lexmin: Polyhedron_not_empty: be careful about empty polyhedra
[barvinok.git] / scarf.cc
blob985bf3830e1d98179c159c4eda011fd1ddf5f629
1 #include <vector>
2 #include <barvinok/barvinok.h>
3 #include <barvinok/util.h>
5 using std::vector;
7 static Matrix *extract_matrix(Polyhedron *P, unsigned dim)
9 Matrix *A;
10 int n_col;
12 n_col = 0;
13 for (int i = 0; i < P->NbConstraints; ++i)
14 if (value_notzero_p(P->Constraint[i][1+dim]) ||
15 value_notzero_p(P->Constraint[i][1+dim+1]))
16 ++n_col;
18 A = Matrix_Alloc(2, n_col+2);
19 n_col = 0;
20 for (int i = 0; i < P->NbConstraints; ++i) {
21 if (value_zero_p(P->Constraint[i][1+dim]) &&
22 value_zero_p(P->Constraint[i][1+dim+1]))
23 continue;
24 value_assign(A->p[0][n_col], P->Constraint[i][1+dim]);
25 value_assign(A->p[1][n_col], P->Constraint[i][1+dim+1]);
26 ++n_col;
28 value_set_si(A->p[0][n_col], 1);
29 value_set_si(A->p[1][n_col+1], 1);
31 return A;
34 static int lex_sign(Value *v, int len)
36 int first;
38 first = First_Non_Zero(v, len);
39 return first == -1 ? 0 : value_sign(v[first]);
42 static void set_pos(int pos[4], int actual, int wanted)
44 if (actual == wanted)
45 return;
46 int t = pos[actual];
47 pos[actual] = pos[wanted];
48 pos[wanted] = t;
51 static Matrix *normalize_matrix(Matrix *A, int pos[4], int *n)
53 Matrix *T, *B;
54 Value tmp, tmp2, factor;
55 int type = -1;
57 value_init(tmp);
58 value_init(tmp2);
59 value_init(factor);
61 T = Matrix_Alloc(2, 2);
62 Extended_Euclid(A->p[0][pos[0]], A->p[1][pos[0]],
63 &T->p[0][0], &T->p[0][1], &tmp);
64 value_division(T->p[1][0], A->p[1][pos[0]], tmp);
65 value_division(T->p[1][1], A->p[0][pos[0]], tmp);
66 value_oppose(T->p[0][0], T->p[0][0]);
67 value_oppose(T->p[0][1], T->p[0][1]);
68 value_oppose(T->p[1][0], T->p[1][0]);
70 B = Matrix_Alloc(2, A->NbColumns);
71 Matrix_Product(T, A, B);
72 Matrix_Free(T);
74 /* Make zero in first position negative */
75 if (lex_sign(B->p[1], B->NbColumns) > 0) {
76 value_set_si(tmp, -1);
77 Vector_Scale(B->p[1], B->p[1], tmp, B->NbColumns);
80 /* First determine whether the matrix is of sign pattern I or II
81 * (Theorem 1.11)
83 if (*n == 3) {
84 assert(value_neg_p(B->p[1][pos[1]]));
85 assert(value_pos_p(B->p[1][pos[2]]));
87 value_set_si(factor, 0);
88 for (int i = 1; i <= 2; ++i) {
89 value_pdivision(tmp, B->p[0][pos[i]], B->p[1][pos[i]]);
90 value_increment(tmp, tmp);
91 if (value_gt(tmp, factor))
92 value_assign(factor, tmp);
94 value_oppose(factor, factor);
95 value_set_si(tmp, 1);
96 Vector_Combine(B->p[0], B->p[1], B->p[0],
97 tmp, factor, B->NbColumns);
98 Vector_Exchange(B->p[0], B->p[1], B->NbColumns);
99 /* problems with three constraints are considered
100 * to be of sign pattern II
102 type = 2;
103 } else {
104 int i;
105 for (i = 1; i <= 3; ++i)
106 if (value_zero_p(B->p[1][pos[i]]))
107 break;
108 if (i <= 3) {
109 /* put zero in position 3 */
110 set_pos(pos, i, 3);
112 /* put positive one in position 1 */
113 for (i = 1; i <= 3; ++i)
114 if (value_pos_p(B->p[1][pos[i]]))
115 break;
116 set_pos(pos, i, 1);
118 value_set_si(factor, 0);
119 for (int i = 1; i <= 2; ++i) {
120 value_pdivision(tmp, B->p[0][pos[i]], B->p[1][pos[i]]);
121 value_increment(tmp, tmp);
122 if (value_gt(tmp, factor))
123 value_assign(factor, tmp);
125 value_oppose(factor, factor);
126 value_set_si(tmp, 1);
127 Vector_Combine(B->p[0], B->p[1], B->p[0], tmp, factor, B->NbColumns);
129 assert(value_notzero_p(B->p[0][pos[3]]));
130 type = value_pos_p(B->p[0][pos[3]]) ? 1 : 2;
131 } else {
132 int neg = 0;
133 int sign = lex_sign(B->p[1], B->NbColumns);
134 assert(sign < 0);
135 for (int i = 1; i <= 3; ++i)
136 if (value_neg_p(B->p[1][pos[i]]))
137 ++neg;
138 assert(neg == 1 || neg == 2);
139 if (neg == 1) {
140 int i;
141 /* put negative one in position 1 */
142 for (i = 1; i <= 3; ++i)
143 if (value_neg_p(B->p[1][pos[i]]))
144 break;
145 set_pos(pos, i, 1);
147 value_set_si(factor, 0);
148 for (int i = 1; i <= 3; ++i) {
149 value_pdivision(tmp, B->p[0][pos[i]], B->p[1][pos[i]]);
150 value_increment(tmp, tmp);
151 if (value_gt(tmp, factor))
152 value_assign(factor, tmp);
154 value_oppose(factor, factor);
155 value_set_si(tmp, 1);
156 Vector_Combine(B->p[0], B->p[1], B->p[0],
157 tmp, factor, B->NbColumns);
158 Vector_Exchange(B->p[0], B->p[1], B->NbColumns);
159 type = 1;
160 } else {
161 int i;
162 /* put positive one in position 1 */
163 for (i = 1; i <= 3; ++i)
164 if (value_pos_p(B->p[1][pos[i]]))
165 break;
166 set_pos(pos, i, 1);
168 value_set_si(factor, 0);
169 for (int i = 1; i <= 3; ++i) {
170 value_pdivision(tmp, B->p[0][pos[i]], B->p[1][pos[i]]);
171 value_increment(tmp, tmp);
172 if (value_gt(tmp, factor))
173 value_assign(factor, tmp);
175 value_oppose(factor, factor);
176 value_set_si(tmp, 1);
177 Vector_Combine(B->p[0], B->p[1], B->p[0],
178 tmp, factor, B->NbColumns);
179 type = 1;
184 assert(type != -1);
186 if (type == 2) {
187 for (;;) {
188 value_oppose(tmp, B->p[0][pos[1]]);
189 value_pdivision(factor, tmp, B->p[1][pos[1]]);
190 value_oppose(tmp, B->p[1][pos[2]]);
191 value_pdivision(tmp, tmp, B->p[0][pos[2]]);
192 if (value_zero_p(factor) && value_zero_p(tmp))
193 break;
194 assert(value_zero_p(factor) || value_zero_p(tmp));
195 if (value_pos_p(factor)) {
196 value_set_si(tmp, 1);
197 Vector_Combine(B->p[0], B->p[1], B->p[0], tmp, factor, B->NbColumns);
198 if (value_zero_p(B->p[0][pos[1]])) {
199 /* We will deal with this later */
200 assert(lex_sign(B->p[0], B->NbColumns) < 0);
202 } else {
203 value_set_si(factor, 1);
204 Vector_Combine(B->p[0], B->p[1], B->p[1], tmp, factor, B->NbColumns);
205 if (value_zero_p(B->p[1][pos[2]])) {
206 /* We will deal with this later */
207 assert(lex_sign(B->p[1], B->NbColumns) < 0);
211 } else {
212 int neg;
213 int sign;
214 bool progress = true;
215 while (progress) {
216 progress = false;
217 for (int i = 0; i <= 1; ++i) {
218 value_set_si(factor, -1);
219 for (int j = 1; j <= 3; ++j) {
220 if (value_zero_p(B->p[1-i][pos[j]]))
221 continue;
222 value_oppose(tmp, B->p[i][pos[j]]);
223 value_pdivision(tmp, tmp, B->p[1-i][pos[j]]);
224 if (value_neg_p(factor) || value_lt(tmp, factor))
225 value_assign(factor, tmp);
227 if (value_pos_p(factor)) {
228 value_set_si(tmp, 1);
229 Vector_Combine(B->p[i], B->p[1-i], B->p[i], tmp, factor,
230 B->NbColumns);
231 sign = lex_sign(B->p[i], B->NbColumns);
232 for (int j = 1; j <= 3; ++j) {
233 if (value_notzero_p(B->p[i][pos[j]]))
234 continue;
235 /* a zero is interpreted to be of sign sign */
236 if ((sign > 0 && value_pos_p(B->p[1-i][pos[j]])) ||
237 (sign < 0 && value_neg_p(B->p[1-i][pos[j]]))) {
238 /* the zero is of the wrong sign => back-off one */
239 value_set_si(tmp2, -1);
240 Vector_Combine(B->p[i], B->p[1-i], B->p[i], tmp, tmp2,
241 B->NbColumns);
242 value_decrement(factor, factor);
245 /* We may have backed-off, so we need to check again. */
246 if (value_pos_p(factor))
247 progress = true;
251 sign = 0;
252 for (int i = 0; i < B->NbColumns; ++i) {
253 value_addto(tmp, B->p[0][i], B->p[1][i]);
254 if (value_zero_p(tmp))
255 continue;
256 sign = value_neg_p(tmp) ? -1 : 1;
257 break;
259 neg = 0;
260 for (int i = 1; i <= 3; ++i) {
261 value_addto(tmp, B->p[0][pos[i]], B->p[1][pos[i]]);
262 if (value_neg_p(tmp) || (sign < 0 && value_zero_p(tmp)))
263 ++neg;
265 assert(neg <= 2);
266 switch(neg) {
267 int i;
268 case 1:
269 /* cases 4 and 5 in Theorem 11.1 */
270 value_set_si(tmp, 1);
271 Vector_Combine(B->p[0], B->p[1], B->p[1], tmp, tmp, B->NbColumns);
273 /* put positive pair in position 3 */
274 for (i = 1; i <= 3; ++i)
275 if (value_pos_p(B->p[0][pos[i]]) && value_pos_p(B->p[1][pos[i]]))
276 break;
277 assert(i <= 3);
278 set_pos(pos, i, 3);
280 break;
281 case 2:
282 /* cases 1 and 2 in Theorem 11.1 */
283 value_set_si(tmp, 1);
284 Vector_Combine(B->p[0], B->p[1], B->p[0], tmp, tmp, B->NbColumns);
286 /* put positive one in position 2 */
287 for (i = 1; i <= 3; ++i)
288 if (value_pos_p(B->p[0][pos[i]]))
289 break;
290 assert(i <= 3);
291 set_pos(pos, i, 2);
293 /* fourth constraint is redundant with respect to neighborhoods */
294 *n = 3;
295 break;
296 case 0:
297 /* We will deal with these later */
298 assert(0);
302 value_clear(tmp);
303 value_clear(tmp2);
304 value_clear(factor);
306 return B;
309 struct simplex {
310 Value last; // last multiple of offset in link
311 Vector *offset;
312 Matrix *M; // rows: elements different from (0,0)
313 int mask;
315 simplex(int d) {
316 M = Matrix_Alloc(d, 2);
317 offset = NULL;
319 simplex(int d, int mask, Value last) {
320 M = Matrix_Alloc(d, 2);
321 offset = Vector_Alloc(2);
322 value_init(this->last);
323 value_assign(this->last, last);
324 this->mask = mask;
326 void transform(Matrix *T);
327 void normalize();
328 Polyhedron *shrunk_polyhedron(Polyhedron *P, int dim, Matrix *A,
329 unsigned MaxRays);
330 void print(FILE *out);
333 void simplex::print(FILE *out)
335 if (!offset)
336 Matrix_Print(out, P_VALUE_FMT, M);
337 else {
338 fprintf(out, "%d %d\n", M->NbRows, M->NbColumns);
339 for (int j = 0; j < M->NbRows; ++j) {
340 for (int k = 0; k < M->NbColumns; ++k)
341 value_print(out, P_VALUE_FMT, M->p[j][k]);
342 if (mask & (1 << j)) {
343 fprintf(out, " + k * ");
344 for (int k = 0; k < M->NbColumns; ++k)
345 value_print(out, P_VALUE_FMT, offset->p[k]);
347 fprintf(out, "\n");
349 fprintf(out, "\t0 <= k <= ");
350 value_print(out, P_VALUE_FMT, last);
351 fprintf(out, "\n");
355 static bool lex_smaller(Value *v1, Value *v2, int n)
357 for (int i = 0; i < n; ++i)
358 if (value_lt(v1[i], v2[i]))
359 return true;
360 else if (value_gt(v1[i], v2[i]))
361 return false;
362 return false;
365 void simplex::transform(Matrix *T)
367 Matrix *M2 = M;
368 M = Matrix_Alloc(M2->NbRows, M2->NbColumns);
369 Matrix_Product(M2, T, M);
370 Matrix_Free(M2);
372 if (offset) {
373 Vector *offset2 = offset;
374 offset = Vector_Alloc(offset2->Size);
375 Vector_Matrix_Product(offset2->p, T, offset->p);
376 Vector_Free(offset2);
380 void simplex::normalize()
382 int lexmin = 0;
383 for (int i = 1; i < M->NbRows; ++i)
384 if (lex_smaller(M->p[i], M->p[lexmin], 2))
385 lexmin = i;
386 if (lex_sign(M->p[lexmin], 2) < 0) {
387 Value tmp;
388 value_init(tmp);
389 value_set_si(tmp, -1);
390 Vector_Scale(M->p[lexmin], M->p[lexmin], tmp, 2);
391 value_set_si(tmp, 1);
392 for (int i = 0; i < M->NbRows; ++i) {
393 if (i == lexmin)
394 continue;
395 Vector_Combine(M->p[lexmin], M->p[i], M->p[i], tmp, tmp, 2);
397 if (offset && (mask & (1 << lexmin))) {
398 value_set_si(tmp, -1);
399 Vector_Scale(offset->p, offset->p, tmp, 2);
400 mask ^= (1 << M->NbRows) - 1 - (1 << lexmin);
402 value_clear(tmp);
406 static Matrix *InsertColumn(Matrix *M, int pos)
408 Matrix *R;
409 int i;
411 R = Matrix_Alloc(M->NbRows, M->NbColumns+1);
412 for (i = 0; i < M->NbRows; ++i) {
413 Vector_Copy(M->p[i], R->p[i], pos);
414 Vector_Copy(M->p[i]+pos, R->p[i]+pos+1, M->NbColumns-pos);
416 return R;
419 Polyhedron *simplex::shrunk_polyhedron(Polyhedron *P, int dim, Matrix *A,
420 unsigned MaxRays)
422 Matrix *Constraints, *b;
423 Vector *b_offset = NULL;
424 Polyhedron *Q;
425 Value min, min_var, tmp;
426 value_init(tmp);
427 value_init(min);
428 value_init(min_var);
429 int constant;
431 b = Matrix_Alloc(M->NbRows, A->NbColumns);
432 Matrix_Product(M, A, b);
434 if (offset) {
435 b_offset = Vector_Alloc(A->NbColumns);
436 Vector_Matrix_Product(offset->p, A, b_offset->p);
439 if (!offset)
440 Constraints = Polyhedron2Constraints(P);
441 else {
442 Constraints = Matrix_Alloc(P->NbConstraints+2, P->Dimension+2+1);
443 for (int i = 0; i < P->NbConstraints; ++i) {
444 Vector_Copy(P->Constraint[i], Constraints->p[i], 1+dim+2);
445 Vector_Copy(P->Constraint[i]+1+dim+2, Constraints->p[i]+1+dim+2+1,
446 (P->Dimension+2)-(1+dim+2));
448 value_set_si(Constraints->p[P->NbConstraints][0], 1);
449 value_set_si(Constraints->p[P->NbConstraints][1+dim+2], 1);
450 value_set_si(Constraints->p[P->NbConstraints+1][0], 1);
451 value_set_si(Constraints->p[P->NbConstraints+1][1+dim+2], -1);
452 value_assign(Constraints->p[P->NbConstraints+1][Constraints->NbColumns-1],
453 last);
455 constant = Constraints->NbColumns - 1;
457 for (int i = 0, j = 0; i < P->NbConstraints; ++i) {
458 if (value_zero_p(Constraints->p[i][1+dim]) &&
459 value_zero_p(Constraints->p[i][1+dim+1]))
460 continue;
461 value_set_si(min, 0);
462 for (int k = 0; k < b->NbRows; ++k) {
463 if (offset && (mask & (1 << k)))
464 continue;
465 if (value_lt(b->p[k][j], min))
466 value_assign(min, b->p[k][j]);
468 value_set_si(min_var, 0);
469 if (offset) {
470 if (value_neg_p(b_offset->p[j])) {
471 value_oppose(min_var, b_offset->p[j]);
472 value_multiply(min_var, min_var, last);
473 value_increment(min_var, min_var);
475 for (int k = 0; k < b->NbRows; ++k) {
476 if (!(mask & (1 << k)))
477 continue;
478 if (value_lt(b->p[k][j], min_var))
479 value_assign(min_var, b->p[k][j]);
482 if (!offset || value_pos_p(b_offset->p[j])) {
483 if (value_le(min, min_var))
484 value_addto(Constraints->p[i][constant],
485 Constraints->p[i][constant], min);
486 else {
487 value_assign(tmp, min_var);
488 value_addmul(tmp, last, b_offset->p[j]);
489 if (value_le(tmp, min)) {
490 value_addto(Constraints->p[i][constant],
491 Constraints->p[i][constant], min_var);
492 value_addto(Constraints->p[i][1+dim+2],
493 Constraints->p[i][1+dim+2], b_offset->p[j]);
494 } else {
495 int lastrow = Constraints->NbRows;
496 int cols = Constraints->NbColumns;
497 Matrix *C = Constraints;
498 Constraints = AddANullRow(Constraints);
499 Matrix_Free(C);
500 Vector_Copy(Constraints->p[i], Constraints->p[lastrow], cols);
501 value_addto(Constraints->p[i][constant],
502 Constraints->p[i][constant], min_var);
503 value_addto(Constraints->p[i][1+dim+2],
504 Constraints->p[i][1+dim+2], b_offset->p[j]);
505 value_addto(Constraints->p[lastrow][constant],
506 Constraints->p[lastrow][constant], min);
509 } else {
510 if (value_le(min_var, min)) {
511 value_addto(Constraints->p[i][constant],
512 Constraints->p[i][constant], min_var);
513 value_addto(Constraints->p[i][1+dim+2],
514 Constraints->p[i][1+dim+2], b_offset->p[j]);
515 } else {
516 value_assign(tmp, min_var);
517 value_addmul(tmp, last, b_offset->p[j]);
518 if (value_le(min, tmp)) {
519 value_addto(Constraints->p[i][constant],
520 Constraints->p[i][constant], min);
521 } else {
522 int lastrow = Constraints->NbRows;
523 int cols = Constraints->NbColumns;
524 Matrix *C = Constraints;
525 Constraints = AddANullRow(Constraints);
526 Matrix_Free(C);
527 Vector_Copy(Constraints->p[i], Constraints->p[lastrow], cols);
528 value_addto(Constraints->p[i][constant],
529 Constraints->p[i][constant], min_var);
530 value_addto(Constraints->p[i][1+dim+2],
531 Constraints->p[i][1+dim+2], b_offset->p[j]);
532 value_addto(Constraints->p[lastrow][constant],
533 Constraints->p[lastrow][constant], min);
537 ++j;
539 Q = Constraints2Polyhedron(Constraints, MaxRays);
541 if (b_offset)
542 Vector_Free(b_offset);
543 Matrix_Free(b);
544 Matrix_Free(Constraints);
545 value_clear(tmp);
546 value_clear(min);
547 value_clear(min_var);
549 return Q;
552 struct scarf_complex {
553 vector<simplex> simplices;
554 void add(Matrix *B, int pos[4], int n);
555 void add(Matrix *T, simplex s);
556 void print(FILE *out);
557 ~scarf_complex() {
558 for (int i = 0; i < simplices.size(); ++i) {
559 Matrix_Free(simplices[i].M);
560 if (simplices[i].offset) {
561 Vector_Free(simplices[i].offset);
562 value_clear(simplices[i].last);
568 void scarf_complex::add(Matrix *T, simplex s)
570 s.transform(T);
571 s.normalize();
572 if (s.offset && lex_sign(s.offset->p, 2) < 0) {
573 Value factor;
574 Value tmp;
575 value_init(factor);
576 value_init(tmp);
577 /* compute the smallest multiple (factor) of the offset that
578 * makes on of the vertices lexico-negative.
580 int lexmin = -1;
581 for (int i = 0; i < s.M->NbRows; ++i) {
582 if (!(s.mask & (1 << i)))
583 continue;
584 if (lexmin == -1 || lex_smaller(s.M->p[i], s.M->p[lexmin], 2))
585 lexmin = i;
587 if (value_zero_p(s.offset->p[0])) {
588 if (value_pos_p(s.M->p[lexmin][0]))
589 value_increment(factor, s.last);
590 else {
591 value_oppose(factor, s.M->p[lexmin][1]);
592 mpz_cdiv_q(factor, factor, s.offset->p[1]);
594 } else {
595 value_oppose(factor, s.M->p[lexmin][0]);
596 mpz_cdiv_q(factor, factor, s.offset->p[0]);
597 if (mpz_divisible_p(s.M->p[lexmin][0], s.offset->p[0])) {
598 value_assign(tmp, s.M->p[lexmin][1]);
599 value_addmul(tmp, factor, s.offset->p[1]);
600 if (value_pos_p(tmp))
601 value_increment(factor, factor);
604 if (value_le(factor, s.last)) {
605 simplex part(s.M->NbRows, s.mask, s.last);
606 Vector_Copy(s.offset->p, part.offset->p, 2);
607 value_set_si(tmp, 1);
608 for (int i = 0; i < s.M->NbRows; ++i) {
609 if (s.mask & (1 << i))
610 Vector_Combine(s.M->p[i], s.offset->p, part.M->p[i],
611 tmp, factor, 2);
612 else
613 Vector_Copy(s.M->p[i], part.M->p[i], 2);
615 value_subtract(part.last, part.last, factor);
616 value_decrement(s.last, factor);
617 part.normalize();
618 simplices.push_back(part);
620 value_clear(tmp);
621 value_clear(factor);
623 simplices.push_back(s);
626 void scarf_complex::add(Matrix *B, int pos[4], int n)
628 Matrix *T;
630 T = Matrix_Alloc(2, 2);
631 Vector_Copy(B->p[0]+B->NbColumns-2, T->p[0], 2);
632 Vector_Copy(B->p[1]+B->NbColumns-2, T->p[1], 2);
634 if (n == 3 || value_neg_p(B->p[0][pos[3]])) {
635 assert(n == 3 || value_neg_p(B->p[1][pos[3]]));
637 simplex s1(1);
638 value_set_si(s1.M->p[0][0], 0);
639 value_set_si(s1.M->p[0][1], 1);
640 add(T, s1);
642 simplex s2(1);
643 value_set_si(s2.M->p[0][0], 1);
644 value_set_si(s2.M->p[0][1], 1);
645 add(T, s2);
647 simplex s3(1);
648 value_set_si(s3.M->p[0][0], 1);
649 value_set_si(s3.M->p[0][1], 0);
650 add(T, s3);
652 simplex s4(2);
653 value_set_si(s4.M->p[0][0], 0);
654 value_set_si(s4.M->p[0][1], 1);
655 value_set_si(s4.M->p[1][0], 1);
656 value_set_si(s4.M->p[1][1], 1);
657 add(T, s4);
659 simplex s5(2);
660 value_set_si(s5.M->p[0][0], 1);
661 value_set_si(s5.M->p[0][1], 0);
662 value_set_si(s5.M->p[1][0], 1);
663 value_set_si(s5.M->p[1][1], 1);
664 add(T, s5);
665 } else {
666 Matrix *h;
667 Vector *offset;
668 bool initial = true;
669 bool progress = true;
670 Value tmp, tmp2, factor;
671 int sign;
673 value_init(tmp);
674 value_init(tmp2);
675 value_init(factor);
677 assert(value_pos_p(B->p[0][pos[3]]));
678 assert(value_pos_p(B->p[1][pos[3]]));
680 h = Matrix_Alloc(3, 2);
681 value_set_si(h->p[0][0], 1);
682 value_set_si(h->p[0][1], 0);
683 value_set_si(h->p[1][0], 0);
684 value_set_si(h->p[1][1], 1);
685 value_set_si(h->p[2][0], 1);
686 value_set_si(h->p[2][1], 1);
688 offset = Vector_Alloc(2);
690 while (progress) {
691 progress = false;
692 for (int i = 0; i <= 1; ++i) {
693 value_set_si(factor, -1);
694 for (int j = 1; j <= 2; ++j) {
695 if (value_zero_p(B->p[1-i][pos[j]]))
696 continue;
697 value_oppose(tmp, B->p[i][pos[j]]);
698 value_pdivision(tmp, tmp, B->p[1-i][pos[j]]);
699 if (value_neg_p(factor) || value_lt(tmp, factor))
700 value_assign(factor, tmp);
702 if (value_pos_p(factor)) {
703 value_set_si(tmp, 1);
704 Vector_Combine(B->p[i], B->p[1-i], B->p[i], tmp, factor,
705 B->NbColumns);
706 sign = lex_sign(B->p[i], B->NbColumns);
707 for (int j = 1; j <= 2; ++j) {
708 if (value_notzero_p(B->p[i][pos[j]]))
709 continue;
710 /* a zero is interpreted to be of sign sign */
711 if ((sign > 0 && value_pos_p(B->p[1-i][pos[j]])) ||
712 (sign < 0 && value_neg_p(B->p[1-i][pos[j]]))) {
713 /* the zero is of the wrong sign => back-off one */
714 value_set_si(tmp2, -1);
715 Vector_Combine(B->p[i], B->p[1-i], B->p[i], tmp, tmp2,
716 B->NbColumns);
717 value_decrement(factor, factor);
720 /* We may have backed-off, so we need to check again. */
721 if (value_pos_p(factor)) {
722 progress = true;
723 value_set_si(tmp, 1);
724 value_set_si(tmp2, -1);
726 Vector_Combine(h->p[2], h->p[i], offset->p, tmp, tmp2, 2);
728 if (initial) {
729 /* the initial simplices not in any link */
730 simplex l1(1);
731 Vector_Copy(h->p[0], l1.M->p[0], 2);
732 add(T, l1);
734 simplex l2(1);
735 Vector_Copy(h->p[1], l2.M->p[0], 2);
736 add(T, l2);
738 simplex l3(1);
739 Vector_Combine(h->p[0], h->p[1], l3.M->p[0],
740 tmp, tmp2, 2);
741 add(T, l3);
743 simplex t1(2);
744 Vector_Copy(h->p[0], t1.M->p[0], 2);
745 Vector_Copy(h->p[1], t1.M->p[1], 2);
746 add(T, t1);
748 simplex t2(2);
749 Vector_Combine(h->p[0], h->p[1], t2.M->p[0],
750 tmp, tmp2, 2);
751 Vector_Combine(h->p[2], h->p[1], t2.M->p[1],
752 tmp, tmp2, 2);
753 add(T, t2);
754 } else {
755 /* update h */
756 Vector_Combine(h->p[i], offset->p, h->p[i],
757 tmp, tmp, 2);
758 Vector_Combine(h->p[2], offset->p, h->p[2],
759 tmp, tmp, 2);
760 value_decrement(factor, factor);
763 simplex q(3, 0x4 | (1 << i), factor);
764 Vector_Copy(h->p[0], q.M->p[0], 2);
765 Vector_Copy(h->p[1], q.M->p[1], 2);
766 Vector_Copy(h->p[2], q.M->p[2], 2);
767 Vector_Copy(offset->p, q.offset->p, 2);
768 add(T, q);
770 simplex t1(2, 0x3, factor);
771 Vector_Copy(h->p[i], t1.M->p[0], 2);
772 Vector_Copy(h->p[2], t1.M->p[1], 2);
773 Vector_Copy(offset->p, t1.offset->p, 2);
774 add(T, t1);
776 simplex t2(2, 0x2, factor);
777 Vector_Copy(h->p[1-i], t2.M->p[0], 2);
778 Vector_Copy(h->p[2], t2.M->p[1], 2);
779 Vector_Copy(offset->p, t2.offset->p, 2);
780 add(T, t2);
782 simplex l(1, 0x1, factor);
783 Vector_Copy(h->p[2], l.M->p[0], 2);
784 Vector_Copy(offset->p, l.offset->p, 2);
785 add(T, l);
787 /* update h */
788 Vector_Combine(h->p[i], offset->p, h->p[i], tmp, factor, 2);
789 Vector_Combine(h->p[2], offset->p, h->p[2], tmp, factor, 2);
791 initial = false;
796 if (initial) {
797 /* the initial simplices not in any link */
798 simplex l1(1);
799 Vector_Copy(h->p[0], l1.M->p[0], 2);
800 add(T, l1);
802 simplex l2(1);
803 Vector_Copy(h->p[1], l2.M->p[0], 2);
804 add(T, l2);
806 simplex l3(1);
807 Vector_Combine(h->p[0], h->p[1], l3.M->p[0],
808 tmp, tmp2, 2);
809 add(T, l3);
811 simplex t1(2);
812 Vector_Copy(h->p[0], t1.M->p[0], 2);
813 Vector_Copy(h->p[1], t1.M->p[1], 2);
814 add(T, t1);
816 simplex t2(2);
817 Vector_Combine(h->p[0], h->p[1], t2.M->p[0],
818 tmp, tmp2, 2);
819 Vector_Combine(h->p[2], h->p[1], t2.M->p[1],
820 tmp, tmp2, 2);
821 add(T, t2);
824 /* the simplices in a link, here of length 1 */
825 simplex q(3);
826 Vector_Copy(h->p[0], q.M->p[0], 2);
827 Vector_Copy(h->p[1], q.M->p[1], 2);
828 Vector_Copy(h->p[2], q.M->p[2], 2);
829 add(T, q);
831 simplex t1(2);
832 Vector_Copy(h->p[0], t1.M->p[0], 2);
833 Vector_Copy(h->p[2], t1.M->p[1], 2);
834 add(T, t1);
836 simplex t2(2);
837 Vector_Copy(h->p[1], t2.M->p[0], 2);
838 Vector_Copy(h->p[2], t2.M->p[1], 2);
839 add(T, t2);
841 simplex l(1);
842 Vector_Copy(h->p[2], l.M->p[0], 2);
843 add(T, l);
847 Vector_Free(offset);
848 Matrix_Free(h);
850 value_clear(tmp);
851 value_clear(tmp2);
852 value_clear(factor);
855 Matrix_Free(T);
858 void scarf_complex::print(FILE *out)
860 for (int i = 0; i < simplices.size(); ++i)
861 simplices[i].print(out);
864 struct scarf_collector {
865 virtual void add(Polyhedron *P, int sign, Polyhedron *C,
866 barvinok_options *options) = 0;
869 static void scarf(Polyhedron *P, unsigned exist, unsigned nparam,
870 barvinok_options *options, scarf_collector& col)
872 Matrix *A, *B;
873 int dim = P->Dimension - exist - nparam;
874 assert(exist == 2);
875 int pos[4];
876 Polyhedron *U;
877 gen_fun *gf;
878 int n;
880 A = extract_matrix(P, dim);
882 n = A->NbColumns - 2;
883 assert(n >= 3 && n <= 4);
885 int l = 0;
886 for (int i = 0; i < n; ++i) {
887 int j;
888 for (j = 0; j < l; ++j)
889 if (value_eq(A->p[0][pos[j]], A->p[0][i]) &&
890 value_eq(A->p[1][pos[j]], A->p[1][i]))
891 break;
892 if (j < l)
893 continue;
894 pos[l++] = i;
897 assert(l >= 3 && l <= 4);
898 B = normalize_matrix(A, pos, &l);
900 scarf_complex scarf;
901 scarf.add(B, pos, l);
903 U = Universe_Polyhedron(nparam);
904 col.add(P, 0, U, options);
905 for (int i = 0; i < scarf.simplices.size(); ++i) {
906 Polyhedron *Q;
907 int sign = (scarf.simplices[i].M->NbRows % 2) ? -1 : 1;
908 Q = scarf.simplices[i].shrunk_polyhedron(P, dim, A, options->MaxRays);
909 col.add(Q, sign, U, options);
910 Polyhedron_Free(Q);
912 Polyhedron_Free(U);
914 Matrix_Free(B);
916 Matrix_Free(A);
919 struct scarf_collector_gf : public scarf_collector {
920 QQ c;
921 gen_fun *gf;
923 scarf_collector_gf() {
924 c.d = 1;
926 virtual void add(Polyhedron *P, int sign, Polyhedron *C,
927 barvinok_options *options);
930 void scarf_collector_gf::add(Polyhedron *P, int sign, Polyhedron *C,
931 barvinok_options *options)
933 if (!sign)
934 gf = barvinok_series_with_options(P, C, options);
935 else {
936 gen_fun *gf2;
937 c.n = sign;
938 gf2 = barvinok_series_with_options(P, C, options);
939 gf->add(c, gf2);
940 delete gf2;
944 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
945 unsigned exist, unsigned nparam, barvinok_options *options)
947 scarf_collector_gf scgf;
948 scarf(P, exist, nparam, options, scgf);
949 return scgf.gf;
952 struct scarf_collector_ev : public scarf_collector {
953 evalue mone;
954 evalue *EP;
956 scarf_collector_ev() {
957 value_init(mone.d);
958 evalue_set_si(&mone, -1, 1);
960 ~scarf_collector_ev() {
961 free_evalue_refs(&mone);
963 virtual void add(Polyhedron *P, int sign, Polyhedron *C,
964 barvinok_options *options);
967 void scarf_collector_ev::add(Polyhedron *P, int sign, Polyhedron *C,
968 barvinok_options *options)
970 if (!sign)
971 EP = barvinok_enumerate_with_options(P, C, options);
972 else {
973 evalue *E2;
974 E2 = barvinok_enumerate_with_options(P, C, options);
975 if (sign < 0)
976 emul(&mone, E2);
977 eadd(E2, EP);
978 free_evalue_refs(E2);
979 free(E2);
983 evalue *barvinok_enumerate_scarf(Polyhedron *P,
984 unsigned exist, unsigned nparam, barvinok_options *options)
986 scarf_collector_ev scev;
987 scarf(P, exist, nparam, options, scev);
988 return scev.EP;