find_fractional_with_max_periods: initialize local variable f
[barvinok.git] / scale.c
blob3b2d9f07fcf3e0a24bdc13a202105a8b6401cb18
1 #include <barvinok/barvinok.h>
2 #include <barvinok/util.h>
3 #include <barvinok/options.h>
4 #include "scale.h"
5 #include "reduce_domain.h"
6 #include "param_util.h"
8 #define ALLOC(type) (type*)malloc(sizeof(type))
9 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
11 /* If a vertex is described by A x + B p + c = 0, then
12 * M = [A B] and we want to compute a linear transformation L such
13 * that H L = A and H \Z contains both A \Z and B \Z.
14 * We compute
15 * [ A B ] = [ H 0 ] [ U_11 U_12 ]
16 * [ U_21 U_22 ]
18 * U_11 is the required linear transformation.
19 * Note that this also works if M has more rows than there are variables,
20 * i.e., if some rows in M are linear combinations of other rows.
21 * These extra rows only affect and H and not U.
23 static Lattice *extract_lattice(Matrix *M, unsigned nvar)
25 int row;
26 Matrix *H, *Q, *U, *Li;
27 Lattice *L;
28 int ok;
30 left_hermite(M, &H, &Q, &U);
31 Matrix_Free(U);
33 Li = Matrix_Alloc(nvar+1, nvar+1);
34 L = Matrix_Alloc(nvar+1, nvar+1);
35 value_set_si(Li->p[nvar][nvar], 1);
37 for (row = 0; row < nvar; ++row)
38 Vector_Copy(Q->p[row], Li->p[row], nvar);
39 Matrix_Free(H);
40 Matrix_Free(Q);
42 ok = Matrix_Inverse(Li, L);
43 assert(ok);
44 Matrix_Free(Li);
46 return L;
49 /* Returns the smallest (wrt inclusion) lattice that contains both X and Y */
50 static Lattice *LatticeJoin(Lattice *X, Lattice *Y)
52 int i;
53 int dim = X->NbRows-1;
54 Value lcm;
55 Value tmp;
56 Lattice *L;
57 Matrix *M, *H, *U, *Q;
59 assert(X->NbColumns-1 == dim);
60 assert(Y->NbRows-1 == dim);
61 assert(Y->NbColumns-1 == dim);
63 value_init(lcm);
64 value_init(tmp);
66 M = Matrix_Alloc(dim, 2*dim);
67 value_lcm(X->p[dim][dim], Y->p[dim][dim], &lcm);
69 value_division(tmp, lcm, X->p[dim][dim]);
70 for (i = 0; i < dim; ++i)
71 Vector_Scale(X->p[i], M->p[i], tmp, dim);
72 value_division(tmp, lcm, Y->p[dim][dim]);
73 for (i = 0; i < dim; ++i)
74 Vector_Scale(Y->p[i], M->p[i]+dim, tmp, dim);
76 left_hermite(M, &H, &Q, &U);
77 Matrix_Free(M);
78 Matrix_Free(Q);
79 Matrix_Free(U);
81 L = Matrix_Alloc(dim+1, dim+1);
82 value_assign(L->p[dim][dim], lcm);
83 for (i = 0; i < dim; ++i)
84 Vector_Copy(H->p[i], L->p[i], dim);
85 Matrix_Free(H);
87 value_clear(tmp);
88 value_clear(lcm);
89 return L;
92 static void Param_Vertex_Image(Param_Vertices *V, Matrix *T)
94 unsigned nvar = V->Vertex->NbRows;
95 unsigned nparam = V->Vertex->NbColumns - 2;
96 Matrix *Vertex;
97 int i;
99 Param_Vertex_Common_Denominator(V);
100 Vertex = Matrix_Alloc(V->Vertex->NbRows, V->Vertex->NbColumns);
101 Matrix_Product(T, V->Vertex, Vertex);
102 for (i = 0; i < nvar; ++i) {
103 value_assign(Vertex->p[i][nparam+1], V->Vertex->p[i][nparam+1]);
104 Vector_Normalize(Vertex->p[i], nparam+2);
106 Matrix_Free(V->Vertex);
107 V->Vertex = Vertex;
110 /* Scales the parametric polyhedron with constraints *P and vertices PP
111 * such that the number of integer points can be represented by a polynomial.
112 * Both *P and P->Vertex are adapted according to the scaling.
113 * The scaling factor is returned in *det.
114 * The transformation that maps the new coordinates to the original
115 * coordinates is returned in *Lat (if Lat != NULL).
116 * The enumerator of the scaled parametric polyhedron should be divided
117 * by this number to obtain an approximation of the enumerator of the
118 * original parametric polyhedron.
120 * The algorithm is described in "Approximating Ehrhart Polynomials using
121 * affine transformations" by B. Meister.
123 void Param_Polyhedron_Scale_Integer_Slow(Param_Polyhedron *PP, Polyhedron **P,
124 Lattice **Lat,
125 Value *det, unsigned MaxRays)
127 Param_Vertices *V;
128 unsigned dim = (*P)->Dimension;
129 unsigned nparam;
130 unsigned nvar;
131 Lattice *L = NULL, *Li;
132 Matrix *T;
133 Matrix *expansion;
134 int i;
135 int ok;
137 if (!PP->nbV)
138 return;
140 nparam = PP->V->Vertex->NbColumns - 2;
141 nvar = dim - nparam;
143 for (V = PP->V; V; V = V->next) {
144 Lattice *L2;
145 Matrix *M;
146 int i, j, n;
147 unsigned char *supporting;
149 supporting = supporting_constraints(*P, V, &n);
150 M = Matrix_Alloc(n, (*P)->Dimension);
151 for (i = 0, j = 0; i < (*P)->NbConstraints; ++i)
152 if (supporting[i])
153 Vector_Copy((*P)->Constraint[i]+1, M->p[j++], (*P)->Dimension);
154 free(supporting);
155 L2 = extract_lattice(M, nvar);
156 Matrix_Free(M);
158 if (!L)
159 L = L2;
160 else {
161 Lattice *L3 = LatticeJoin(L, L2);
162 Matrix_Free(L);
163 Matrix_Free(L2);
164 L = L3;
168 if (Lat)
169 *Lat = Matrix_Copy(L);
171 /* apply the variable expansion to the polyhedron (constraints) */
172 expansion = Matrix_Alloc(nvar + nparam + 1, nvar + nparam + 1);
173 for (i = 0; i < nvar; ++i)
174 Vector_Copy(L->p[i], expansion->p[i], nvar);
175 for (i = nvar; i < nvar+nparam+1; ++i)
176 value_assign(expansion->p[i][i], L->p[nvar][nvar]);
178 *P = Polyhedron_Preimage(*P, expansion, MaxRays);
179 Matrix_Free(expansion);
181 /* apply the variable expansion to the parametric vertices */
182 Li = Matrix_Alloc(nvar+1, nvar+1);
183 ok = Matrix_Inverse(L, Li);
184 assert(ok);
185 Matrix_Free(L);
186 assert(value_one_p(Li->p[nvar][nvar]));
187 T = Matrix_Alloc(nvar, nvar);
188 value_set_si(*det, 1);
189 for (i = 0; i < nvar; ++i) {
190 value_multiply(*det, *det, Li->p[i][i]);
191 Vector_Copy(Li->p[i], T->p[i], nvar);
193 Matrix_Free(Li);
194 for (V = PP->V; V; V = V->next)
195 Param_Vertex_Image(V, T);
196 Matrix_Free(T);
199 /* Scales the parametric polyhedron with constraints *P and vertices PP
200 * such that the number of integer points can be represented by a polynomial.
201 * Both *P and P->Vertex are adapted according to the scaling.
202 * The scaling factor is returned in *det.
203 * The transformation that maps the new coordinates to the original
204 * coordinates is returned in *Lat (if Lat != NULL).
205 * The enumerator of the scaled parametric polyhedron should be divided
206 * by this number to obtain an approximation of the enumerator of the
207 * original parametric polyhedron.
209 * The algorithm is described in "Approximating Ehrhart Polynomials using
210 * affine transformations" by B. Meister.
212 void Param_Polyhedron_Scale_Integer_Fast(Param_Polyhedron *PP, Polyhedron **P,
213 Lattice **Lat,
214 Value *det, unsigned MaxRays)
216 int i;
217 int nb_param, nb_vars;
218 Vector *denoms;
219 Param_Vertices *V;
220 Value global_var_lcm;
221 Value tmp;
222 Matrix *expansion;
224 value_set_si(*det, 1);
225 if (!PP->nbV)
226 return;
228 nb_param = PP->D->Domain->Dimension;
229 nb_vars = PP->V->Vertex->NbRows;
231 /* Scan the vertices and make an orthogonal expansion of the variable
232 space */
233 /* a- prepare the array of common denominators */
234 denoms = Vector_Alloc(nb_vars);
235 value_init(global_var_lcm);
237 value_init(tmp);
238 /* b- scan the vertices and compute the variables' global lcms */
239 for (V = PP->V; V; V = V->next) {
240 for (i = 0; i < nb_vars; i++) {
241 Vector_Gcd(V->Vertex->p[i], nb_param, &tmp);
242 Gcd(tmp, V->Vertex->p[i][nb_param+1], &tmp);
243 value_division(tmp, V->Vertex->p[i][nb_param+1], tmp);
244 Lcm3(denoms->p[i], tmp, &denoms->p[i]);
247 value_clear(tmp);
249 value_set_si(global_var_lcm, 1);
250 for (i = 0; i < nb_vars; i++) {
251 value_multiply(*det, *det, denoms->p[i]);
252 Lcm3(global_var_lcm, denoms->p[i], &global_var_lcm);
255 /* scale vertices */
256 for (V = PP->V; V; V = V->next)
257 for (i = 0; i < nb_vars; i++) {
258 Vector_Scale(V->Vertex->p[i], V->Vertex->p[i], denoms->p[i], nb_param+1);
259 Vector_Normalize(V->Vertex->p[i], nb_param+2);
262 /* the expansion can be actually writen as global_var_lcm.L^{-1} */
263 /* this is equivalent to multiply the rows of P by denoms_det */
264 for (i = 0; i < nb_vars; i++)
265 value_division(denoms->p[i], global_var_lcm, denoms->p[i]);
267 /* OPT : we could use a vector instead of a diagonal matrix here (c- and d-).*/
268 /* c- make the quick expansion matrix */
269 expansion = Matrix_Alloc(nb_vars+nb_param+1, nb_vars+nb_param+1);
270 for (i = 0; i < nb_vars; i++)
271 value_assign(expansion->p[i][i], denoms->p[i]);
272 for (i = nb_vars; i < nb_vars+nb_param+1; i++)
273 value_assign(expansion->p[i][i], global_var_lcm);
275 /* d- apply the variable expansion to the polyhedron */
276 if (P)
277 *P = Polyhedron_Preimage(*P, expansion, MaxRays);
279 if (Lat) {
280 Lattice *L = Matrix_Alloc(nb_vars+1, nb_vars+1);
281 for (i = 0; i < nb_vars; ++i)
282 value_assign(L->p[i][i], denoms->p[i]);
283 value_assign(L->p[nb_vars][nb_vars], global_var_lcm);
284 *Lat = L;
287 Matrix_Free(expansion);
288 value_clear(global_var_lcm);
289 Vector_Free(denoms);
292 /* Compute negated sum of all positive or negative coefficients in a row */
293 static void negated_sum(Value *v, int len, int negative, Value *sum)
295 int j;
297 value_set_si(*sum, 0);
298 for (j = 0; j < len; ++j)
299 if (negative ? value_neg_p(v[j]) : value_pos_p(v[j]))
300 value_subtract(*sum, *sum, v[j]);
303 /* adapted from mpolyhedron_inflate in PolyLib */
304 Polyhedron *Polyhedron_Flate(Polyhedron *P, unsigned nparam, int inflate,
305 unsigned MaxRays)
307 Value sum;
308 int nvar = P->Dimension - nparam;
309 Matrix *C = Polyhedron2Constraints(P);
310 Polyhedron *P2;
311 int i;
313 value_init(sum);
314 /* subtract the sum of the negative coefficients of each inequality */
315 for (i = 0; i < C->NbRows; ++i) {
316 negated_sum(C->p[i]+1, nvar, inflate, &sum);
317 value_addto(C->p[i][1+P->Dimension], C->p[i][1+P->Dimension], sum);
319 value_clear(sum);
320 P2 = Constraints2Polyhedron(C, MaxRays);
321 Matrix_Free(C);
323 if (inflate) {
324 Polyhedron *C, *CA;
325 C = Polyhedron_Project(P, nparam);
326 CA = align_context(C, P->Dimension, MaxRays);
327 P = P2;
328 P2 = DomainIntersection(P, CA, MaxRays);
329 Polyhedron_Free(C);
330 Polyhedron_Free(CA);
331 Polyhedron_Free(P);
334 return P2;
337 static Polyhedron *flate_narrow2(Polyhedron *P, Lattice *L,
338 unsigned nparam, int inflate,
339 unsigned MaxRays)
341 Value sum;
342 unsigned nvar = P->Dimension - nparam;
343 Matrix *expansion;
344 Matrix *C;
345 int i, j;
346 Polyhedron *P2;
348 expansion = Matrix_Alloc(nvar + nparam + 1, nvar + nparam + 1);
349 for (i = 0; i < nvar; ++i)
350 Vector_Copy(L->p[i], expansion->p[i], nvar);
351 for (i = nvar; i < nvar+nparam+1; ++i)
352 value_assign(expansion->p[i][i], L->p[nvar][nvar]);
354 C = Matrix_Alloc(P->NbConstraints+1, 1+P->Dimension+1);
355 value_init(sum);
356 for (i = 0; i < P->NbConstraints; ++i) {
357 negated_sum(P->Constraint[i]+1, nvar, inflate, &sum);
358 value_assign(C->p[i][0], P->Constraint[i][0]);
359 Vector_Matrix_Product(P->Constraint[i]+1, expansion, C->p[i]+1);
360 if (value_zero_p(sum))
361 continue;
362 Vector_Copy(C->p[i]+1, C->p[i+1]+1, P->Dimension+1);
363 value_addmul(C->p[i][1+P->Dimension], sum, L->p[nvar][nvar]);
364 ConstraintSimplify(C->p[i], C->p[i], P->Dimension+2, &sum);
365 ConstraintSimplify(C->p[i+1], C->p[i+1], P->Dimension+2, &sum);
366 if (value_ne(C->p[i][1+P->Dimension], C->p[i+1][1+P->Dimension])) {
367 if (inflate)
368 value_decrement(C->p[i][1+P->Dimension], C->p[i][1+P->Dimension]);
369 else
370 value_increment(C->p[i][1+P->Dimension], C->p[i][1+P->Dimension]);
373 value_clear(sum);
374 C->NbRows--;
375 P2 = Constraints2Polyhedron(C, MaxRays);
376 Matrix_Free(C);
378 Matrix_Free(expansion);
380 if (inflate) {
381 Polyhedron *C, *CA;
382 C = Polyhedron_Project(P, nparam);
383 CA = align_context(C, P->Dimension, MaxRays);
384 P = P2;
385 P2 = DomainIntersection(P, CA, MaxRays);
386 Polyhedron_Free(C);
387 Polyhedron_Free(CA);
388 Polyhedron_Free(P);
391 return P2;
394 static void linear_min(Polyhedron *D, Value *obj, Value *min)
396 int i;
397 Value tmp;
398 value_init(tmp);
399 POL_ENSURE_VERTICES(D);
400 for (i = 0; i < D->NbRays; ++i) {
401 Inner_Product(obj, D->Ray[i]+1, D->Dimension, &tmp);
402 mpz_cdiv_q(tmp, tmp, D->Ray[i][1+D->Dimension]);
403 if (!i || value_lt(tmp, *min))
404 value_assign(*min, tmp);
406 value_clear(tmp);
409 static Polyhedron *inflate_deflate_domain(Lattice *L, unsigned MaxRays)
411 unsigned nvar = L->NbRows-1;
412 int i;
413 Matrix *M;
414 Polyhedron *D;
416 M = Matrix_Alloc(2*nvar, 1+nvar+1);
417 for (i = 0; i < nvar; ++i) {
418 value_set_si(M->p[2*i][0], 1);
419 Vector_Copy(L->p[i], M->p[2*i]+1, nvar);
420 Vector_Normalize(M->p[2*i]+1, nvar);
422 value_set_si(M->p[2*i+1][0], 1);
423 Vector_Oppose(L->p[i], M->p[2*i+1]+1, nvar);
424 value_assign(M->p[2*i+1][1+nvar], L->p[nvar][nvar]);
425 Vector_Normalize(M->p[2*i+1]+1, nvar+1);
426 value_decrement(M->p[2*i+1][1+nvar], M->p[2*i+1][1+nvar]);
428 D = Constraints2Polyhedron(M, MaxRays);
429 Matrix_Free(M);
431 return D;
434 static Polyhedron *flate_narrow(Polyhedron *P, Lattice *L,
435 unsigned nparam, int inflate, unsigned MaxRays)
437 int i;
438 unsigned nvar = P->Dimension - nparam;
439 Vector *obj;
440 Value min;
441 Matrix *C;
442 Polyhedron *D;
443 Polyhedron *P2;
445 D = inflate_deflate_domain(L, MaxRays);
446 value_init(min);
447 obj = Vector_Alloc(nvar);
448 C = Polyhedron2Constraints(P);
450 for (i = 0; i < C->NbRows; ++i) {
451 if (inflate)
452 Vector_Copy(C->p[i]+1, obj->p, nvar);
453 else
454 Vector_Oppose(C->p[i]+1, obj->p, nvar);
455 linear_min(D, obj->p, &min);
456 if (inflate)
457 value_subtract(C->p[i][1+P->Dimension], C->p[i][1+P->Dimension], min);
458 else
459 value_addto(C->p[i][1+P->Dimension], C->p[i][1+P->Dimension], min);
462 Polyhedron_Free(D);
463 P2 = Constraints2Polyhedron(C, MaxRays);
464 Matrix_Free(C);
465 Vector_Free(obj);
466 value_clear(min);
468 if (inflate) {
469 Polyhedron *C, *CA;
470 C = Polyhedron_Project(P, nparam);
471 CA = align_context(C, P->Dimension, MaxRays);
472 P = P2;
473 P2 = DomainIntersection(P, CA, MaxRays);
474 Polyhedron_Free(C);
475 Polyhedron_Free(CA);
476 Polyhedron_Free(P);
479 return P2;
482 static Polyhedron *flate(Polyhedron *P, Lattice *L,
483 unsigned nparam, int inflate,
484 struct barvinok_options *options)
486 if (options->scale_flags & BV_APPROX_SCALE_NARROW2)
487 return flate_narrow2(P, L, nparam, inflate, options->MaxRays);
488 else if (options->scale_flags & BV_APPROX_SCALE_NARROW)
489 return flate_narrow(P, L, nparam, inflate, options->MaxRays);
490 else
491 return Polyhedron_Flate(P, nparam, inflate, options->MaxRays);
494 static void Param_Polyhedron_Scale(Param_Polyhedron *PP, Polyhedron **P,
495 Lattice **L,
496 Value *det, struct barvinok_options *options)
498 if (options->scale_flags & BV_APPROX_SCALE_FAST)
499 Param_Polyhedron_Scale_Integer_Fast(PP, P, L, det, options->MaxRays);
500 else
501 Param_Polyhedron_Scale_Integer_Slow(PP, P, L, det, options->MaxRays);
504 static evalue *enumerate_flated(Polyhedron *P, Polyhedron *C, Lattice *L,
505 struct barvinok_options *options)
507 unsigned nparam = C->Dimension;
508 evalue *eres;
509 int save_approximation = options->polynomial_approximation;
511 if (options->polynomial_approximation == BV_APPROX_SIGN_UPPER)
512 P = flate(P, L, nparam, 1, options);
513 if (options->polynomial_approximation == BV_APPROX_SIGN_LOWER)
514 P = flate(P, L, nparam, 0, options);
516 /* Don't deflate/inflate again (on this polytope) */
517 options->polynomial_approximation = BV_APPROX_SIGN_NONE;
518 eres = barvinok_enumerate_with_options(P, C, options);
519 options->polynomial_approximation = save_approximation;
520 Polyhedron_Free(P);
522 return eres;
525 static evalue *PP_enumerate_narrow_flated(Param_Polyhedron *PP,
526 Polyhedron *P, Polyhedron *C,
527 struct barvinok_options *options)
529 Polyhedron *Porig = P;
530 int scale_narrow2 = options->scale_flags & BV_APPROX_SCALE_NARROW2;
531 Lattice *L = NULL;
532 Value det;
533 evalue *eres;
535 value_init(det);
536 value_set_si(det, 1);
538 Param_Polyhedron_Scale(PP, &P, &L, &det, options);
539 Param_Polyhedron_Free(PP);
540 if (scale_narrow2) {
541 Polyhedron_Free(P);
542 P = Porig;
544 /* Don't scale again (on this polytope) */
545 options->approximation_method = BV_APPROX_NONE;
546 eres = enumerate_flated(P, C, L, options);
547 options->approximation_method = BV_APPROX_SCALE;
548 Matrix_Free(L);
549 if (P != Porig)
550 Polyhedron_Free(P);
551 if (value_notone_p(det))
552 evalue_div(eres, det);
553 value_clear(det);
554 return eres;
557 static Param_Polyhedron *Param_Polyhedron_Domain(Param_Polyhedron *PP,
558 Param_Domain *D,
559 Polyhedron *rVD)
561 int nv;
562 Param_Polyhedron *PP_D;
563 int i, ix;
564 unsigned bx;
565 Param_Vertices **next, *V;
567 PP_D = ALLOC(Param_Polyhedron);
568 PP_D->D = ALLOC(Param_Domain);
569 PP_D->D->next = NULL;
570 PP_D->D->Domain = Domain_Copy(rVD);
571 PP_D->V = NULL;
573 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
574 PP_D->D->F = ALLOCN(unsigned, nv);
575 memset(PP_D->D->F, 0, nv * sizeof(unsigned));
577 next = &PP_D->V;
578 i = 0;
579 ix = 0;
580 bx = MSB;
581 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
582 Param_Vertices *V2 = ALLOC(Param_Vertices);
583 V2->Vertex = Matrix_Copy(V->Vertex);
584 V2->Domain = NULL;
585 V2->next = NULL;
586 *next = V2;
587 next = &V2->next;
588 PP_D->D->F[ix] |= bx;
589 NEXT(ix, bx);
590 ++i;
591 END_FORALL_PVertex_in_ParamPolyhedron;
592 PP_D->nbV = i;
594 return PP_D;
597 static evalue *enumerate_narrow_flated(Polyhedron *P, Polyhedron *C,
598 struct barvinok_options *options)
600 unsigned PP_MaxRays = options->MaxRays;
601 Param_Polyhedron *PP;
602 if (PP_MaxRays & POL_NO_DUAL)
603 PP_MaxRays = 0;
604 PP = Polyhedron2Param_Domain(P, C, PP_MaxRays);
606 if ((options->scale_flags & BV_APPROX_SCALE_CHAMBER) && PP->D->next) {
607 int nd = -1;
608 evalue *tmp, *eres = NULL;
609 Polyhedron *TC = true_context(P, C, options->MaxRays);
611 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, D, rVD)
612 Polyhedron *P2, *CA;
613 Param_Polyhedron *PP_D;
614 /* Intersect with D->Domain, so we only have the relevant constraints
615 * left. Don't use rVD, though, since we still want to recognize
616 * the defining constraints of the parametric vertices.
618 CA = align_context(D->Domain, P->Dimension, options->MaxRays);
619 P2 = DomainIntersection(P, CA, options->MaxRays);
620 Polyhedron_Free(CA);
621 /* Use rVD for context, to avoid overlapping domains in
622 * results of computations in different chambers.
624 PP_D = Param_Polyhedron_Domain(PP, D, rVD);
625 tmp = PP_enumerate_narrow_flated(PP_D, P2, rVD, options);
626 Polyhedron_Free(P2);
627 if (!eres)
628 eres = tmp;
629 else {
630 eadd(tmp, eres);
631 free_evalue_refs(tmp);
632 free(tmp);
634 Polyhedron_Free(rVD);
635 END_FORALL_REDUCED_DOMAIN
636 Param_Polyhedron_Free(PP);
637 if (!eres)
638 eres = evalue_zero();
639 Polyhedron_Free(TC);
640 return eres;
641 } else
642 return PP_enumerate_narrow_flated(PP, P, C, options);
645 /* If scaling is to be performed in combination with deflation/inflation,
646 * do both and return the result.
647 * Otherwise return NULL.
649 evalue *scale_bound(Polyhedron *P, Polyhedron *C,
650 struct barvinok_options *options)
652 int scale_narrow = options->scale_flags & BV_APPROX_SCALE_NARROW;
653 int scale_narrow2 = options->scale_flags & BV_APPROX_SCALE_NARROW2;
655 if (options->polynomial_approximation == BV_APPROX_SIGN_NONE ||
656 options->polynomial_approximation == BV_APPROX_SIGN_APPROX)
657 return NULL;
659 if (scale_narrow || scale_narrow2)
660 return enumerate_narrow_flated(P, C, options);
661 else
662 return enumerate_flated(P, C, NULL, options);
665 evalue *scale(Param_Polyhedron *PP, Polyhedron *P, Polyhedron *C,
666 struct barvinok_options *options)
668 Polyhedron *T = P;
669 unsigned MaxRays;
670 evalue *eres = NULL;
671 Value det;
673 if ((options->scale_flags & BV_APPROX_SCALE_CHAMBER) && PP->D->next) {
674 int nd = -1;
675 evalue *tmp;
676 Polyhedron *TC = true_context(P, C, options->MaxRays);
678 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, D, rVD)
679 Param_Polyhedron *PP_D = Param_Polyhedron_Domain(PP, D, rVD);
680 tmp = scale(PP_D, P, rVD, options);
681 if (!eres)
682 eres = tmp;
683 else {
684 eadd(tmp, eres);
685 free_evalue_refs(tmp);
686 free(tmp);
688 Param_Polyhedron_Free(PP_D);
689 Polyhedron_Free(rVD);
690 END_FORALL_REDUCED_DOMAIN
691 if (!eres)
692 eres = evalue_zero();
693 Polyhedron_Free(TC);
694 return eres;
697 value_init(det);
698 value_set_si(det, 1);
700 MaxRays = options->MaxRays;
701 POL_UNSET(options->MaxRays, POL_INTEGER);
702 Param_Polyhedron_Scale(PP, &T, NULL, &det, options);
703 options->MaxRays = MaxRays;
705 eres = Param_Polyhedron_Enumerate(PP, T, C, options);
706 if (P != T)
707 Polyhedron_Free(T);
709 if (value_notone_p(det))
710 evalue_div(eres, det);
711 value_clear(det);
713 return eres;