configure.in: don't set with_{poly,pip}lib_prefix from with_default_prefix
[barvinok.git] / util.c
blob6cf4b78e8c720d2958edb5d3aa6961a42badc142
1 #include <stdlib.h>
2 #include <assert.h>
3 #include <barvinok/util.h>
4 #include <barvinok/options.h>
5 #include <polylib/ranking.h>
6 #include "config.h"
8 #define ALLOC(type) (type*)malloc(sizeof(type))
9 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
11 #ifdef __GNUC__
12 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
13 #else
14 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
15 #endif
17 void manual_count(Polyhedron *P, Value* result)
19 Polyhedron *U = Universe_Polyhedron(0);
20 Enumeration *en = Polyhedron_Enumerate(P,U,1024,NULL);
21 Value *v = compute_poly(en,NULL);
22 value_assign(*result, *v);
23 value_clear(*v);
24 free(v);
25 Enumeration_Free(en);
26 Polyhedron_Free(U);
29 #include <barvinok/evalue.h>
30 #include <barvinok/util.h>
31 #include <barvinok/barvinok.h>
33 /* Return random value between 0 and max-1 inclusive
35 int random_int(int max) {
36 return (int) (((double)(max))*rand()/(RAND_MAX+1.0));
39 Polyhedron *Polyhedron_Read(unsigned MaxRays)
41 int vertices = 0;
42 unsigned NbRows, NbColumns;
43 Matrix *M;
44 Polyhedron *P;
45 char s[128];
47 while (fgets(s, sizeof(s), stdin)) {
48 if (*s == '#')
49 continue;
50 if (strncasecmp(s, "vertices", sizeof("vertices")-1) == 0)
51 vertices = 1;
52 if (sscanf(s, "%u %u", &NbRows, &NbColumns) == 2)
53 break;
55 if (feof(stdin))
56 return NULL;
57 M = Matrix_Alloc(NbRows,NbColumns);
58 Matrix_Read_Input(M);
59 if (vertices)
60 P = Rays2Polyhedron(M, MaxRays);
61 else
62 P = Constraints2Polyhedron(M, MaxRays);
63 Matrix_Free(M);
64 return P;
67 /* Inplace polarization
69 void Polyhedron_Polarize(Polyhedron *P)
71 unsigned NbRows = P->NbConstraints + P->NbRays;
72 int i;
73 Value **q;
75 q = (Value **)malloc(NbRows * sizeof(Value *));
76 assert(q);
77 for (i = 0; i < P->NbRays; ++i)
78 q[i] = P->Ray[i];
79 for (; i < NbRows; ++i)
80 q[i] = P->Constraint[i-P->NbRays];
81 P->NbConstraints = NbRows - P->NbConstraints;
82 P->NbRays = NbRows - P->NbRays;
83 free(P->Constraint);
84 P->Constraint = q;
85 P->Ray = q + P->NbConstraints;
89 * Rather general polar
90 * We can optimize it significantly if we assume that
91 * P includes zero
93 * Also, we calculate the polar as defined in Schrijver
94 * The opposite should probably work as well and would
95 * eliminate the need for multiplying by -1
97 Polyhedron* Polyhedron_Polar(Polyhedron *P, unsigned NbMaxRays)
99 int i;
100 Value mone;
101 unsigned dim = P->Dimension + 2;
102 Matrix *M = Matrix_Alloc(P->NbRays, dim);
104 assert(M);
105 value_init(mone);
106 value_set_si(mone, -1);
107 for (i = 0; i < P->NbRays; ++i) {
108 Vector_Scale(P->Ray[i], M->p[i], mone, dim);
109 value_multiply(M->p[i][0], M->p[i][0], mone);
110 value_multiply(M->p[i][dim-1], M->p[i][dim-1], mone);
112 P = Constraints2Polyhedron(M, NbMaxRays);
113 assert(P);
114 Matrix_Free(M);
115 value_clear(mone);
116 return P;
120 * Returns the supporting cone of P at the vertex with index v
122 Polyhedron* supporting_cone(Polyhedron *P, int v)
124 Matrix *M;
125 Value tmp;
126 int i, n, j;
127 unsigned char *supporting = (unsigned char *)malloc(P->NbConstraints);
128 unsigned dim = P->Dimension + 2;
130 assert(v >=0 && v < P->NbRays);
131 assert(value_pos_p(P->Ray[v][dim-1]));
132 assert(supporting);
134 value_init(tmp);
135 for (i = 0, n = 0; i < P->NbConstraints; ++i) {
136 Inner_Product(P->Constraint[i] + 1, P->Ray[v] + 1, dim - 1, &tmp);
137 if ((supporting[i] = value_zero_p(tmp)))
138 ++n;
140 assert(n >= dim - 2);
141 value_clear(tmp);
142 M = Matrix_Alloc(n, dim);
143 assert(M);
144 for (i = 0, j = 0; i < P->NbConstraints; ++i)
145 if (supporting[i]) {
146 value_set_si(M->p[j][dim-1], 0);
147 Vector_Copy(P->Constraint[i], M->p[j++], dim-1);
149 free(supporting);
150 P = Constraints2Polyhedron(M, P->NbRays+1);
151 assert(P);
152 Matrix_Free(M);
153 return P;
156 #define INT_BITS (sizeof(unsigned) * 8)
158 unsigned *supporting_constraints(Matrix *Constraints, Param_Vertices *v, int *n)
160 Value lcm, tmp, tmp2;
161 unsigned dim = Constraints->NbColumns;
162 unsigned nparam = v->Vertex->NbColumns - 2;
163 unsigned nvar = dim - nparam - 2;
164 int len = (Constraints->NbRows+INT_BITS-1)/INT_BITS;
165 unsigned *supporting = (unsigned *)calloc(len, sizeof(unsigned));
166 int i, j;
167 Vector *row;
168 int ix;
169 unsigned bx;
171 assert(supporting);
172 row = Vector_Alloc(nparam+1);
173 assert(row);
174 value_init(lcm);
175 value_init(tmp);
176 value_init(tmp2);
177 value_set_si(lcm, 1);
178 for (i = 0, *n = 0, ix = 0, bx = MSB; i < Constraints->NbRows; ++i) {
179 Vector_Set(row->p, 0, nparam+1);
180 for (j = 0 ; j < nvar; ++j) {
181 value_set_si(tmp, 1);
182 value_assign(tmp2, Constraints->p[i][j+1]);
183 if (value_ne(lcm, v->Vertex->p[j][nparam+1])) {
184 value_assign(tmp, lcm);
185 value_lcm(lcm, lcm, v->Vertex->p[j][nparam+1]);
186 value_division(tmp, lcm, tmp);
187 value_multiply(tmp2, tmp2, lcm);
188 value_division(tmp2, tmp2, v->Vertex->p[j][nparam+1]);
190 Vector_Combine(row->p, v->Vertex->p[j], row->p,
191 tmp, tmp2, nparam+1);
193 value_set_si(tmp, 1);
194 Vector_Combine(row->p, Constraints->p[i]+1+nvar, row->p, tmp, lcm, nparam+1);
195 for (j = 0; j < nparam+1; ++j)
196 if (value_notzero_p(row->p[j]))
197 break;
198 if (j == nparam + 1) {
199 supporting[ix] |= bx;
200 ++*n;
202 NEXT(ix, bx);
204 assert(*n >= nvar);
205 value_clear(tmp);
206 value_clear(tmp2);
207 value_clear(lcm);
208 Vector_Free(row);
210 return supporting;
213 Polyhedron* supporting_cone_p(Polyhedron *P, Param_Vertices *v)
215 Matrix *M;
216 unsigned dim = P->Dimension + 2;
217 unsigned nparam = v->Vertex->NbColumns - 2;
218 unsigned nvar = dim - nparam - 2;
219 int i, n, j;
220 int ix;
221 unsigned bx;
222 unsigned *supporting;
223 Matrix View;
225 Polyhedron_Matrix_View(P, &View, P->NbConstraints);
226 supporting = supporting_constraints(&View, v, &n);
227 M = Matrix_Alloc(n, nvar+2);
228 assert(M);
229 for (i = 0, j = 0, ix = 0, bx = MSB; i < P->NbConstraints; ++i) {
230 if (supporting[ix] & bx) {
231 value_set_si(M->p[j][nvar+1], 0);
232 Vector_Copy(P->Constraint[i], M->p[j++], nvar+1);
234 NEXT(ix, bx);
236 free(supporting);
237 P = Constraints2Polyhedron(M, P->NbRays+1);
238 assert(P);
239 Matrix_Free(M);
240 return P;
243 Polyhedron* triangulate_cone(Polyhedron *P, unsigned NbMaxCons)
245 struct barvinok_options *options = barvinok_options_new_with_defaults();
246 options->MaxRays = NbMaxCons;
247 P = triangulate_cone_with_options(P, options);
248 barvinok_options_free(options);
249 return P;
252 Polyhedron* triangulate_cone_with_options(Polyhedron *P,
253 struct barvinok_options *options)
255 const static int MAX_TRY=10;
256 int i, j, r, n, t;
257 Value tmp;
258 unsigned dim = P->Dimension;
259 Matrix *M = Matrix_Alloc(P->NbRays+1, dim+3);
260 Matrix *M2, *M3;
261 Polyhedron *L, *R, *T;
262 assert(P->NbEq == 0);
264 L = NULL;
265 R = NULL;
266 value_init(tmp);
268 Vector_Set(M->p[0]+1, 0, dim+1);
269 value_set_si(M->p[0][0], 1);
270 value_set_si(M->p[0][dim+2], 1);
271 Vector_Set(M->p[P->NbRays]+1, 0, dim+2);
272 value_set_si(M->p[P->NbRays][0], 1);
273 value_set_si(M->p[P->NbRays][dim+1], 1);
275 for (i = 0, r = 1; i < P->NbRays; ++i) {
276 if (value_notzero_p(P->Ray[i][dim+1]))
277 continue;
278 Vector_Copy(P->Ray[i], M->p[r], dim+1);
279 value_set_si(M->p[r][dim+2], 0);
280 ++r;
283 M2 = Matrix_Alloc(dim+1, dim+2);
285 t = 0;
286 if (options->try_Delaunay_triangulation) {
287 /* Delaunay triangulation */
288 for (r = 1; r < P->NbRays; ++r) {
289 Inner_Product(M->p[r]+1, M->p[r]+1, dim, &tmp);
290 value_assign(M->p[r][dim+1], tmp);
292 M3 = Matrix_Copy(M);
293 L = Rays2Polyhedron(M3, options->MaxRays);
294 Matrix_Free(M3);
295 ++t;
296 } else {
297 try_again:
298 /* Usually R should still be 0 */
299 Domain_Free(R);
300 Polyhedron_Free(L);
301 for (r = 1; r < P->NbRays; ++r) {
302 value_set_si(M->p[r][dim+1], random_int((t+1)*dim*P->NbRays)+1);
304 M3 = Matrix_Copy(M);
305 L = Rays2Polyhedron(M3, options->MaxRays);
306 Matrix_Free(M3);
307 ++t;
309 assert(t <= MAX_TRY);
311 R = NULL;
312 n = 0;
314 POL_ENSURE_FACETS(L);
315 for (i = 0; i < L->NbConstraints; ++i) {
316 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
317 if (value_negz_p(L->Constraint[i][dim+1]))
318 continue;
319 if (value_notzero_p(L->Constraint[i][dim+2]))
320 continue;
321 for (j = 1, r = 1; j < M->NbRows; ++j) {
322 Inner_Product(M->p[j]+1, L->Constraint[i]+1, dim+1, &tmp);
323 if (value_notzero_p(tmp))
324 continue;
325 if (r > dim)
326 goto try_again;
327 Vector_Copy(M->p[j]+1, M2->p[r]+1, dim);
328 value_set_si(M2->p[r][0], 1);
329 value_set_si(M2->p[r][dim+1], 0);
330 ++r;
332 assert(r == dim+1);
333 Vector_Set(M2->p[0]+1, 0, dim);
334 value_set_si(M2->p[0][0], 1);
335 value_set_si(M2->p[0][dim+1], 1);
336 T = Rays2Polyhedron(M2, P->NbConstraints+1);
337 T->next = R;
338 R = T;
339 ++n;
341 Matrix_Free(M2);
343 Polyhedron_Free(L);
344 value_clear(tmp);
345 Matrix_Free(M);
347 return R;
350 void check_triangulization(Polyhedron *P, Polyhedron *T)
352 Polyhedron *C, *D, *E, *F, *G, *U;
353 for (C = T; C; C = C->next) {
354 if (C == T)
355 U = C;
356 else
357 U = DomainConvex(DomainUnion(U, C, 100), 100);
358 for (D = C->next; D; D = D->next) {
359 F = C->next;
360 G = D->next;
361 C->next = NULL;
362 D->next = NULL;
363 E = DomainIntersection(C, D, 600);
364 assert(E->NbRays == 0 || E->NbEq >= 1);
365 Polyhedron_Free(E);
366 C->next = F;
367 D->next = G;
370 assert(PolyhedronIncludes(U, P));
371 assert(PolyhedronIncludes(P, U));
374 /* Computes x, y and g such that g = gcd(a,b) and a*x+b*y = g */
375 void Extended_Euclid(Value a, Value b, Value *x, Value *y, Value *g)
377 Value c, d, e, f, tmp;
379 value_init(c);
380 value_init(d);
381 value_init(e);
382 value_init(f);
383 value_init(tmp);
384 value_absolute(c, a);
385 value_absolute(d, b);
386 value_set_si(e, 1);
387 value_set_si(f, 0);
388 while(value_pos_p(d)) {
389 value_division(tmp, c, d);
390 value_multiply(tmp, tmp, f);
391 value_subtract(e, e, tmp);
392 value_division(tmp, c, d);
393 value_multiply(tmp, tmp, d);
394 value_subtract(c, c, tmp);
395 value_swap(c, d);
396 value_swap(e, f);
398 value_assign(*g, c);
399 if (value_zero_p(a))
400 value_set_si(*x, 0);
401 else if (value_pos_p(a))
402 value_assign(*x, e);
403 else value_oppose(*x, e);
404 if (value_zero_p(b))
405 value_set_si(*y, 0);
406 else {
407 value_multiply(tmp, a, *x);
408 value_subtract(tmp, c, tmp);
409 value_division(*y, tmp, b);
411 value_clear(c);
412 value_clear(d);
413 value_clear(e);
414 value_clear(f);
415 value_clear(tmp);
418 static int unimodular_complete_1(Matrix *m)
420 Value g, b, c, old, tmp;
421 unsigned i, j;
422 int ok;
424 value_init(b);
425 value_init(c);
426 value_init(g);
427 value_init(old);
428 value_init(tmp);
429 value_assign(g, m->p[0][0]);
430 for (i = 1; value_zero_p(g) && i < m->NbColumns; ++i) {
431 for (j = 0; j < m->NbColumns; ++j) {
432 if (j == i-1)
433 value_set_si(m->p[i][j], 1);
434 else
435 value_set_si(m->p[i][j], 0);
437 value_assign(g, m->p[0][i]);
439 for (; i < m->NbColumns; ++i) {
440 value_assign(old, g);
441 Extended_Euclid(old, m->p[0][i], &c, &b, &g);
442 value_oppose(b, b);
443 for (j = 0; j < m->NbColumns; ++j) {
444 if (j < i) {
445 value_multiply(tmp, m->p[0][j], b);
446 value_division(m->p[i][j], tmp, old);
447 } else if (j == i)
448 value_assign(m->p[i][j], c);
449 else
450 value_set_si(m->p[i][j], 0);
453 ok = value_one_p(g);
454 value_clear(b);
455 value_clear(c);
456 value_clear(g);
457 value_clear(old);
458 value_clear(tmp);
459 return ok;
462 int unimodular_complete(Matrix *M, int row)
464 int r;
465 int ok = 1;
466 Matrix *H, *Q, *U;
468 if (row == 1)
469 return unimodular_complete_1(M);
471 left_hermite(M, &H, &Q, &U);
472 Matrix_Free(U);
473 for (r = 0; ok && r < row; ++r)
474 if (value_notone_p(H->p[r][r]))
475 ok = 0;
476 Matrix_Free(H);
477 for (r = row; r < M->NbRows; ++r)
478 Vector_Copy(Q->p[r], M->p[r], M->NbColumns);
479 Matrix_Free(Q);
480 return ok;
484 * left_hermite may leave positive entries below the main diagonal in H.
485 * This function postprocesses the output of left_hermite to make
486 * the non-zero entries below the main diagonal negative.
488 void neg_left_hermite(Matrix *A, Matrix **H_p, Matrix **Q_p, Matrix **U_p)
490 int row, col, i, j;
491 Matrix *H, *U, *Q;
493 left_hermite(A, &H, &Q, &U);
494 *H_p = H;
495 *Q_p = Q;
496 *U_p = U;
498 for (row = 0, col = 0; col < H->NbColumns; ++col, ++row) {
499 while (value_zero_p(H->p[row][col]))
500 ++row;
501 for (i = 0; i < col; ++i) {
502 if (value_negz_p(H->p[row][i]))
503 continue;
505 /* subtract column col from column i in H and U */
506 for (j = 0; j < H->NbRows; ++j)
507 value_subtract(H->p[j][i], H->p[j][i], H->p[j][col]);
508 for (j = 0; j < U->NbRows; ++j)
509 value_subtract(U->p[j][i], U->p[j][i], U->p[j][col]);
511 /* add row i to row col in Q */
512 for (j = 0; j < Q->NbColumns; ++j)
513 value_addto(Q->p[col][j], Q->p[col][j], Q->p[i][j]);
519 * Returns a full-dimensional polyhedron with the same number
520 * of integer points as P
522 Polyhedron *remove_equalities(Polyhedron *P, unsigned MaxRays)
524 Polyhedron *Q = Polyhedron_Copy(P);
525 unsigned dim = P->Dimension;
526 Matrix *m1, *m2;
527 int i;
529 if (Q->NbEq == 0)
530 return Q;
532 Q = DomainConstraintSimplify(Q, MaxRays);
533 if (emptyQ2(Q))
534 return Q;
536 m1 = Matrix_Alloc(dim, dim);
537 for (i = 0; i < Q->NbEq; ++i)
538 Vector_Copy(Q->Constraint[i]+1, m1->p[i], dim);
540 /* m1 may not be unimodular, but we won't be throwing anything away */
541 unimodular_complete(m1, Q->NbEq);
543 m2 = Matrix_Alloc(dim+1-Q->NbEq, dim+1);
544 for (i = Q->NbEq; i < dim; ++i)
545 Vector_Copy(m1->p[i], m2->p[i-Q->NbEq], dim);
546 value_set_si(m2->p[dim-Q->NbEq][dim], 1);
547 Matrix_Free(m1);
549 P = Polyhedron_Image(Q, m2, MaxRays);
550 Matrix_Free(m2);
551 Polyhedron_Free(Q);
553 return P;
557 * Returns a full-dimensional polyhedron with the same number
558 * of integer points as P
559 * nvar specifies the number of variables
560 * The remaining dimensions are assumed to be parameters
561 * Destroys P
562 * factor is NbEq x (nparam+2) matrix, containing stride constraints
563 * on the parameters; column nparam is the constant;
564 * column nparam+1 is the stride
566 * if factor is NULL, only remove equalities that don't affect
567 * the number of points
569 Polyhedron *remove_equalities_p(Polyhedron *P, unsigned nvar, Matrix **factor,
570 unsigned MaxRays)
572 Value g;
573 Polyhedron *Q;
574 unsigned dim = P->Dimension;
575 Matrix *m1, *m2, *f;
576 int i, j;
578 if (P->NbEq == 0)
579 return P;
581 m1 = Matrix_Alloc(nvar, nvar);
582 P = DomainConstraintSimplify(P, MaxRays);
583 if (factor) {
584 f = Matrix_Alloc(P->NbEq, dim-nvar+2);
585 *factor = f;
587 value_init(g);
588 for (i = 0, j = 0; i < P->NbEq; ++i) {
589 if (First_Non_Zero(P->Constraint[i]+1, nvar) == -1)
590 continue;
592 Vector_Gcd(P->Constraint[i]+1, nvar, &g);
593 if (!factor && value_notone_p(g))
594 continue;
596 if (factor) {
597 Vector_Copy(P->Constraint[i]+1+nvar, f->p[j], dim-nvar+1);
598 value_assign(f->p[j][dim-nvar+1], g);
601 Vector_Copy(P->Constraint[i]+1, m1->p[j], nvar);
603 ++j;
605 value_clear(g);
607 unimodular_complete(m1, j);
609 m2 = Matrix_Alloc(dim+1-j, dim+1);
610 for (i = 0; i < nvar-j ; ++i)
611 Vector_Copy(m1->p[i+j], m2->p[i], nvar);
612 Matrix_Free(m1);
613 for (i = nvar-j; i <= dim-j; ++i)
614 value_set_si(m2->p[i][i+j], 1);
616 Q = Polyhedron_Image(P, m2, MaxRays);
617 Matrix_Free(m2);
618 Polyhedron_Free(P);
620 return Q;
623 void Line_Length(Polyhedron *P, Value *len)
625 Value tmp, pos, neg;
626 int p = 0, n = 0;
627 int i;
629 assert(P->Dimension == 1);
631 value_init(tmp);
632 value_init(pos);
633 value_init(neg);
635 for (i = 0; i < P->NbConstraints; ++i) {
636 value_oppose(tmp, P->Constraint[i][2]);
637 if (value_pos_p(P->Constraint[i][1])) {
638 mpz_cdiv_q(tmp, tmp, P->Constraint[i][1]);
639 if (!p || value_gt(tmp, pos))
640 value_assign(pos, tmp);
641 p = 1;
642 } else if (value_neg_p(P->Constraint[i][1])) {
643 mpz_fdiv_q(tmp, tmp, P->Constraint[i][1]);
644 if (!n || value_lt(tmp, neg))
645 value_assign(neg, tmp);
646 n = 1;
648 if (n && p) {
649 value_subtract(tmp, neg, pos);
650 value_increment(*len, tmp);
651 } else
652 value_set_si(*len, -1);
655 value_clear(tmp);
656 value_clear(pos);
657 value_clear(neg);
661 * Factors the polyhedron P into polyhedra Q_i such that
662 * the number of integer points in P is equal to the product
663 * of the number of integer points in the individual Q_i
665 * If no factors can be found, NULL is returned.
666 * Otherwise, a linked list of the factors is returned.
668 * If there are factors and if T is not NULL, then a matrix will be
669 * returned through T expressing the old variables in terms of the
670 * new variables as they appear in the sequence of factors.
672 * The algorithm works by first computing the Hermite normal form
673 * and then grouping columns linked by one or more constraints together,
674 * where a constraints "links" two or more columns if the constraint
675 * has nonzero coefficients in the columns.
677 Polyhedron* Polyhedron_Factor(Polyhedron *P, unsigned nparam, Matrix **T,
678 unsigned NbMaxRays)
680 int i, j, k;
681 Matrix *M, *H, *Q, *U;
682 int *pos; /* for each column: row position of pivot */
683 int *group; /* group to which a column belongs */
684 int *cnt; /* number of columns in the group */
685 int *rowgroup; /* group to which a constraint belongs */
686 int nvar = P->Dimension - nparam;
687 Polyhedron *F = NULL;
689 if (nvar <= 1)
690 return NULL;
692 NALLOC(pos, nvar);
693 NALLOC(group, nvar);
694 NALLOC(cnt, nvar);
695 NALLOC(rowgroup, P->NbConstraints);
697 M = Matrix_Alloc(P->NbConstraints, nvar);
698 for (i = 0; i < P->NbConstraints; ++i)
699 Vector_Copy(P->Constraint[i]+1, M->p[i], nvar);
700 left_hermite(M, &H, &Q, &U);
701 Matrix_Free(M);
702 Matrix_Free(Q);
704 for (i = 0; i < P->NbConstraints; ++i)
705 rowgroup[i] = -1;
706 for (i = 0, j = 0; i < H->NbColumns; ++i) {
707 for ( ; j < H->NbRows; ++j)
708 if (value_notzero_p(H->p[j][i]))
709 break;
710 assert (j < H->NbRows);
711 pos[i] = j;
713 for (i = 0; i < nvar; ++i) {
714 group[i] = i;
715 cnt[i] = 1;
717 for (i = 0; i < H->NbColumns && cnt[0] < nvar; ++i) {
718 if (rowgroup[pos[i]] == -1)
719 rowgroup[pos[i]] = i;
720 for (j = pos[i]+1; j < H->NbRows; ++j) {
721 if (value_zero_p(H->p[j][i]))
722 continue;
723 if (rowgroup[j] != -1)
724 continue;
725 rowgroup[j] = group[i];
726 for (k = i+1; k < H->NbColumns && j >= pos[k]; ++k) {
727 int g = group[k];
728 while (cnt[g] == 0)
729 g = group[g];
730 group[k] = g;
731 if (group[k] != group[i] && value_notzero_p(H->p[j][k])) {
732 assert(cnt[group[k]] != 0);
733 assert(cnt[group[i]] != 0);
734 if (group[i] < group[k]) {
735 cnt[group[i]] += cnt[group[k]];
736 cnt[group[k]] = 0;
737 group[k] = group[i];
738 } else {
739 cnt[group[k]] += cnt[group[i]];
740 cnt[group[i]] = 0;
741 group[i] = group[k];
748 if (cnt[0] != nvar) {
749 /* Extract out pure context constraints separately */
750 Polyhedron **next = &F;
751 int tot_d = 0;
752 if (T)
753 *T = Matrix_Alloc(nvar, nvar);
754 for (i = nparam ? -1 : 0; i < nvar; ++i) {
755 int d;
757 if (i == -1) {
758 for (j = 0, k = 0; j < P->NbConstraints; ++j)
759 if (rowgroup[j] == -1) {
760 if (First_Non_Zero(P->Constraint[j]+1+nvar,
761 nparam) == -1)
762 rowgroup[j] = -2;
763 else
764 ++k;
766 if (k == 0)
767 continue;
768 d = 0;
769 } else {
770 if (cnt[i] == 0)
771 continue;
772 d = cnt[i];
773 for (j = 0, k = 0; j < P->NbConstraints; ++j)
774 if (rowgroup[j] >= 0 && group[rowgroup[j]] == i) {
775 rowgroup[j] = i;
776 ++k;
780 if (T)
781 for (j = 0; j < nvar; ++j) {
782 int l, m;
783 for (l = 0, m = 0; m < d; ++l) {
784 if (group[l] != i)
785 continue;
786 value_assign((*T)->p[j][tot_d+m++], U->p[j][l]);
790 M = Matrix_Alloc(k, d+nparam+2);
791 for (j = 0, k = 0; j < P->NbConstraints; ++j) {
792 int l, m;
793 if (rowgroup[j] != i)
794 continue;
795 value_assign(M->p[k][0], P->Constraint[j][0]);
796 for (l = 0, m = 0; m < d; ++l) {
797 if (group[l] != i)
798 continue;
799 value_assign(M->p[k][1+m++], H->p[j][l]);
801 Vector_Copy(P->Constraint[j]+1+nvar, M->p[k]+1+m, nparam+1);
802 ++k;
804 *next = Constraints2Polyhedron(M, NbMaxRays);
805 next = &(*next)->next;
806 Matrix_Free(M);
807 tot_d += d;
810 Matrix_Free(U);
811 Matrix_Free(H);
812 free(pos);
813 free(group);
814 free(cnt);
815 free(rowgroup);
816 return F;
820 * Project on final dim dimensions
822 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim)
824 int i;
825 int remove = P->Dimension - dim;
826 Matrix *T;
827 Polyhedron *I;
829 if (P->Dimension == dim)
830 return Polyhedron_Copy(P);
832 T = Matrix_Alloc(dim+1, P->Dimension+1);
833 for (i = 0; i < dim+1; ++i)
834 value_set_si(T->p[i][i+remove], 1);
835 I = Polyhedron_Image(P, T, P->NbConstraints);
836 Matrix_Free(T);
837 return I;
840 /* Constructs a new constraint that ensures that
841 * the first constraint is (strictly) smaller than
842 * the second.
844 static void smaller_constraint(Value *a, Value *b, Value *c, int pos, int shift,
845 int len, int strict, Value *tmp)
847 value_oppose(*tmp, b[pos+1]);
848 value_set_si(c[0], 1);
849 Vector_Combine(a+1+shift, b+1+shift, c+1, *tmp, a[pos+1], len-shift-1);
850 if (strict)
851 value_decrement(c[len-shift-1], c[len-shift-1]);
852 ConstraintSimplify(c, c, len-shift, tmp);
856 /* For each pair of lower and upper bounds on the first variable,
857 * calls fn with the set of constraints on the remaining variables
858 * where these bounds are active, i.e., (stricly) larger/smaller than
859 * the other lower/upper bounds, the lower and upper bound and the
860 * call back data.
862 * If the first variable is equal to an affine combination of the
863 * other variables then fn is called with both lower and upper
864 * pointing to the corresponding equality.
866 void for_each_lower_upper_bound(Polyhedron *P, for_each_lower_upper_bound_fn fn,
867 void *cb_data)
869 unsigned dim = P->Dimension;
870 Matrix *M;
871 int *pos;
872 int i, j, p, n, z;
873 int k, l, k2, l2, q;
874 Value g;
876 if (value_zero_p(P->Constraint[0][0]) &&
877 value_notzero_p(P->Constraint[0][1])) {
878 M = Matrix_Alloc(P->NbConstraints-1, dim-1+2);
879 for (i = 1; i < P->NbConstraints; ++i) {
880 value_assign(M->p[i-1][0], P->Constraint[i][0]);
881 Vector_Copy(P->Constraint[i]+2, M->p[i-1]+1, dim);
883 fn(M, P->Constraint[0], P->Constraint[0], cb_data);
884 Matrix_Free(M);
885 return;
888 value_init(g);
889 pos = ALLOCN(int, P->NbConstraints);
891 for (i = 0, z = 0; i < P->NbConstraints; ++i)
892 if (value_zero_p(P->Constraint[i][1]))
893 pos[P->NbConstraints-1 - z++] = i;
894 /* put those with positive coefficients first; number: p */
895 for (i = 0, p = 0, n = P->NbConstraints-z-1; i < P->NbConstraints; ++i)
896 if (value_pos_p(P->Constraint[i][1]))
897 pos[p++] = i;
898 else if (value_neg_p(P->Constraint[i][1]))
899 pos[n--] = i;
900 n = P->NbConstraints-z-p;
901 assert (p >= 1 && n >= 1);
903 M = Matrix_Alloc((p-1) + (n-1) + z + 1, dim-1+2);
904 for (i = 0; i < z; ++i) {
905 value_assign(M->p[i][0], P->Constraint[pos[P->NbConstraints-1 - i]][0]);
906 Vector_Copy(P->Constraint[pos[P->NbConstraints-1 - i]]+2,
907 M->p[i]+1, dim);
909 for (k = 0; k < p; ++k) {
910 for (k2 = 0; k2 < p; ++k2) {
911 if (k2 == k)
912 continue;
913 q = 1 + z + k2 - (k2 > k);
914 smaller_constraint(
915 P->Constraint[pos[k]],
916 P->Constraint[pos[k2]],
917 M->p[q], 0, 1, dim+2, k2 > k, &g);
919 for (l = p; l < p+n; ++l) {
920 for (l2 = p; l2 < p+n; ++l2) {
921 if (l2 == l)
922 continue;
923 q = 1 + z + l2-1 - (l2 > l);
924 smaller_constraint(
925 P->Constraint[pos[l2]],
926 P->Constraint[pos[l]],
927 M->p[q], 0, 1, dim+2, l2 > l, &g);
929 smaller_constraint(P->Constraint[pos[k]],
930 P->Constraint[pos[l]],
931 M->p[z], 0, 1, dim+2, 0, &g);
932 fn(M, P->Constraint[pos[k]], P->Constraint[pos[l]], cb_data);
935 Matrix_Free(M);
937 free(pos);
938 value_clear(g);
941 struct section { Polyhedron * D; evalue E; };
943 struct PLL_data {
944 int nd;
945 unsigned MaxRays;
946 Polyhedron *C;
947 evalue mone;
948 struct section *s;
951 static void PLL_cb(Matrix *M, Value *lower, Value *upper, void *cb_data)
953 struct PLL_data *data = (struct PLL_data *)cb_data;
954 unsigned dim = M->NbColumns-1;
955 Matrix *M2;
956 Polyhedron *T;
957 evalue *L, *U;
959 M2 = Matrix_Copy(M);
960 T = Constraints2Polyhedron(M2, data->MaxRays);
961 Matrix_Free(M2);
962 data->s[data->nd].D = DomainIntersection(T, data->C, data->MaxRays);
963 Domain_Free(T);
965 POL_ENSURE_VERTICES(data->s[data->nd].D);
966 if (emptyQ(data->s[data->nd].D)) {
967 Polyhedron_Free(data->s[data->nd].D);
968 return;
970 L = bv_ceil3(lower+1+1, dim-1+1, lower[0+1], data->s[data->nd].D);
971 U = bv_ceil3(upper+1+1, dim-1+1, upper[0+1], data->s[data->nd].D);
972 eadd(L, U);
973 eadd(&data->mone, U);
974 emul(&data->mone, U);
975 data->s[data->nd].E = *U;
976 evalue_free(L);
977 free(U);
978 ++data->nd;
981 static evalue *ParamLine_Length_mod(Polyhedron *P, Polyhedron *C, unsigned MaxRays)
983 unsigned dim = P->Dimension;
984 unsigned nvar = dim - C->Dimension;
985 int ssize = (P->NbConstraints+1) * (P->NbConstraints+1) / 4;
986 struct PLL_data data;
987 evalue *F;
988 int k;
990 assert(nvar == 1);
992 value_init(data.mone.d);
993 evalue_set_si(&data.mone, -1, 1);
995 data.s = ALLOCN(struct section, ssize);
996 data.nd = 0;
997 data.MaxRays = MaxRays;
998 data.C = C;
999 for_each_lower_upper_bound(P, PLL_cb, &data);
1001 F = ALLOC(evalue);
1002 value_init(F->d);
1003 value_set_si(F->d, 0);
1004 F->x.p = new_enode(partition, 2*data.nd, dim-nvar);
1005 for (k = 0; k < data.nd; ++k) {
1006 EVALUE_SET_DOMAIN(F->x.p->arr[2*k], data.s[k].D);
1007 value_clear(F->x.p->arr[2*k+1].d);
1008 F->x.p->arr[2*k+1] = data.s[k].E;
1010 free(data.s);
1012 free_evalue_refs(&data.mone);
1014 return F;
1017 evalue* ParamLine_Length(Polyhedron *P, Polyhedron *C,
1018 struct barvinok_options *options)
1020 evalue* tmp;
1021 tmp = ParamLine_Length_mod(P, C, options->MaxRays);
1022 if (options->lookup_table) {
1023 evalue_mod2table(tmp, C->Dimension);
1024 reduce_evalue(tmp);
1026 return tmp;
1029 Bool isIdentity(Matrix *M)
1031 unsigned i, j;
1032 if (M->NbRows != M->NbColumns)
1033 return False;
1035 for (i = 0;i < M->NbRows; i ++)
1036 for (j = 0; j < M->NbColumns; j ++)
1037 if (i == j) {
1038 if(value_notone_p(M->p[i][j]))
1039 return False;
1040 } else {
1041 if(value_notzero_p(M->p[i][j]))
1042 return False;
1044 return True;
1047 void Param_Polyhedron_Print(FILE* DST, Param_Polyhedron *PP, char **param_names)
1049 Param_Domain *P;
1050 Param_Vertices *V;
1052 for(P=PP->D;P;P=P->next) {
1054 /* prints current val. dom. */
1055 fprintf(DST, "---------------------------------------\n");
1056 fprintf(DST, "Domain :\n");
1057 Print_Domain(DST, P->Domain, param_names);
1059 /* scan the vertices */
1060 fprintf(DST, "Vertices :\n");
1061 FORALL_PVertex_in_ParamPolyhedron(V,P,PP) {
1063 /* prints each vertex */
1064 Print_Vertex(DST, V->Vertex, param_names);
1065 fprintf(DST, "\n");
1067 END_FORALL_PVertex_in_ParamPolyhedron;
1071 void Enumeration_Print(FILE *Dst, Enumeration *en, const char * const *params)
1073 for (; en; en = en->next) {
1074 Print_Domain(Dst, en->ValidityDomain, params);
1075 print_evalue(Dst, &en->EP, params);
1079 void Enumeration_Free(Enumeration *en)
1081 Enumeration *ee;
1083 while( en )
1085 free_evalue_refs( &(en->EP) );
1086 Domain_Free( en->ValidityDomain );
1087 ee = en ->next;
1088 free( en );
1089 en = ee;
1093 void Enumeration_mod2table(Enumeration *en, unsigned nparam)
1095 for (; en; en = en->next) {
1096 evalue_mod2table(&en->EP, nparam);
1097 reduce_evalue(&en->EP);
1101 size_t Enumeration_size(Enumeration *en)
1103 size_t s = 0;
1105 for (; en; en = en->next) {
1106 s += domain_size(en->ValidityDomain);
1107 s += evalue_size(&en->EP);
1109 return s;
1112 void Free_ParamNames(char **params, int m)
1114 while (--m >= 0)
1115 free(params[m]);
1116 free(params);
1119 /* Check whether every set in D2 is included in some set of D1 */
1120 int DomainIncludes(Polyhedron *D1, Polyhedron *D2)
1122 for ( ; D2; D2 = D2->next) {
1123 Polyhedron *P1;
1124 for (P1 = D1; P1; P1 = P1->next)
1125 if (PolyhedronIncludes(P1, D2))
1126 break;
1127 if (!P1)
1128 return 0;
1130 return 1;
1133 int line_minmax(Polyhedron *I, Value *min, Value *max)
1135 int i;
1137 if (I->NbEq >= 1) {
1138 value_oppose(I->Constraint[0][2], I->Constraint[0][2]);
1139 /* There should never be a remainder here */
1140 if (value_pos_p(I->Constraint[0][1]))
1141 mpz_fdiv_q(*min, I->Constraint[0][2], I->Constraint[0][1]);
1142 else
1143 mpz_fdiv_q(*min, I->Constraint[0][2], I->Constraint[0][1]);
1144 value_assign(*max, *min);
1145 } else for (i = 0; i < I->NbConstraints; ++i) {
1146 if (value_zero_p(I->Constraint[i][1])) {
1147 Polyhedron_Free(I);
1148 return 0;
1151 value_oppose(I->Constraint[i][2], I->Constraint[i][2]);
1152 if (value_pos_p(I->Constraint[i][1]))
1153 mpz_cdiv_q(*min, I->Constraint[i][2], I->Constraint[i][1]);
1154 else
1155 mpz_fdiv_q(*max, I->Constraint[i][2], I->Constraint[i][1]);
1157 Polyhedron_Free(I);
1158 return 1;
1161 /**
1163 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1164 each imbriquation
1166 @param pos index position of current loop index (1..hdim-1)
1167 @param P loop domain
1168 @param context context values for fixed indices
1169 @param exist number of existential variables
1170 @return the number of integer points in this
1171 polyhedron
1174 void count_points_e (int pos, Polyhedron *P, int exist, int nparam,
1175 Value *context, Value *res)
1177 Value LB, UB, k, c;
1179 if (emptyQ(P)) {
1180 value_set_si(*res, 0);
1181 return;
1184 if (!exist) {
1185 count_points(pos, P, context, res);
1186 return;
1189 value_init(LB); value_init(UB); value_init(k);
1190 value_set_si(LB,0);
1191 value_set_si(UB,0);
1193 if (lower_upper_bounds(pos,P,context,&LB,&UB) !=0) {
1194 /* Problem if UB or LB is INFINITY */
1195 value_clear(LB); value_clear(UB); value_clear(k);
1196 if (pos > P->Dimension - nparam - exist)
1197 value_set_si(*res, 1);
1198 else
1199 value_set_si(*res, -1);
1200 return;
1203 #ifdef EDEBUG1
1204 if (!P->next) {
1205 int i;
1206 for (value_assign(k,LB); value_le(k,UB); value_increment(k,k)) {
1207 fprintf(stderr, "(");
1208 for (i=1; i<pos; i++) {
1209 value_print(stderr,P_VALUE_FMT,context[i]);
1210 fprintf(stderr,",");
1212 value_print(stderr,P_VALUE_FMT,k);
1213 fprintf(stderr,")\n");
1216 #endif
1218 value_set_si(context[pos],0);
1219 if (value_lt(UB,LB)) {
1220 value_clear(LB); value_clear(UB); value_clear(k);
1221 value_set_si(*res, 0);
1222 return;
1224 if (!P->next) {
1225 if (exist)
1226 value_set_si(*res, 1);
1227 else {
1228 value_subtract(k,UB,LB);
1229 value_add_int(k,k,1);
1230 value_assign(*res, k);
1232 value_clear(LB); value_clear(UB); value_clear(k);
1233 return;
1236 /*-----------------------------------------------------------------*/
1237 /* Optimization idea */
1238 /* If inner loops are not a function of k (the current index) */
1239 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1240 /* for all i, */
1241 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1242 /* (skip the for loop) */
1243 /*-----------------------------------------------------------------*/
1245 value_init(c);
1246 value_set_si(*res, 0);
1247 for (value_assign(k,LB);value_le(k,UB);value_increment(k,k)) {
1248 /* Insert k in context */
1249 value_assign(context[pos],k);
1250 count_points_e(pos+1, P->next, exist, nparam, context, &c);
1251 if(value_notmone_p(c))
1252 value_addto(*res, *res, c);
1253 else {
1254 value_set_si(*res, -1);
1255 break;
1257 if (pos > P->Dimension - nparam - exist &&
1258 value_pos_p(*res))
1259 break;
1261 value_clear(c);
1263 #ifdef EDEBUG11
1264 fprintf(stderr,"%d\n",CNT);
1265 #endif
1267 /* Reset context */
1268 value_set_si(context[pos],0);
1269 value_clear(LB); value_clear(UB); value_clear(k);
1270 return;
1271 } /* count_points_e */
1273 int DomainContains(Polyhedron *P, Value *list_args, int len,
1274 unsigned MaxRays, int set)
1276 int i;
1277 Value m;
1279 if (P->Dimension == len)
1280 return in_domain(P, list_args);
1282 assert(set); // assume list_args is large enough
1283 assert((P->Dimension - len) % 2 == 0);
1284 value_init(m);
1285 for (i = 0; i < P->Dimension - len; i += 2) {
1286 int j, k;
1287 for (j = 0 ; j < P->NbEq; ++j)
1288 if (value_notzero_p(P->Constraint[j][1+len+i]))
1289 break;
1290 assert(j < P->NbEq);
1291 value_absolute(m, P->Constraint[j][1+len+i]);
1292 k = First_Non_Zero(P->Constraint[j]+1, len);
1293 assert(k != -1);
1294 assert(First_Non_Zero(P->Constraint[j]+1+k+1, len - k - 1) == -1);
1295 mpz_fdiv_q(list_args[len+i], list_args[k], m);
1296 mpz_fdiv_r(list_args[len+i+1], list_args[k], m);
1298 value_clear(m);
1300 return in_domain(P, list_args);
1303 Polyhedron *DomainConcat(Polyhedron *head, Polyhedron *tail)
1305 Polyhedron *S;
1306 if (!head)
1307 return tail;
1308 for (S = head; S->next; S = S->next)
1310 S->next = tail;
1311 return head;
1314 evalue *barvinok_lexsmaller_ev(Polyhedron *P, Polyhedron *D, unsigned dim,
1315 Polyhedron *C, unsigned MaxRays)
1317 evalue *ranking;
1318 Polyhedron *RC, *RD, *Q;
1319 unsigned nparam = dim + C->Dimension;
1320 unsigned exist;
1321 Polyhedron *CA;
1323 RC = LexSmaller(P, D, dim, C, MaxRays);
1324 RD = RC->next;
1325 RC->next = NULL;
1327 exist = RD->Dimension - nparam - dim;
1328 CA = align_context(RC, RD->Dimension, MaxRays);
1329 Q = DomainIntersection(RD, CA, MaxRays);
1330 Polyhedron_Free(CA);
1331 Domain_Free(RD);
1332 Polyhedron_Free(RC);
1333 RD = Q;
1335 for (Q = RD; Q; Q = Q->next) {
1336 evalue *t;
1337 Polyhedron *next = Q->next;
1338 Q->next = 0;
1340 t = barvinok_enumerate_e(Q, exist, nparam, MaxRays);
1342 if (Q == RD)
1343 ranking = t;
1344 else {
1345 eadd(t, ranking);
1346 evalue_free(t);
1349 Q->next = next;
1352 Domain_Free(RD);
1354 return ranking;
1357 Enumeration *barvinok_lexsmaller(Polyhedron *P, Polyhedron *D, unsigned dim,
1358 Polyhedron *C, unsigned MaxRays)
1360 evalue *EP = barvinok_lexsmaller_ev(P, D, dim, C, MaxRays);
1362 return partition2enumeration(EP);
1365 /* "align" matrix to have nrows by inserting
1366 * the necessary number of rows and an equal number of columns in front
1368 Matrix *align_matrix(Matrix *M, int nrows)
1370 int i;
1371 int newrows = nrows - M->NbRows;
1372 Matrix *M2 = Matrix_Alloc(nrows, newrows + M->NbColumns);
1373 for (i = 0; i < newrows; ++i)
1374 value_set_si(M2->p[i][i], 1);
1375 for (i = 0; i < M->NbRows; ++i)
1376 Vector_Copy(M->p[i], M2->p[newrows+i]+newrows, M->NbColumns);
1377 return M2;
1380 static void print_varlist(FILE *out, int n, char **names)
1382 int i;
1383 fprintf(out, "[");
1384 for (i = 0; i < n; ++i) {
1385 if (i)
1386 fprintf(out, ",");
1387 fprintf(out, "%s", names[i]);
1389 fprintf(out, "]");
1392 static void print_term(FILE *out, Value v, int pos, int dim, int nparam,
1393 char **iter_names, char **param_names, int *first)
1395 if (value_zero_p(v)) {
1396 if (first && *first && pos >= dim + nparam)
1397 fprintf(out, "0");
1398 return;
1401 if (first) {
1402 if (!*first && value_pos_p(v))
1403 fprintf(out, "+");
1404 *first = 0;
1406 if (pos < dim + nparam) {
1407 if (value_mone_p(v))
1408 fprintf(out, "-");
1409 else if (!value_one_p(v))
1410 value_print(out, VALUE_FMT, v);
1411 if (pos < dim)
1412 fprintf(out, "%s", iter_names[pos]);
1413 else
1414 fprintf(out, "%s", param_names[pos-dim]);
1415 } else
1416 value_print(out, VALUE_FMT, v);
1419 char **util_generate_names(int n, const char *prefix)
1421 int i;
1422 int len = (prefix ? strlen(prefix) : 0) + 10;
1423 char **names = ALLOCN(char*, n);
1424 if (!names) {
1425 fprintf(stderr, "ERROR: memory overflow.\n");
1426 exit(1);
1428 for (i = 0; i < n; ++i) {
1429 names[i] = ALLOCN(char, len);
1430 if (!names[i]) {
1431 fprintf(stderr, "ERROR: memory overflow.\n");
1432 exit(1);
1434 if (!prefix)
1435 snprintf(names[i], len, "%d", i);
1436 else
1437 snprintf(names[i], len, "%s%d", prefix, i);
1440 return names;
1443 void util_free_names(int n, char **names)
1445 int i;
1446 for (i = 0; i < n; ++i)
1447 free(names[i]);
1448 free(names);
1451 void Polyhedron_pprint(FILE *out, Polyhedron *P, int dim, int nparam,
1452 char **iter_names, char **param_names)
1454 int i, j;
1455 Value tmp;
1457 assert(dim + nparam == P->Dimension);
1459 value_init(tmp);
1461 fprintf(out, "{ ");
1462 if (nparam) {
1463 print_varlist(out, nparam, param_names);
1464 fprintf(out, " -> ");
1466 print_varlist(out, dim, iter_names);
1467 fprintf(out, " : ");
1469 if (emptyQ2(P))
1470 fprintf(out, "FALSE");
1471 else for (i = 0; i < P->NbConstraints; ++i) {
1472 int first = 1;
1473 int v = First_Non_Zero(P->Constraint[i]+1, P->Dimension);
1474 if (v == -1 && value_pos_p(P->Constraint[i][0]))
1475 continue;
1476 if (i)
1477 fprintf(out, " && ");
1478 if (v == -1 && value_notzero_p(P->Constraint[i][1+P->Dimension]))
1479 fprintf(out, "FALSE");
1480 else if (value_pos_p(P->Constraint[i][v+1])) {
1481 print_term(out, P->Constraint[i][v+1], v, dim, nparam,
1482 iter_names, param_names, NULL);
1483 if (value_zero_p(P->Constraint[i][0]))
1484 fprintf(out, " = ");
1485 else
1486 fprintf(out, " >= ");
1487 for (j = v+1; j <= dim+nparam; ++j) {
1488 value_oppose(tmp, P->Constraint[i][1+j]);
1489 print_term(out, tmp, j, dim, nparam,
1490 iter_names, param_names, &first);
1492 } else {
1493 value_oppose(tmp, P->Constraint[i][1+v]);
1494 print_term(out, tmp, v, dim, nparam,
1495 iter_names, param_names, NULL);
1496 fprintf(out, " <= ");
1497 for (j = v+1; j <= dim+nparam; ++j)
1498 print_term(out, P->Constraint[i][1+j], j, dim, nparam,
1499 iter_names, param_names, &first);
1503 fprintf(out, " }\n");
1505 value_clear(tmp);
1508 /* Construct a cone over P with P placed at x_d = 1, with
1509 * x_d the coordinate of an extra dimension
1511 * It's probably a mistake to depend so much on the internal
1512 * representation. We should probably simply compute the
1513 * vertices/facets first.
1515 Polyhedron *Cone_over_Polyhedron(Polyhedron *P)
1517 unsigned NbConstraints = 0;
1518 unsigned NbRays = 0;
1519 Polyhedron *C;
1520 int i;
1522 if (POL_HAS(P, POL_INEQUALITIES))
1523 NbConstraints = P->NbConstraints + 1;
1524 if (POL_HAS(P, POL_POINTS))
1525 NbRays = P->NbRays + 1;
1527 C = Polyhedron_Alloc(P->Dimension+1, NbConstraints, NbRays);
1528 if (POL_HAS(P, POL_INEQUALITIES)) {
1529 C->NbEq = P->NbEq;
1530 for (i = 0; i < P->NbConstraints; ++i)
1531 Vector_Copy(P->Constraint[i], C->Constraint[i], P->Dimension+2);
1532 /* n >= 0 */
1533 value_set_si(C->Constraint[P->NbConstraints][0], 1);
1534 value_set_si(C->Constraint[P->NbConstraints][1+P->Dimension], 1);
1536 if (POL_HAS(P, POL_POINTS)) {
1537 C->NbBid = P->NbBid;
1538 for (i = 0; i < P->NbRays; ++i)
1539 Vector_Copy(P->Ray[i], C->Ray[i], P->Dimension+2);
1540 /* vertex 0 */
1541 value_set_si(C->Ray[P->NbRays][0], 1);
1542 value_set_si(C->Ray[P->NbRays][1+C->Dimension], 1);
1544 POL_SET(C, POL_VALID);
1545 if (POL_HAS(P, POL_INEQUALITIES))
1546 POL_SET(C, POL_INEQUALITIES);
1547 if (POL_HAS(P, POL_POINTS))
1548 POL_SET(C, POL_POINTS);
1549 if (POL_HAS(P, POL_VERTICES))
1550 POL_SET(C, POL_VERTICES);
1551 return C;
1554 /* Returns a (dim+nparam+1)x((dim-n)+nparam+1) matrix
1555 * mapping the transformed subspace back to the original space.
1556 * n is the number of equalities involving the variables
1557 * (i.e., not purely the parameters).
1558 * The remaining n coordinates in the transformed space would
1559 * have constant (parametric) values and are therefore not
1560 * included in the variables of the new space.
1562 Matrix *compress_variables(Matrix *Equalities, unsigned nparam)
1564 unsigned dim = (Equalities->NbColumns-2) - nparam;
1565 Matrix *M, *H, *Q, *U, *C, *ratH, *invH, *Ul, *T1, *T2, *T;
1566 Value mone;
1567 int n, i, j;
1568 int ok;
1570 for (n = 0; n < Equalities->NbRows; ++n)
1571 if (First_Non_Zero(Equalities->p[n]+1, dim) == -1)
1572 break;
1573 if (n == 0)
1574 return Identity(dim+nparam+1);
1575 value_init(mone);
1576 value_set_si(mone, -1);
1577 M = Matrix_Alloc(n, dim);
1578 C = Matrix_Alloc(n+1, nparam+1);
1579 for (i = 0; i < n; ++i) {
1580 Vector_Copy(Equalities->p[i]+1, M->p[i], dim);
1581 Vector_Scale(Equalities->p[i]+1+dim, C->p[i], mone, nparam+1);
1583 value_set_si(C->p[n][nparam], 1);
1584 left_hermite(M, &H, &Q, &U);
1585 Matrix_Free(M);
1586 Matrix_Free(Q);
1587 value_clear(mone);
1589 ratH = Matrix_Alloc(n+1, n+1);
1590 invH = Matrix_Alloc(n+1, n+1);
1591 for (i = 0; i < n; ++i)
1592 Vector_Copy(H->p[i], ratH->p[i], n);
1593 value_set_si(ratH->p[n][n], 1);
1594 ok = Matrix_Inverse(ratH, invH);
1595 assert(ok);
1596 Matrix_Free(H);
1597 Matrix_Free(ratH);
1598 T1 = Matrix_Alloc(n+1, nparam+1);
1599 Matrix_Product(invH, C, T1);
1600 Matrix_Free(C);
1601 Matrix_Free(invH);
1602 if (value_notone_p(T1->p[n][nparam])) {
1603 for (i = 0; i < n; ++i) {
1604 if (!mpz_divisible_p(T1->p[i][nparam], T1->p[n][nparam])) {
1605 Matrix_Free(T1);
1606 Matrix_Free(U);
1607 return NULL;
1609 /* compress_params should have taken care of this */
1610 for (j = 0; j < nparam; ++j)
1611 assert(mpz_divisible_p(T1->p[i][j], T1->p[n][nparam]));
1612 Vector_AntiScale(T1->p[i], T1->p[i], T1->p[n][nparam], nparam+1);
1614 value_set_si(T1->p[n][nparam], 1);
1616 Ul = Matrix_Alloc(dim+1, n+1);
1617 for (i = 0; i < dim; ++i)
1618 Vector_Copy(U->p[i], Ul->p[i], n);
1619 value_set_si(Ul->p[dim][n], 1);
1620 T2 = Matrix_Alloc(dim+1, nparam+1);
1621 Matrix_Product(Ul, T1, T2);
1622 Matrix_Free(Ul);
1623 Matrix_Free(T1);
1625 T = Matrix_Alloc(dim+nparam+1, (dim-n)+nparam+1);
1626 for (i = 0; i < dim; ++i) {
1627 Vector_Copy(U->p[i]+n, T->p[i], dim-n);
1628 Vector_Copy(T2->p[i], T->p[i]+dim-n, nparam+1);
1630 for (i = 0; i < nparam+1; ++i)
1631 value_set_si(T->p[dim+i][(dim-n)+i], 1);
1632 assert(value_one_p(T2->p[dim][nparam]));
1633 Matrix_Free(U);
1634 Matrix_Free(T2);
1636 return T;
1639 /* Computes the left inverse of an affine embedding M and, if Eq is not NULL,
1640 * the equalities that define the affine subspace onto which M maps
1641 * its argument.
1643 Matrix *left_inverse(Matrix *M, Matrix **Eq)
1645 int i, ok;
1646 Matrix *L, *H, *Q, *U, *ratH, *invH, *Ut, *inv;
1647 Vector *t;
1649 if (M->NbColumns == 1) {
1650 inv = Matrix_Alloc(1, M->NbRows);
1651 value_set_si(inv->p[0][M->NbRows-1], 1);
1652 if (Eq) {
1653 *Eq = Matrix_Alloc(M->NbRows-1, 1+(M->NbRows-1)+1);
1654 for (i = 0; i < M->NbRows-1; ++i) {
1655 value_oppose((*Eq)->p[i][1+i], M->p[M->NbRows-1][0]);
1656 value_assign((*Eq)->p[i][1+(M->NbRows-1)], M->p[i][0]);
1659 return inv;
1661 if (Eq)
1662 *Eq = NULL;
1663 L = Matrix_Alloc(M->NbRows-1, M->NbColumns-1);
1664 for (i = 0; i < L->NbRows; ++i)
1665 Vector_Copy(M->p[i], L->p[i], L->NbColumns);
1666 right_hermite(L, &H, &U, &Q);
1667 Matrix_Free(L);
1668 Matrix_Free(Q);
1669 t = Vector_Alloc(U->NbColumns);
1670 for (i = 0; i < U->NbColumns; ++i)
1671 value_oppose(t->p[i], M->p[i][M->NbColumns-1]);
1672 if (Eq) {
1673 *Eq = Matrix_Alloc(H->NbRows - H->NbColumns, 2 + U->NbColumns);
1674 for (i = 0; i < H->NbRows - H->NbColumns; ++i) {
1675 Vector_Copy(U->p[H->NbColumns+i], (*Eq)->p[i]+1, U->NbColumns);
1676 Inner_Product(U->p[H->NbColumns+i], t->p, U->NbColumns,
1677 (*Eq)->p[i]+1+U->NbColumns);
1680 ratH = Matrix_Alloc(H->NbColumns+1, H->NbColumns+1);
1681 invH = Matrix_Alloc(H->NbColumns+1, H->NbColumns+1);
1682 for (i = 0; i < H->NbColumns; ++i)
1683 Vector_Copy(H->p[i], ratH->p[i], H->NbColumns);
1684 value_set_si(ratH->p[ratH->NbRows-1][ratH->NbColumns-1], 1);
1685 Matrix_Free(H);
1686 ok = Matrix_Inverse(ratH, invH);
1687 assert(ok);
1688 Matrix_Free(ratH);
1689 Ut = Matrix_Alloc(invH->NbRows, U->NbColumns+1);
1690 for (i = 0; i < Ut->NbRows-1; ++i) {
1691 Vector_Copy(U->p[i], Ut->p[i], U->NbColumns);
1692 Inner_Product(U->p[i], t->p, U->NbColumns, &Ut->p[i][Ut->NbColumns-1]);
1694 Matrix_Free(U);
1695 Vector_Free(t);
1696 value_set_si(Ut->p[Ut->NbRows-1][Ut->NbColumns-1], 1);
1697 inv = Matrix_Alloc(invH->NbRows, Ut->NbColumns);
1698 Matrix_Product(invH, Ut, inv);
1699 Matrix_Free(Ut);
1700 Matrix_Free(invH);
1701 return inv;
1704 /* Check whether all rays are revlex positive in the parameters
1706 int Polyhedron_has_revlex_positive_rays(Polyhedron *P, unsigned nparam)
1708 int r;
1709 for (r = 0; r < P->NbRays; ++r) {
1710 int i;
1711 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
1712 continue;
1713 for (i = P->Dimension-1; i >= P->Dimension-nparam; --i) {
1714 if (value_neg_p(P->Ray[r][i+1]))
1715 return 0;
1716 if (value_pos_p(P->Ray[r][i+1]))
1717 break;
1719 /* A ray independent of the parameters */
1720 if (i < P->Dimension-nparam)
1721 return 0;
1723 return 1;
1726 static Polyhedron *Recession_Cone(Polyhedron *P, unsigned nparam, unsigned MaxRays)
1728 int i;
1729 unsigned nvar = P->Dimension - nparam;
1730 Matrix *M = Matrix_Alloc(P->NbConstraints, 1 + nvar + 1);
1731 Polyhedron *R;
1732 for (i = 0; i < P->NbConstraints; ++i)
1733 Vector_Copy(P->Constraint[i], M->p[i], 1+nvar);
1734 R = Constraints2Polyhedron(M, MaxRays);
1735 Matrix_Free(M);
1736 return R;
1739 int Polyhedron_is_unbounded(Polyhedron *P, unsigned nparam, unsigned MaxRays)
1741 int i;
1742 int is_unbounded;
1743 Polyhedron *R = Recession_Cone(P, nparam, MaxRays);
1744 POL_ENSURE_VERTICES(R);
1745 if (R->NbBid == 0)
1746 for (i = 0; i < R->NbRays; ++i)
1747 if (value_zero_p(R->Ray[i][1+R->Dimension]))
1748 break;
1749 is_unbounded = R->NbBid > 0 || i < R->NbRays;
1750 Polyhedron_Free(R);
1751 return is_unbounded;
1754 static void SwapColumns(Value **V, int n, int i, int j)
1756 int r;
1758 for (r = 0; r < n; ++r)
1759 value_swap(V[r][i], V[r][j]);
1762 void Polyhedron_ExchangeColumns(Polyhedron *P, int Column1, int Column2)
1764 SwapColumns(P->Constraint, P->NbConstraints, Column1, Column2);
1765 SwapColumns(P->Ray, P->NbRays, Column1, Column2);
1766 if (P->NbEq) {
1767 Matrix M;
1768 Polyhedron_Matrix_View(P, &M, P->NbConstraints);
1769 Gauss(&M, P->NbEq, P->Dimension+1);
1773 /* perform transposition inline; assumes M is a square matrix */
1774 void Matrix_Transposition(Matrix *M)
1776 int i, j;
1778 assert(M->NbRows == M->NbColumns);
1779 for (i = 0; i < M->NbRows; ++i)
1780 for (j = i+1; j < M->NbColumns; ++j)
1781 value_swap(M->p[i][j], M->p[j][i]);
1784 /* Matrix "view" of first rows rows */
1785 void Polyhedron_Matrix_View(Polyhedron *P, Matrix *M, unsigned rows)
1787 M->NbRows = rows;
1788 M->NbColumns = P->Dimension+2;
1789 M->p_Init = P->p_Init;
1790 M->p = P->Constraint;