bernoulli.c: fix typos in comments
[barvinok.git] / series.cc
blob7a7fe924890cf081d3a430636cd1ff29ceeb1019
1 #include <assert.h>
2 #include <barvinok/barvinok.h>
3 #include <barvinok/util.h>
4 #include "genfun_constructor.h"
5 #include "lattice_width.h"
6 #include "remove_equalities.h"
8 using std::cerr;
9 using std::endl;
11 static gen_fun *enumerate_series(Polyhedron *P, unsigned nparam,
12 barvinok_options *options)
14 Matrix *CP = NULL;
15 gen_fun *gf;
16 Polyhedron *P_orig = P;
18 if (emptyQ2(P))
19 return new gen_fun(Empty_Polyhedron(nparam));
21 if (P->NbEq != 0)
22 remove_all_equalities(&P, NULL, &CP, NULL, nparam, options->MaxRays);
23 assert(emptyQ2(P) || P->NbEq == 0);
24 if (CP)
25 nparam = CP->NbColumns-1;
27 if (nparam == 0) {
28 Value c;
29 value_init(c);
30 barvinok_count_with_options(P, &c, options);
31 gf = new gen_fun(c);
32 value_clear(c);
33 } else {
34 POL_ENSURE_VERTICES(P);
35 if (P->NbEq)
36 gf = enumerate_series(P, nparam, options);
37 else {
38 gf_base *red;
39 red = gf_base::create(Polyhedron_Project(P, nparam),
40 P->Dimension, nparam, options);
41 red->start_gf(P, options);
42 gf = red->gf;
43 delete red;
46 if (CP) {
47 gf->substitute(CP);
48 Matrix_Free(CP);
50 if (P != P_orig)
51 Polyhedron_Free(P);
52 return gf;
55 gen_fun *barvinok_enumerate_series(Polyhedron *P, unsigned nparam,
56 barvinok_options *options)
58 if (emptyQ2(P))
59 return new gen_fun(Empty_Polyhedron(nparam));
61 assert(!Polyhedron_is_unbounded(P, nparam, options->MaxRays));
62 assert(P->NbBid == 0);
63 assert(Polyhedron_has_revlex_positive_rays(P, nparam));
64 return enumerate_series(P, nparam, options);
67 gen_fun * barvinok_series_with_options(Polyhedron *P, Polyhedron* C,
68 barvinok_options *options)
70 Polyhedron *CA;
71 unsigned nparam = C->Dimension;
72 gen_fun *gf;
74 CA = align_context(C, P->Dimension, options->MaxRays);
75 P = DomainIntersection(P, CA, options->MaxRays);
76 Polyhedron_Free(CA);
78 gf = barvinok_enumerate_series(P, nparam, options);
79 Polyhedron_Free(P);
81 return gf;
84 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
86 gen_fun *gf;
87 barvinok_options *options = barvinok_options_new_with_defaults();
88 options->MaxRays = MaxRays;
89 gf = barvinok_series_with_options(P, C, options);
90 barvinok_options_free(options);
91 return gf;
94 gen_fun* barvinok_enumerate_union_series_with_options(Polyhedron *D, Polyhedron* C,
95 barvinok_options *options)
97 Polyhedron *conv;
98 Polyhedron *CA;
99 gen_fun *gf = NULL, *gf2;
100 unsigned nparam = C->Dimension;
101 ZZ one, mone;
102 one = 1;
103 mone = -1;
105 CA = align_context(C, D->Dimension, options->MaxRays);
106 D = DomainIntersection(D, CA, options->MaxRays);
107 Polyhedron_Free(CA);
109 for (Polyhedron *P = D; P; P = P->next) {
110 assert(P->Dimension == D->Dimension);
111 gen_fun *P_gf;
113 P_gf = barvinok_enumerate_series(P, P->Dimension, options);
114 if (!gf)
115 gf = P_gf;
116 else {
117 gf->add_union(P_gf, options);
118 delete P_gf;
121 /* we actually only need the convex union of the parameter space
122 * but the reducer classes currently expect a polyhedron in
123 * the combined space
125 Polyhedron_Free(gf->context);
126 gf->context = DomainConvex(D, options->MaxRays);
128 gf2 = gf->summate(D->Dimension - nparam, options);
130 delete gf;
131 Domain_Free(D);
132 return gf2;
135 gen_fun* barvinok_enumerate_union_series(Polyhedron *D, Polyhedron* C,
136 unsigned MaxRays)
138 gen_fun *gf;
139 barvinok_options *options = barvinok_options_new_with_defaults();
140 options->MaxRays = MaxRays;
141 gf = barvinok_enumerate_union_series_with_options(D, C, options);
142 barvinok_options_free(options);
143 return gf;
146 /* Unimodularly transform the polyhedron P, such that
147 * the direction specified by dir corresponds to the last
148 * variable in the transformed polyhedron.
149 * The number of variables is given by the length of dir.
151 static Polyhedron *put_direction_last(Polyhedron *P, Vector *dir,
152 unsigned MaxRays)
154 Polyhedron *R;
155 Matrix *T;
156 int n = dir->Size;
158 T = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
159 T->NbColumns = T->NbRows = n;
160 Vector_Copy(dir->p, T->p[0], n);
161 unimodular_complete(T, 1);
162 Vector_Exchange(T->p[0], T->p[n-1], n);
163 T->NbColumns = T->NbRows = P->Dimension+1;
164 for (int j = n; j < P->Dimension+1; ++j)
165 value_set_si(T->p[j][j], 1);
167 R = Polyhedron_Image(P, T, MaxRays);
168 Matrix_Free(T);
170 return R;
173 /* Do we need to continue shifting and subtracting?
174 * i is the number of times we shifted so far
175 * n is the number of coordinates projected out
177 static bool more_shifts_needed(int j, int n,
178 gen_fun *S, gen_fun *S_divide, const vec_ZZ& up,
179 barvinok_options *options)
181 bool empty;
182 gen_fun *hp;
184 /* For the 2-dimensional case, we need to subtract at most once */
185 if (n == 2 && j > 0)
186 return false;
188 S_divide->shift(up);
190 /* Assume that we have to subtract at least once */
191 if (j == 0)
192 return true;
194 hp = S->Hadamard_product(S_divide, options);
196 empty = hp->is_zero();
197 delete hp;
199 return !empty;
202 static gen_fun *project(Polyhedron *P, unsigned n, barvinok_options *options,
203 int free_P);
205 /* Return gf of P projected on last dim(P)-n coordinates, i.e.,
206 * project out the first n coordinates.
208 * Assumes P has no equalities.
210 static gen_fun *project_full_dim(Polyhedron *P, unsigned n,
211 barvinok_options *options)
213 QQ one(1, 1);
214 QQ mone(-1, 1);
215 vec_ZZ up;
216 gen_fun *gf = NULL;
217 struct width_direction_array *dirs;
218 Polyhedron *U;
220 if (n == 0)
221 return barvinok_enumerate_series(P, P->Dimension, options);
223 up.SetLength(P->Dimension - (n-1));
224 up[0] = 1;
225 for (int i = 1; i < P->Dimension - (n-1); ++i)
226 up[i] = 0;
228 if (n == 1) {
229 gen_fun *S, *S_shift, *hp;
231 S = barvinok_enumerate_series(P, P->Dimension, options);
232 S_shift = new gen_fun(S);
233 S_shift->shift(up);
234 hp = S->Hadamard_product(S_shift, options);
235 S->add(mone, hp, options);
236 delete S_shift;
237 delete hp;
239 gf = S->summate(1, options);
240 delete S;
242 return gf;
245 U = Universe_Polyhedron(P->Dimension - n);
246 dirs = Polyhedron_Lattice_Width_Directions(P, U, options);
247 Polyhedron_Free(U);
249 for (int i = 0; i < dirs->n; ++i) {
250 Polyhedron *Pi, *R;
251 Polyhedron *CA;
252 gen_fun *S, *S_shift, *S_divide, *sum;
254 CA = align_context(dirs->wd[i].domain, P->Dimension, options->MaxRays);
255 R = DomainIntersection(P, CA, options->MaxRays);
256 Polyhedron_Free(CA);
257 assert(dirs->wd[i].dir->Size == n);
258 Pi = put_direction_last(R, dirs->wd[i].dir, options->MaxRays);
259 Polyhedron_Free(R);
261 S = project(Pi, n-1, options, 1);
263 S_shift = new gen_fun(S);
264 S_divide = new gen_fun(S);
265 S_divide->divide(up);
267 for (int j = 0; more_shifts_needed(j, n, S, S_divide, up, options); ++j) {
268 gen_fun *hp;
270 S_shift->shift(up);
271 hp = S->Hadamard_product(S_shift, options);
272 S->add(mone, hp, options);
274 delete hp;
277 sum = S->summate(1, options);
279 delete S_shift;
280 delete S_divide;
281 delete S;
283 if (!gf)
284 gf = sum;
285 else {
286 gf->add(one, sum, options);
287 delete sum;
290 free_width_direction_array(dirs);
292 return gf;
295 /* Return gf of P projected on last dim(P)-n coordinates, i.e.,
296 * project out the first n coordinates.
298 static gen_fun *project(Polyhedron *P, unsigned n, barvinok_options *options,
299 int free_P)
301 Matrix *CP = NULL;
302 gen_fun *proj;
303 unsigned nparam = P->Dimension - n;
305 if (P->NbEq != 0) {
306 Polyhedron *Q = P;
307 remove_all_equalities(&P, NULL, &CP, NULL, nparam, options->MaxRays);
308 if (CP)
309 nparam = CP->NbColumns - 1;
310 n = P->Dimension - nparam;
311 if (free_P)
312 Polyhedron_Free(Q);
313 free_P = 1;
316 if (emptyQ(P))
317 proj = new gen_fun(Empty_Polyhedron(nparam));
318 else
319 proj = project_full_dim(P, n, options);
320 if (CP) {
321 proj->substitute(CP);
322 Matrix_Free(CP);
325 if (free_P)
326 Polyhedron_Free(P);
328 return proj;
331 gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
332 unsigned exist, unsigned nparam, barvinok_options *options)
334 Polyhedron *P_orig = P;
335 gen_fun *gf, *proj;
336 unsigned nvar = P->Dimension - exist - nparam;
338 if (exist == 0)
339 return barvinok_enumerate_series(P, nparam, options);
341 if (emptyQ(P))
342 return new gen_fun(Empty_Polyhedron(nparam));
344 assert(!Polyhedron_is_unbounded(P, nparam, options->MaxRays));
345 assert(P->NbBid == 0);
346 assert(Polyhedron_has_revlex_positive_rays(P, nparam));
348 /* Move existentially quantified variables to the front.*/
349 if (nvar) {
350 Matrix *T;
351 T = Matrix_Alloc(exist+nvar+nparam+1, nvar+exist+nparam+1);
352 for (int i = 0; i < exist; ++i)
353 value_set_si(T->p[i][nvar+i], 1);
354 for (int i = 0; i < nvar; ++i)
355 value_set_si(T->p[exist+i][i], 1);
356 for (int i = 0; i < nparam+1; ++i)
357 value_set_si(T->p[exist+nvar+i][nvar+exist+i], 1);
358 P = Polyhedron_Image(P, T, options->MaxRays);
359 Matrix_Free(T);
361 proj = project(P, exist, options, P != P_orig);
363 if (!nvar)
364 gf = proj;
365 else {
366 gf = proj->summate(nvar, options);
367 delete proj;
369 return gf;