_IS_ZERO(*factor
)) {
262 value_absolute(tmp
, upper
[1]);
264 Vector_Combine(lower
+2, upper
+2, row
->p
, tmp
, lower
[1], dim
+1);
265 value_multiply(tmp
, tmp
, lower
[1]);
266 /* upper - lower + 1 */
267 value_addto(row
->p
[dim
], row
->p
[dim
], tmp
);
269 linear
= affine2evalue(row
->p
, tmp
, dim
);
270 emul(factor
, linear
);
272 linear
= evalue_zero();
275 data
->s
[data
->ns
].E
= linear
;
276 data
->s
[data
->ns
].D
= T
;
279 evalue
*poly_u
= NULL
, *poly_l
= NULL
;
281 struct poly_list
*faulhaber
;
282 assert(data
->e
->x
.p
->type
== polynomial
);
283 assert(data
->e
->x
.p
->pos
== 1);
284 faulhaber
= faulhaber_compute(data
->e
->x
.p
->size
-1);
285 /* lower is the constraint
286 * b i - l' >= 0 i >= l'/b = l
287 * upper is the constraint
288 * -a i + u' >= 0 i <= u'/a = u
290 M2
= Matrix_Alloc(3, 2+T
->Dimension
);
291 value_set_si(M2
->p
[0][0], 1);
292 value_set_si(M2
->p
[1][0], 1);
293 value_set_si(M2
->p
[2][0], 1);
297 Vector_Oppose(lower
+2, M2
->p
[0]+1, T
->Dimension
+1);
298 value_subtract(M2
->p
[0][1+T
->Dimension
], M2
->p
[0][1+T
->Dimension
],
300 D
= AddConstraints(M2
->p_Init
, 1, T
, data
->MaxRays
);
306 Vector_Copy(upper
+2, row
->p
, dim
+1);
307 value_oppose(tmp
, upper
[1]);
308 value_addto(row
->p
[dim
], row
->p
[dim
], tmp
);
309 poly_u
= power_sums(faulhaber
, data
->e
, row
, tmp
, 0, 0);
311 Vector_Oppose(lower
+2, row
->p
, dim
+1);
312 extra
= power_sums(faulhaber
, data
->e
, row
, lower
[1], 1, 0);
316 data
->s
[data
->ns
].E
= extra
;
317 data
->s
[data
->ns
].D
= D
;
322 * 1 <= -u -u' - a >= 0
324 Vector_Oppose(upper
+2, M2
->p
[0]+1, T
->Dimension
+1);
325 value_addto(M2
->p
[0][1+T
->Dimension
], M2
->p
[0][1+T
->Dimension
],
327 D
= AddConstraints(M2
->p_Init
, 1, T
, data
->MaxRays
);
333 Vector_Copy(lower
+2, row
->p
, dim
+1);
334 value_addto(row
->p
[dim
], row
->p
[dim
], lower
[1]);
335 poly_l
= power_sums(faulhaber
, data
->e
, row
, lower
[1], 0, 1);
337 Vector_Oppose(upper
+2, row
->p
, dim
+1);
338 value_oppose(tmp
, upper
[1]);
339 extra
= power_sums(faulhaber
, data
->e
, row
, tmp
, 1, 1);
343 data
->s
[data
->ns
].E
= extra
;
344 data
->s
[data
->ns
].D
= D
;
352 Vector_Copy(upper
+2, M2
->p
[0]+1, T
->Dimension
+1);
353 Vector_Copy(lower
+2, M2
->p
[1]+1, T
->Dimension
+1);
354 D
= AddConstraints(M2
->p_Init
, 2, T
, data
->MaxRays
);
359 Vector_Copy(lower
+2, row
->p
, dim
+1);
360 value_addto(row
->p
[dim
], row
->p
[dim
], lower
[1]);
361 poly_l
= power_sums(faulhaber
, data
->e
, row
, lower
[1], 0, 1);
364 Vector_Copy(upper
+2, row
->p
, dim
+1);
365 value_oppose(tmp
, upper
[1]);
366 value_addto(row
->p
[dim
], row
->p
[dim
], tmp
);
367 poly_u
= power_sums(faulhaber
, data
->e
, row
, tmp
, 0, 0);
370 data
->s
[data
->ns
].E
= ALLOC(evalue
);
371 value_init(data
->s
[data
->ns
].E
->d
);
372 evalue_copy(data
->s
[data
->ns
].E
, poly_u
);
373 eadd(poly_l
, data
->s
[data
->ns
].E
);
374 eadd(linear
, data
->s
[data
->ns
].E
);
375 data
->s
[data
->ns
].D
= D
;
380 * l < 1 -l' + b - 1 >= 0
383 Vector_Copy(lower
+2, M2
->p
[0]+1, T
->Dimension
+1);
384 value_addto(M2
->p
[0][1+T
->Dimension
], M2
->p
[0][1+T
->Dimension
], lower
[1]);
385 value_decrement(M2
->p
[0][1+T
->Dimension
], M2
->p
[0][1+T
->Dimension
]);
386 Vector_Oppose(lower
+2, M2
->p
[1]+1, T
->Dimension
+1);
387 value_decrement(M2
->p
[1][1+T
->Dimension
], M2
->p
[1][1+T
->Dimension
]);
388 D
= AddConstraints(M2
->p_Init
, 2, T
, data
->MaxRays
);
393 Vector_Copy(upper
+2, row
->p
, dim
+1);
394 value_oppose(tmp
, upper
[1]);
395 value_addto(row
->p
[dim
], row
->p
[dim
], tmp
);
396 poly_u
= power_sums(faulhaber
, data
->e
, row
, tmp
, 0, 0);
399 eadd(linear
, poly_u
);
400 data
->s
[data
->ns
].E
= poly_u
;
402 data
->s
[data
->ns
].D
= D
;
407 * -u < 1 u' + a - 1 >= 0
408 * 0 < -u -u' - 1 >= 0
411 Vector_Copy(upper
+2, M2
->p
[0]+1, T
->Dimension
+1);
412 value_subtract(M2
->p
[0][1+T
->Dimension
], M2
->p
[0][1+T
->Dimension
],
414 value_decrement(M2
->p
[0][1+T
->Dimension
], M2
->p
[0][1+T
->Dimension
]);
415 Vector_Oppose(upper
+2, M2
->p
[1]+1, T
->Dimension
+1);
416 value_decrement(M2
->p
[1][1+T
->Dimension
], M2
->p
[1][1+T
->Dimension
]);
417 Vector_Copy(lower
+2, M2
->p
[2]+1, T
->Dimension
+1);
418 D
= AddConstraints(M2
->p_Init
, 3, T
, data
->MaxRays
);
423 Vector_Copy(lower
+2, row
->p
, dim
+1);
424 value_addto(row
->p
[dim
], row
->p
[dim
], lower
[1]);
425 poly_l
= power_sums(faulhaber
, data
->e
, row
, lower
[1], 0, 1);
428 eadd(linear
, poly_l
);
429 data
->s
[data
->ns
].E
= poly_l
;
431 data
->s
[data
->ns
].D
= D
;
443 if (factor
!= data
->e
)
449 /* Looks for variable with integer bounds, i.e., with coefficients 0, 1 or -1.
450 * Returns 1 if such a variable is found and puts it in the first position,
451 * possibly changing *P_p and *E_p.
453 static int find_integer_bounds(Polyhedron
**P_p
, evalue
**E_p
, unsigned nvar
)
455 Polyhedron
*P
= *P_p
;
457 unsigned dim
= P
->Dimension
;
460 for (i
= 0; i
< nvar
; ++i
) {
461 for (j
= 0; j
< P
->NbConstraints
; ++j
) {
462 if (value_zero_p(P
->Constraint
[j
][1+i
]))
464 if (value_one_p(P
->Constraint
[j
][1+i
]))
466 if (value_mone_p(P
->Constraint
[j
][1+i
]))
470 if (j
== P
->NbConstraints
)
477 P
= Polyhedron_Copy(P
);
478 Polyhedron_ExchangeColumns(P
, 1, 1+i
);
481 if (value_zero_p(E
->d
)) {
483 subs
= ALLOCN(evalue
*, dim
);
484 for (j
= 0; j
< dim
; ++j
)
485 subs
[j
] = evalue_var(j
);
489 E
= evalue_dup(*E_p
);
490 evalue_substitute(E
, subs
);
491 for (j
= 0; j
< dim
; ++j
)
492 evalue_free(subs
[j
]);
500 static evalue
*sum_over_polytope(Polyhedron
*P
, evalue
*E
, unsigned nvar
,
501 struct Bernoulli_data
*data
,
502 struct barvinok_options
*options
)
504 unsigned dim
= P
->Dimension
- 1;
507 if (value_zero_p(P
->Constraint
[0][0]) &&
508 value_notzero_p(P
->Constraint
[0][1])) {
511 value_set_si(res
->d
, 0);
512 res
->x
.p
= new_enode(partition
, 2, dim
);
513 EVALUE_SET_DOMAIN(res
->x
.p
->arr
[0], Polyhedron_Project(P
, dim
));
514 evalue_copy(&res
->x
.p
->arr
[1], E
);
515 reduce_evalue_in_domain(&res
->x
.p
->arr
[1], P
);
516 shift(&res
->x
.p
->arr
[1]);
521 for_each_lower_upper_bound(P
, Bernoulli_init
, Bernoulli_cb
, data
);
523 res
= evalue_from_section_array(data
->s
, data
->ns
);
527 evalue
*tmp
= Bernoulli_sum_evalue(res
, nvar
-1, options
);
535 evalue
*Bernoulli_sum_evalue(evalue
*e
, unsigned nvar
,
536 struct barvinok_options
*options
)
538 struct Bernoulli_data data
;
540 evalue
*sum
= evalue_zero();
542 if (EVALUE_IS_ZERO(*e
))
550 assert(value_zero_p(e
->d
));
551 assert(e
->x
.p
->type
== partition
);
554 data
.s
= ALLOCN(struct evalue_section
, data
.size
);
555 data
.MaxRays
= options
->MaxRays
;
557 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
559 for (D
= EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]); D
; D
= D
->next
) {
560 evalue
*E
= &e
->x
.p
->arr
[2*i
+1];
562 Polyhedron
*next
= D
->next
;
568 integer_bounds
= find_integer_bounds(&P
, &E
, nvar
);
569 if (options
->approximation_method
== BV_APPROX_NONE
&&
574 evalue
*tmp
= sum_over_polytope(P
, E
, nvar
, &data
, options
);
581 if (E
!= &e
->x
.p
->arr
[2*i
+1])
601 evalue
*Bernoulli_sum(Polyhedron
*P
, Polyhedron
*C
,
602 struct barvinok_options
*options
)
608 if (emptyQ(P
) || emptyQ(C
))
609 return evalue_zero();
611 CA
= align_context(C
, P
->Dimension
, options
->MaxRays
);
612 D
= DomainIntersection(P
, CA
, options
->MaxRays
);
617 return evalue_zero();
621 e
.x
.p
= new_enode(partition
, 2, P
->Dimension
);
622 EVALUE_SET_DOMAIN(e
.x
.p
->arr
[0], D
);
623 evalue_set_si(&e
.x
.p
->arr
[1], 1, 1);
624 sum
= Bernoulli_sum_evalue(&e
, P
->Dimension
- C
->Dimension
, options
);
625 free_evalue_refs(&e
);