8 #include <NTL/mat_ZZ.h>
10 #include <barvinok/util.h>
11 #include <barvinok/evalue.h>
16 #include <barvinok/barvinok.h>
17 #include <barvinok/genfun.h>
18 #include <barvinok/options.h>
19 #include <barvinok/sample.h>
20 #include "conversion.h"
21 #include "decomposer.h"
22 #include "lattice_point.h"
23 #include "reduce_domain.h"
24 #include "genfun_constructor.h"
25 #include "remove_equalities.h"
38 using std::ostringstream
;
40 #define ALLOC(t,p) p = (t*)malloc(sizeof(*p))
48 dpoly_n(int d
, ZZ
& degree_0
, ZZ
& degree_1
, int offset
= 0) {
52 zz2value(degree_0
, d0
);
53 zz2value(degree_1
, d1
);
54 coeff
= Matrix_Alloc(d
+1, d
+1+1);
55 value_set_si(coeff
->p
[0][0], 1);
56 value_set_si(coeff
->p
[0][d
+1], 1);
57 for (int i
= 1; i
<= d
; ++i
) {
58 value_multiply(coeff
->p
[i
][0], coeff
->p
[i
-1][0], d0
);
59 Vector_Combine(coeff
->p
[i
-1], coeff
->p
[i
-1]+1, coeff
->p
[i
]+1,
61 value_set_si(coeff
->p
[i
][d
+1], i
);
62 value_multiply(coeff
->p
[i
][d
+1], coeff
->p
[i
][d
+1], coeff
->p
[i
-1][d
+1]);
63 value_decrement(d0
, d0
);
68 void div(dpoly
& d
, Vector
*count
, ZZ
& sign
) {
69 int len
= coeff
->NbRows
;
70 Matrix
* c
= Matrix_Alloc(coeff
->NbRows
, coeff
->NbColumns
);
73 for (int i
= 0; i
< len
; ++i
) {
74 Vector_Copy(coeff
->p
[i
], c
->p
[i
], len
+1);
75 for (int j
= 1; j
<= i
; ++j
) {
76 zz2value(d
.coeff
[j
], tmp
);
77 value_multiply(tmp
, tmp
, c
->p
[i
][len
]);
78 value_oppose(tmp
, tmp
);
79 Vector_Combine(c
->p
[i
], c
->p
[i
-j
], c
->p
[i
],
80 c
->p
[i
-j
][len
], tmp
, len
);
81 value_multiply(c
->p
[i
][len
], c
->p
[i
][len
], c
->p
[i
-j
][len
]);
83 zz2value(d
.coeff
[0], tmp
);
84 value_multiply(c
->p
[i
][len
], c
->p
[i
][len
], tmp
);
87 value_set_si(tmp
, -1);
88 Vector_Scale(c
->p
[len
-1], count
->p
, tmp
, len
);
89 value_assign(count
->p
[len
], c
->p
[len
-1][len
]);
91 Vector_Copy(c
->p
[len
-1], count
->p
, len
+1);
92 Vector_Normalize(count
->p
, len
+1);
100 * Searches for a vector that is not orthogonal to any
101 * of the rays in rays.
103 static void nonorthog(mat_ZZ
& rays
, vec_ZZ
& lambda
)
105 int dim
= rays
.NumCols();
107 lambda
.SetLength(dim
);
111 for (int i
= 2; !found
&& i
<= 50*dim
; i
+=4) {
112 for (int j
= 0; j
< MAX_TRY
; ++j
) {
113 for (int k
= 0; k
< dim
; ++k
) {
114 int r
= random_int(i
)+2;
115 int v
= (2*(r
%2)-1) * (r
>> 1);
119 for (; k
< rays
.NumRows(); ++k
)
120 if (lambda
* rays
[k
] == 0)
122 if (k
== rays
.NumRows()) {
131 static void add_rays(mat_ZZ
& rays
, Polyhedron
*i
, int *r
, int nvar
= -1,
134 unsigned dim
= i
->Dimension
;
137 for (int k
= 0; k
< i
->NbRays
; ++k
) {
138 if (!value_zero_p(i
->Ray
[k
][dim
+1]))
140 if (!all
&& nvar
!= dim
&& First_Non_Zero(i
->Ray
[k
]+1, nvar
) == -1)
142 values2zz(i
->Ray
[k
]+1, rays
[(*r
)++], nvar
);
146 static void mask_r(Matrix
*f
, int nr
, Vector
*lcm
, int p
, Vector
*val
, evalue
*ev
)
148 unsigned nparam
= lcm
->Size
;
151 Vector
* prod
= Vector_Alloc(f
->NbRows
);
152 Matrix_Vector_Product(f
, val
->p
, prod
->p
);
154 for (int i
= 0; i
< nr
; ++i
) {
155 value_modulus(prod
->p
[i
], prod
->p
[i
], f
->p
[i
][nparam
+1]);
156 isint
&= value_zero_p(prod
->p
[i
]);
158 value_set_si(ev
->d
, 1);
160 value_set_si(ev
->x
.n
, isint
);
167 if (value_one_p(lcm
->p
[p
]))
168 mask_r(f
, nr
, lcm
, p
+1, val
, ev
);
170 value_assign(tmp
, lcm
->p
[p
]);
171 value_set_si(ev
->d
, 0);
172 ev
->x
.p
= new_enode(periodic
, VALUE_TO_INT(tmp
), p
+1);
174 value_decrement(tmp
, tmp
);
175 value_assign(val
->p
[p
], tmp
);
176 mask_r(f
, nr
, lcm
, p
+1, val
, &ev
->x
.p
->arr
[VALUE_TO_INT(tmp
)]);
177 } while (value_pos_p(tmp
));
182 static void mask_fractional(Matrix
*f
, evalue
*factor
)
184 int nr
= f
->NbRows
, nc
= f
->NbColumns
;
187 for (n
= 0; n
< nr
&& value_notzero_p(f
->p
[n
][nc
-1]); ++n
)
188 if (value_notone_p(f
->p
[n
][nc
-1]) &&
189 value_notmone_p(f
->p
[n
][nc
-1]))
203 value_set_si(EV
.x
.n
, 1);
205 for (n
= 0; n
< nr
; ++n
) {
206 value_assign(m
, f
->p
[n
][nc
-1]);
207 if (value_one_p(m
) || value_mone_p(m
))
210 int j
= normal_mod(f
->p
[n
], nc
-1, &m
);
212 free_evalue_refs(factor
);
213 value_init(factor
->d
);
214 evalue_set_si(factor
, 0, 1);
218 values2zz(f
->p
[n
], row
, nc
-1);
221 if (j
< (nc
-1)-1 && row
[j
] > g
/2) {
222 for (int k
= j
; k
< (nc
-1); ++k
)
228 value_set_si(EP
.d
, 0);
229 EP
.x
.p
= new_enode(relation
, 2, 0);
230 value_clear(EP
.x
.p
->arr
[1].d
);
231 EP
.x
.p
->arr
[1] = *factor
;
232 evalue
*ev
= &EP
.x
.p
->arr
[0];
233 value_set_si(ev
->d
, 0);
234 ev
->x
.p
= new_enode(fractional
, 3, -1);
235 evalue_set_si(&ev
->x
.p
->arr
[1], 0, 1);
236 evalue_set_si(&ev
->x
.p
->arr
[2], 1, 1);
237 evalue
*E
= multi_monom(row
);
238 value_assign(EV
.d
, m
);
240 value_clear(ev
->x
.p
->arr
[0].d
);
241 ev
->x
.p
->arr
[0] = *E
;
247 free_evalue_refs(&EV
);
253 static void mask_table(Matrix
*f
, evalue
*factor
)
255 int nr
= f
->NbRows
, nc
= f
->NbColumns
;
258 for (n
= 0; n
< nr
&& value_notzero_p(f
->p
[n
][nc
-1]); ++n
)
259 if (value_notone_p(f
->p
[n
][nc
-1]) &&
260 value_notmone_p(f
->p
[n
][nc
-1]))
268 unsigned np
= nc
- 2;
269 Vector
*lcm
= Vector_Alloc(np
);
270 Vector
*val
= Vector_Alloc(nc
);
271 Vector_Set(val
->p
, 0, nc
);
272 value_set_si(val
->p
[np
], 1);
273 Vector_Set(lcm
->p
, 1, np
);
274 for (n
= 0; n
< nr
; ++n
) {
275 if (value_one_p(f
->p
[n
][nc
-1]) ||
276 value_mone_p(f
->p
[n
][nc
-1]))
278 for (int j
= 0; j
< np
; ++j
)
279 if (value_notzero_p(f
->p
[n
][j
])) {
280 Gcd(f
->p
[n
][j
], f
->p
[n
][nc
-1], &tmp
);
281 value_division(tmp
, f
->p
[n
][nc
-1], tmp
);
282 value_lcm(tmp
, lcm
->p
[j
], &lcm
->p
[j
]);
287 mask_r(f
, nr
, lcm
, 0, val
, &EP
);
292 free_evalue_refs(&EP
);
295 static void mask(Matrix
*f
, evalue
*factor
, barvinok_options
*options
)
297 if (options
->lookup_table
)
298 mask_table(f
, factor
);
300 mask_fractional(f
, factor
);
303 /* This structure encodes the power of the term in a rational generating function.
305 * Either E == NULL or constant = 0
306 * If E != NULL, then the power is E
307 * If E == NULL, then the power is coeff * param[pos] + constant
316 /* Returns the power of (t+1) in the term of a rational generating function,
317 * i.e., the scalar product of the actual lattice point and lambda.
318 * The lattice point is the unique lattice point in the fundamental parallelepiped
319 * of the unimodual cone i shifted to the parametric vertex V.
321 * PD is the parameter domain, which, if != NULL, may be used to simply the
322 * resulting expression.
324 * The result is returned in term.
326 void lattice_point(Param_Vertices
* V
, const mat_ZZ
& rays
, vec_ZZ
& lambda
,
327 term_info
* term
, Polyhedron
*PD
, barvinok_options
*options
)
329 unsigned nparam
= V
->Vertex
->NbColumns
- 2;
330 unsigned dim
= rays
.NumCols();
332 vertex
.SetDims(V
->Vertex
->NbRows
, nparam
+1);
336 value_set_si(lcm
, 1);
337 for (int j
= 0; j
< V
->Vertex
->NbRows
; ++j
) {
338 value_lcm(lcm
, V
->Vertex
->p
[j
][nparam
+1], &lcm
);
340 if (value_notone_p(lcm
)) {
341 Matrix
* mv
= Matrix_Alloc(dim
, nparam
+1);
342 for (int j
= 0 ; j
< dim
; ++j
) {
343 value_division(tmp
, lcm
, V
->Vertex
->p
[j
][nparam
+1]);
344 Vector_Scale(V
->Vertex
->p
[j
], mv
->p
[j
], tmp
, nparam
+1);
347 term
->E
= lattice_point(rays
, lambda
, mv
, lcm
, PD
, options
);
355 for (int i
= 0; i
< V
->Vertex
->NbRows
; ++i
) {
356 assert(value_one_p(V
->Vertex
->p
[i
][nparam
+1])); // for now
357 values2zz(V
->Vertex
->p
[i
], vertex
[i
], nparam
+1);
361 num
= lambda
* vertex
;
365 for (int j
= 0; j
< nparam
; ++j
)
371 term
->E
= multi_monom(num
);
375 term
->constant
= num
[nparam
];
378 term
->coeff
= num
[p
];
386 struct counter
: public np_base
{
396 counter(unsigned dim
) : np_base(dim
) {
401 virtual void init(Polyhedron
*P
) {
402 randomvector(P
, lambda
, dim
);
405 virtual void reset() {
406 mpq_set_si(count
, 0, 0);
413 virtual void handle(const mat_ZZ
& rays
, Value
*vertex
, const QQ
& c
,
414 unsigned long det
, int *closed
, barvinok_options
*options
);
415 virtual void get_count(Value
*result
) {
416 assert(value_one_p(&count
[0]._mp_den
));
417 value_assign(*result
, &count
[0]._mp_num
);
421 void counter::handle(const mat_ZZ
& rays
, Value
*V
, const QQ
& c
, unsigned long det
,
422 int *closed
, barvinok_options
*options
)
424 for (int k
= 0; k
< dim
; ++k
) {
425 if (lambda
* rays
[k
] == 0)
430 assert(c
.n
== 1 || c
.n
== -1);
433 lattice_point(V
, rays
, vertex
, det
, closed
);
434 num
= vertex
* lambda
;
437 normalize(sign
, offset
, den
);
440 dpoly
d(dim
, num
[0]);
441 for (int k
= 1; k
< num
.length(); ++k
) {
443 dpoly
term(dim
, num
[k
]);
446 dpoly
n(dim
, den
[0], 1);
447 for (int k
= 1; k
< dim
; ++k
) {
448 dpoly
fact(dim
, den
[k
], 1);
451 d
.div(n
, count
, sign
);
454 struct bfe_term
: public bfc_term_base
{
455 vector
<evalue
*> factors
;
457 bfe_term(int len
) : bfc_term_base(len
) {
461 for (int i
= 0; i
< factors
.size(); ++i
) {
464 free_evalue_refs(factors
[i
]);
470 static void print_int_vector(int *v
, int len
, char *name
)
472 cerr
<< name
<< endl
;
473 for (int j
= 0; j
< len
; ++j
) {
479 static void print_bfc_terms(mat_ZZ
& factors
, bfc_vec
& v
)
482 cerr
<< "factors" << endl
;
483 cerr
<< factors
<< endl
;
484 for (int i
= 0; i
< v
.size(); ++i
) {
485 cerr
<< "term: " << i
<< endl
;
486 print_int_vector(v
[i
]->powers
, factors
.NumRows(), "powers");
487 cerr
<< "terms" << endl
;
488 cerr
<< v
[i
]->terms
<< endl
;
489 bfc_term
* bfct
= static_cast<bfc_term
*>(v
[i
]);
490 cerr
<< bfct
->c
<< endl
;
494 static void print_bfe_terms(mat_ZZ
& factors
, bfc_vec
& v
)
497 cerr
<< "factors" << endl
;
498 cerr
<< factors
<< endl
;
499 for (int i
= 0; i
< v
.size(); ++i
) {
500 cerr
<< "term: " << i
<< endl
;
501 print_int_vector(v
[i
]->powers
, factors
.NumRows(), "powers");
502 cerr
<< "terms" << endl
;
503 cerr
<< v
[i
]->terms
<< endl
;
504 bfe_term
* bfet
= static_cast<bfe_term
*>(v
[i
]);
505 for (int j
= 0; j
< v
[i
]->terms
.NumRows(); ++j
) {
506 char * test
[] = {"a", "b"};
507 print_evalue(stderr
, bfet
->factors
[j
], test
);
508 fprintf(stderr
, "\n");
513 struct bfcounter
: public bfcounter_base
{
516 bfcounter(unsigned dim
) : bfcounter_base(dim
) {
523 virtual void base(mat_ZZ
& factors
, bfc_vec
& v
);
524 virtual void get_count(Value
*result
) {
525 assert(value_one_p(&count
[0]._mp_den
));
526 value_assign(*result
, &count
[0]._mp_num
);
530 void bfcounter::base(mat_ZZ
& factors
, bfc_vec
& v
)
532 unsigned nf
= factors
.NumRows();
534 for (int i
= 0; i
< v
.size(); ++i
) {
535 bfc_term
* bfct
= static_cast<bfc_term
*>(v
[i
]);
537 // factor is always positive, so we always
539 for (int k
= 0; k
< nf
; ++k
)
540 total_power
+= v
[i
]->powers
[k
];
543 for (j
= 0; j
< nf
; ++j
)
544 if (v
[i
]->powers
[j
] > 0)
547 dpoly
D(total_power
, factors
[j
][0], 1);
548 for (int k
= 1; k
< v
[i
]->powers
[j
]; ++k
) {
549 dpoly
fact(total_power
, factors
[j
][0], 1);
553 for (int k
= 0; k
< v
[i
]->powers
[j
]; ++k
) {
554 dpoly
fact(total_power
, factors
[j
][0], 1);
558 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
559 dpoly
n(total_power
, v
[i
]->terms
[k
][0]);
560 mpq_set_si(tcount
, 0, 1);
561 n
.div(D
, tcount
, one
);
563 bfct
->c
[k
].n
= -bfct
->c
[k
].n
;
564 zz2value(bfct
->c
[k
].n
, tn
);
565 zz2value(bfct
->c
[k
].d
, td
);
567 mpz_mul(mpq_numref(tcount
), mpq_numref(tcount
), tn
);
568 mpz_mul(mpq_denref(tcount
), mpq_denref(tcount
), td
);
569 mpq_canonicalize(tcount
);
570 mpq_add(count
, count
, tcount
);
577 /* Check whether the polyhedron is unbounded and if so,
578 * check whether it has any (and therefore an infinite number of)
580 * If one of the vertices is integer, then we are done.
581 * Otherwise, transform the polyhedron such that one of the rays
582 * is the first unit vector and cut it off at a height that ensures
583 * that if the whole polyhedron has any points, then the remaining part
584 * has integer points. In particular we add the largest coefficient
585 * of a ray to the highest vertex (rounded up).
587 static bool Polyhedron_is_infinite(Polyhedron
*P
, Value
* result
,
588 barvinok_options
*options
)
600 for (; r
< P
->NbRays
; ++r
)
601 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1]))
603 if (P
->NbBid
== 0 && r
== P
->NbRays
)
606 if (options
->count_sample_infinite
) {
609 sample
= Polyhedron_Sample(P
, options
);
611 value_set_si(*result
, 0);
613 value_set_si(*result
, -1);
619 for (int i
= 0; i
< P
->NbRays
; ++i
)
620 if (value_one_p(P
->Ray
[i
][1+P
->Dimension
])) {
621 value_set_si(*result
, -1);
626 M
= Matrix_Alloc(P
->Dimension
+1, P
->Dimension
+1);
627 Vector_Gcd(P
->Ray
[r
]+1, P
->Dimension
, &g
);
628 Vector_AntiScale(P
->Ray
[r
]+1, M
->p
[0], g
, P
->Dimension
+1);
629 int ok
= unimodular_complete(M
, 1);
631 value_set_si(M
->p
[P
->Dimension
][P
->Dimension
], 1);
634 P
= Polyhedron_Preimage(P
, M2
, 0);
642 value_set_si(size
, 0);
644 for (int i
= 0; i
< P
->NbBid
; ++i
) {
645 value_absolute(tmp
, P
->Ray
[i
][1]);
646 if (value_gt(tmp
, size
))
647 value_assign(size
, tmp
);
649 for (int i
= P
->NbBid
; i
< P
->NbRays
; ++i
) {
650 if (value_zero_p(P
->Ray
[i
][P
->Dimension
+1])) {
651 if (value_gt(P
->Ray
[i
][1], size
))
652 value_assign(size
, P
->Ray
[i
][1]);
655 mpz_cdiv_q(tmp
, P
->Ray
[i
][1], P
->Ray
[i
][P
->Dimension
+1]);
656 if (first
|| value_gt(tmp
, offset
)) {
657 value_assign(offset
, tmp
);
661 value_addto(offset
, offset
, size
);
665 v
= Vector_Alloc(P
->Dimension
+2);
666 value_set_si(v
->p
[0], 1);
667 value_set_si(v
->p
[1], -1);
668 value_assign(v
->p
[1+P
->Dimension
], offset
);
669 R
= AddConstraints(v
->p
, 1, P
, options
->MaxRays
);
677 barvinok_count_with_options(P
, &c
, options
);
680 value_set_si(*result
, 0);
682 value_set_si(*result
, -1);
688 typedef Polyhedron
* Polyhedron_p
;
690 static void barvinok_count_f(Polyhedron
*P
, Value
* result
,
691 barvinok_options
*options
);
693 void barvinok_count_with_options(Polyhedron
*P
, Value
* result
,
694 struct barvinok_options
*options
)
699 bool infinite
= false;
703 "barvinok_count: input is a union; only first polyhedron is counted\n");
706 value_set_si(*result
, 0);
712 P
= remove_equalities(P
, options
->MaxRays
);
713 P
= DomainConstraintSimplify(P
, options
->MaxRays
);
717 } while (!emptyQ(P
) && P
->NbEq
!= 0);
720 value_set_si(*result
, 0);
725 if (Polyhedron_is_infinite(P
, result
, options
)) {
730 if (P
->Dimension
== 0) {
731 /* Test whether the constraints are satisfied */
732 POL_ENSURE_VERTICES(P
);
733 value_set_si(*result
, !emptyQ(P
));
738 Q
= Polyhedron_Factor(P
, 0, NULL
, options
->MaxRays
);
746 barvinok_count_f(P
, result
, options
);
747 if (value_neg_p(*result
))
749 if (Q
&& P
->next
&& value_notzero_p(*result
)) {
753 for (Q
= P
->next
; Q
; Q
= Q
->next
) {
754 barvinok_count_f(Q
, &factor
, options
);
755 if (value_neg_p(factor
)) {
758 } else if (Q
->next
&& value_zero_p(factor
)) {
759 value_set_si(*result
, 0);
762 value_multiply(*result
, *result
, factor
);
771 value_set_si(*result
, -1);
774 void barvinok_count(Polyhedron
*P
, Value
* result
, unsigned NbMaxCons
)
776 barvinok_options
*options
= barvinok_options_new_with_defaults();
777 options
->MaxRays
= NbMaxCons
;
778 barvinok_count_with_options(P
, result
, options
);
779 barvinok_options_free(options
);
782 static void barvinok_count_f(Polyhedron
*P
, Value
* result
,
783 barvinok_options
*options
)
786 value_set_si(*result
, 0);
790 if (P
->Dimension
== 1)
791 return Line_Length(P
, result
);
793 int c
= P
->NbConstraints
;
794 POL_ENSURE_FACETS(P
);
795 if (c
!= P
->NbConstraints
|| P
->NbEq
!= 0) {
796 Polyhedron
*next
= P
->next
;
798 barvinok_count_with_options(P
, result
, options
);
803 POL_ENSURE_VERTICES(P
);
805 if (Polyhedron_is_infinite(P
, result
, options
))
809 if (options
->incremental_specialization
== 2)
810 cnt
= new bfcounter(P
->Dimension
);
811 else if (options
->incremental_specialization
== 1)
812 cnt
= new icounter(P
->Dimension
);
814 cnt
= new counter(P
->Dimension
);
815 cnt
->start(P
, options
);
817 cnt
->get_count(result
);
821 static void uni_polynom(int param
, Vector
*c
, evalue
*EP
)
823 unsigned dim
= c
->Size
-2;
825 value_set_si(EP
->d
,0);
826 EP
->x
.p
= new_enode(polynomial
, dim
+1, param
+1);
827 for (int j
= 0; j
<= dim
; ++j
)
828 evalue_set(&EP
->x
.p
->arr
[j
], c
->p
[j
], c
->p
[dim
+1]);
831 static void multi_polynom(Vector
*c
, evalue
* X
, evalue
*EP
)
833 unsigned dim
= c
->Size
-2;
837 evalue_set(&EC
, c
->p
[dim
], c
->p
[dim
+1]);
840 evalue_set(EP
, c
->p
[dim
], c
->p
[dim
+1]);
842 for (int i
= dim
-1; i
>= 0; --i
) {
844 value_assign(EC
.x
.n
, c
->p
[i
]);
847 free_evalue_refs(&EC
);
850 Polyhedron
*unfringe (Polyhedron
*P
, unsigned MaxRays
)
852 int len
= P
->Dimension
+2;
853 Polyhedron
*T
, *R
= P
;
856 Vector
*row
= Vector_Alloc(len
);
857 value_set_si(row
->p
[0], 1);
859 R
= DomainConstraintSimplify(Polyhedron_Copy(P
), MaxRays
);
861 Matrix
*M
= Matrix_Alloc(2, len
-1);
862 value_set_si(M
->p
[1][len
-2], 1);
863 for (int v
= 0; v
< P
->Dimension
; ++v
) {
864 value_set_si(M
->p
[0][v
], 1);
865 Polyhedron
*I
= Polyhedron_Image(R
, M
, 2+1);
866 value_set_si(M
->p
[0][v
], 0);
867 for (int r
= 0; r
< I
->NbConstraints
; ++r
) {
868 if (value_zero_p(I
->Constraint
[r
][0]))
870 if (value_zero_p(I
->Constraint
[r
][1]))
872 if (value_one_p(I
->Constraint
[r
][1]))
874 if (value_mone_p(I
->Constraint
[r
][1]))
876 value_absolute(g
, I
->Constraint
[r
][1]);
877 Vector_Set(row
->p
+1, 0, len
-2);
878 value_division(row
->p
[1+v
], I
->Constraint
[r
][1], g
);
879 mpz_fdiv_q(row
->p
[len
-1], I
->Constraint
[r
][2], g
);
881 R
= AddConstraints(row
->p
, 1, R
, MaxRays
);
893 /* Check whether all rays point in the positive directions
896 static bool Polyhedron_has_positive_rays(Polyhedron
*P
, unsigned nparam
)
899 for (r
= 0; r
< P
->NbRays
; ++r
)
900 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1])) {
902 for (i
= P
->Dimension
- nparam
; i
< P
->Dimension
; ++i
)
903 if (value_neg_p(P
->Ray
[r
][i
+1]))
909 typedef evalue
* evalue_p
;
911 struct enumerator_base
{
915 vertex_decomposer
*vpd
;
917 enumerator_base(unsigned dim
, vertex_decomposer
*vpd
)
922 vE
= new evalue_p
[vpd
->nbV
];
923 for (int j
= 0; j
< vpd
->nbV
; ++j
)
927 evalue_set_si(&mone
, -1, 1);
930 void decompose_at(Param_Vertices
*V
, int _i
, barvinok_options
*options
) {
934 value_init(vE
[_i
]->d
);
935 evalue_set_si(vE
[_i
], 0, 1);
937 vpd
->decompose_at_vertex(V
, _i
, options
);
940 virtual ~enumerator_base() {
941 for (int j
= 0; j
< vpd
->nbV
; ++j
)
943 free_evalue_refs(vE
[j
]);
948 free_evalue_refs(&mone
);
951 static enumerator_base
*create(Polyhedron
*P
, unsigned dim
, unsigned nbV
,
952 barvinok_options
*options
);
955 struct enumerator
: public signed_cone_consumer
, public vertex_decomposer
,
956 public enumerator_base
{
964 enumerator(Polyhedron
*P
, unsigned dim
, unsigned nbV
) :
965 vertex_decomposer(P
, nbV
, *this), enumerator_base(dim
, this) {
968 randomvector(P
, lambda
, dim
);
970 c
= Vector_Alloc(dim
+2);
980 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
983 void enumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
988 assert(sc
.rays
.NumRows() == dim
);
989 for (int k
= 0; k
< dim
; ++k
) {
990 if (lambda
* sc
.rays
[k
] == 0)
996 lattice_point(V
, sc
.rays
, lambda
, &num
, 0, options
);
997 den
= sc
.rays
* lambda
;
998 normalize(sign
, num
.constant
, den
);
1000 dpoly
n(dim
, den
[0], 1);
1001 for (int k
= 1; k
< dim
; ++k
) {
1002 dpoly
fact(dim
, den
[k
], 1);
1005 if (num
.E
!= NULL
) {
1006 ZZ
one(INIT_VAL
, 1);
1007 dpoly_n
d(dim
, num
.constant
, one
);
1010 multi_polynom(c
, num
.E
, &EV
);
1011 eadd(&EV
, vE
[vert
]);
1012 free_evalue_refs(&EV
);
1013 free_evalue_refs(num
.E
);
1015 } else if (num
.pos
!= -1) {
1016 dpoly_n
d(dim
, num
.constant
, num
.coeff
);
1019 uni_polynom(num
.pos
, c
, &EV
);
1020 eadd(&EV
, vE
[vert
]);
1021 free_evalue_refs(&EV
);
1023 mpq_set_si(count
, 0, 1);
1024 dpoly
d(dim
, num
.constant
);
1025 d
.div(n
, count
, sign
);
1028 evalue_set(&EV
, &count
[0]._mp_num
, &count
[0]._mp_den
);
1029 eadd(&EV
, vE
[vert
]);
1030 free_evalue_refs(&EV
);
1034 struct ienumerator_base
: enumerator_base
{
1037 ienumerator_base(unsigned dim
, vertex_decomposer
*vpd
) :
1038 enumerator_base(dim
,vpd
) {
1039 E_vertex
= new evalue_p
[dim
];
1042 virtual ~ienumerator_base() {
1046 evalue
*E_num(int i
, int d
) {
1047 return E_vertex
[i
+ (dim
-d
)];
1056 cumulator(evalue
*factor
, evalue
*v
, dpoly_r
*r
) :
1057 factor(factor
), v(v
), r(r
) {}
1059 void cumulate(barvinok_options
*options
);
1061 virtual void add_term(const vector
<int>& powers
, evalue
*f2
) = 0;
1062 virtual ~cumulator() {}
1065 void cumulator::cumulate(barvinok_options
*options
)
1067 evalue cum
; // factor * 1 * E_num[0]/1 * (E_num[0]-1)/2 *...
1069 evalue t
; // E_num[0] - (m-1)
1073 if (options
->lookup_table
) {
1075 evalue_set_si(&mone
, -1, 1);
1079 evalue_copy(&cum
, factor
);
1082 value_set_si(f
.d
, 1);
1083 value_set_si(f
.x
.n
, 1);
1087 if (!options
->lookup_table
) {
1088 for (cst
= &t
; value_zero_p(cst
->d
); ) {
1089 if (cst
->x
.p
->type
== fractional
)
1090 cst
= &cst
->x
.p
->arr
[1];
1092 cst
= &cst
->x
.p
->arr
[0];
1096 for (int m
= 0; m
< r
->len
; ++m
) {
1099 value_set_si(f
.d
, m
);
1101 if (!options
->lookup_table
)
1102 value_subtract(cst
->x
.n
, cst
->x
.n
, cst
->d
);
1108 dpoly_r_term_list
& current
= r
->c
[r
->len
-1-m
];
1109 dpoly_r_term_list::iterator j
;
1110 for (j
= current
.begin(); j
!= current
.end(); ++j
) {
1111 if ((*j
)->coeff
== 0)
1113 evalue
*f2
= new evalue
;
1115 value_init(f2
->x
.n
);
1116 zz2value((*j
)->coeff
, f2
->x
.n
);
1117 zz2value(r
->denom
, f2
->d
);
1120 add_term((*j
)->powers
, f2
);
1123 free_evalue_refs(&f
);
1124 free_evalue_refs(&t
);
1125 free_evalue_refs(&cum
);
1126 if (options
->lookup_table
)
1127 free_evalue_refs(&mone
);
1130 struct E_poly_term
{
1135 struct ie_cum
: public cumulator
{
1136 vector
<E_poly_term
*> terms
;
1138 ie_cum(evalue
*factor
, evalue
*v
, dpoly_r
*r
) : cumulator(factor
, v
, r
) {}
1140 virtual void add_term(const vector
<int>& powers
, evalue
*f2
);
1143 void ie_cum::add_term(const vector
<int>& powers
, evalue
*f2
)
1146 for (k
= 0; k
< terms
.size(); ++k
) {
1147 if (terms
[k
]->powers
== powers
) {
1148 eadd(f2
, terms
[k
]->E
);
1149 free_evalue_refs(f2
);
1154 if (k
>= terms
.size()) {
1155 E_poly_term
*ET
= new E_poly_term
;
1156 ET
->powers
= powers
;
1158 terms
.push_back(ET
);
1162 struct ienumerator
: public signed_cone_consumer
, public vertex_decomposer
,
1163 public ienumerator_base
{
1169 ienumerator(Polyhedron
*P
, unsigned dim
, unsigned nbV
) :
1170 vertex_decomposer(P
, nbV
, *this), ienumerator_base(dim
, this) {
1171 vertex
.SetDims(1, dim
);
1173 den
.SetDims(dim
, dim
);
1181 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
1182 void reduce(evalue
*factor
, const mat_ZZ
& num
, const mat_ZZ
& den_f
,
1183 barvinok_options
*options
);
1186 void ienumerator::reduce(evalue
*factor
, const mat_ZZ
& num
, const mat_ZZ
& den_f
,
1187 barvinok_options
*options
)
1189 unsigned len
= den_f
.NumRows(); // number of factors in den
1190 unsigned dim
= num
.NumCols();
1191 assert(num
.NumRows() == 1);
1194 eadd(factor
, vE
[vert
]);
1203 split_one(num
, num_s
, num_p
, den_f
, den_s
, den_r
);
1206 den_p
.SetLength(len
);
1210 normalize(one
, num_s
, num_p
, den_s
, den_p
, den_r
);
1212 emul(&mone
, factor
);
1216 for (int k
= 0; k
< len
; ++k
) {
1219 else if (den_s
[k
] == 0)
1222 if (no_param
== 0) {
1223 reduce(factor
, num_p
, den_r
, options
);
1227 pden
.SetDims(only_param
, dim
-1);
1229 for (k
= 0, l
= 0; k
< len
; ++k
)
1231 pden
[l
++] = den_r
[k
];
1233 for (k
= 0; k
< len
; ++k
)
1237 dpoly
n(no_param
, num_s
[0]);
1238 dpoly
D(no_param
, den_s
[k
], 1);
1239 for ( ; ++k
< len
; )
1240 if (den_p
[k
] == 0) {
1241 dpoly
fact(no_param
, den_s
[k
], 1);
1246 // if no_param + only_param == len then all powers
1247 // below will be all zero
1248 if (no_param
+ only_param
== len
) {
1249 if (E_num(0, dim
) != 0)
1250 r
= new dpoly_r(n
, len
);
1252 mpq_set_si(tcount
, 0, 1);
1254 n
.div(D
, tcount
, one
);
1256 if (value_notzero_p(mpq_numref(tcount
))) {
1260 value_assign(f
.x
.n
, mpq_numref(tcount
));
1261 value_assign(f
.d
, mpq_denref(tcount
));
1263 reduce(factor
, num_p
, pden
, options
);
1264 free_evalue_refs(&f
);
1269 for (k
= 0; k
< len
; ++k
) {
1270 if (den_s
[k
] == 0 || den_p
[k
] == 0)
1273 dpoly
pd(no_param
-1, den_s
[k
], 1);
1276 for (l
= 0; l
< k
; ++l
)
1277 if (den_r
[l
] == den_r
[k
])
1281 r
= new dpoly_r(n
, pd
, l
, len
);
1283 dpoly_r
*nr
= new dpoly_r(r
, pd
, l
, len
);
1289 dpoly_r
*rc
= r
->div(D
);
1292 if (E_num(0, dim
) == 0) {
1293 int common
= pden
.NumRows();
1294 dpoly_r_term_list
& final
= r
->c
[r
->len
-1];
1300 zz2value(r
->denom
, f
.d
);
1301 dpoly_r_term_list::iterator j
;
1302 for (j
= final
.begin(); j
!= final
.end(); ++j
) {
1303 if ((*j
)->coeff
== 0)
1306 for (int k
= 0; k
< r
->dim
; ++k
) {
1307 int n
= (*j
)->powers
[k
];
1310 pden
.SetDims(rows
+n
, pden
.NumCols());
1311 for (int l
= 0; l
< n
; ++l
)
1312 pden
[rows
+l
] = den_r
[k
];
1316 evalue_copy(&t
, factor
);
1317 zz2value((*j
)->coeff
, f
.x
.n
);
1319 reduce(&t
, num_p
, pden
, options
);
1320 free_evalue_refs(&t
);
1322 free_evalue_refs(&f
);
1324 ie_cum
cum(factor
, E_num(0, dim
), r
);
1325 cum
.cumulate(options
);
1327 int common
= pden
.NumRows();
1329 for (int j
= 0; j
< cum
.terms
.size(); ++j
) {
1331 pden
.SetDims(rows
, pden
.NumCols());
1332 for (int k
= 0; k
< r
->dim
; ++k
) {
1333 int n
= cum
.terms
[j
]->powers
[k
];
1336 pden
.SetDims(rows
+n
, pden
.NumCols());
1337 for (int l
= 0; l
< n
; ++l
)
1338 pden
[rows
+l
] = den_r
[k
];
1341 reduce(cum
.terms
[j
]->E
, num_p
, pden
, options
);
1342 free_evalue_refs(cum
.terms
[j
]->E
);
1343 delete cum
.terms
[j
]->E
;
1344 delete cum
.terms
[j
];
1351 static int type_offset(enode
*p
)
1353 return p
->type
== fractional
? 1 :
1354 p
->type
== flooring
? 1 : 0;
1357 static int edegree(evalue
*e
)
1362 if (value_notzero_p(e
->d
))
1366 int i
= type_offset(p
);
1367 if (p
->size
-i
-1 > d
)
1368 d
= p
->size
- i
- 1;
1369 for (; i
< p
->size
; i
++) {
1370 int d2
= edegree(&p
->arr
[i
]);
1377 void ienumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
1379 assert(sc
.det
== 1);
1381 assert(sc
.rays
.NumRows() == dim
);
1383 lattice_point(V
, sc
.rays
, vertex
[0], E_vertex
, options
);
1389 evalue_set_si(&one
, sc
.sign
, 1);
1390 reduce(&one
, vertex
, den
, options
);
1391 free_evalue_refs(&one
);
1393 for (int i
= 0; i
< dim
; ++i
)
1395 free_evalue_refs(E_vertex
[i
]);
1400 struct bfenumerator
: public vertex_decomposer
, public bf_base
,
1401 public ienumerator_base
{
1404 bfenumerator(Polyhedron
*P
, unsigned dim
, unsigned nbV
) :
1405 vertex_decomposer(P
, nbV
, *this),
1406 bf_base(dim
), ienumerator_base(dim
, this) {
1414 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
1415 virtual void base(mat_ZZ
& factors
, bfc_vec
& v
);
1417 bfc_term_base
* new_bf_term(int len
) {
1418 bfe_term
* t
= new bfe_term(len
);
1422 virtual void set_factor(bfc_term_base
*t
, int k
, int change
) {
1423 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1424 factor
= bfet
->factors
[k
];
1425 assert(factor
!= NULL
);
1426 bfet
->factors
[k
] = NULL
;
1428 emul(&mone
, factor
);
1431 virtual void set_factor(bfc_term_base
*t
, int k
, mpq_t
&q
, int change
) {
1432 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1433 factor
= bfet
->factors
[k
];
1434 assert(factor
!= NULL
);
1435 bfet
->factors
[k
] = NULL
;
1441 value_oppose(f
.x
.n
, mpq_numref(q
));
1443 value_assign(f
.x
.n
, mpq_numref(q
));
1444 value_assign(f
.d
, mpq_denref(q
));
1446 free_evalue_refs(&f
);
1449 virtual void set_factor(bfc_term_base
*t
, int k
, const QQ
& c
, int change
) {
1450 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1452 factor
= new evalue
;
1457 zz2value(c
.n
, f
.x
.n
);
1459 value_oppose(f
.x
.n
, f
.x
.n
);
1462 value_init(factor
->d
);
1463 evalue_copy(factor
, bfet
->factors
[k
]);
1465 free_evalue_refs(&f
);
1468 void set_factor(evalue
*f
, int change
) {
1474 virtual void insert_term(bfc_term_base
*t
, int i
) {
1475 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1476 int len
= t
->terms
.NumRows()-1; // already increased by one
1478 bfet
->factors
.resize(len
+1);
1479 for (int j
= len
; j
> i
; --j
) {
1480 bfet
->factors
[j
] = bfet
->factors
[j
-1];
1481 t
->terms
[j
] = t
->terms
[j
-1];
1483 bfet
->factors
[i
] = factor
;
1487 virtual void update_term(bfc_term_base
*t
, int i
) {
1488 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1490 eadd(factor
, bfet
->factors
[i
]);
1491 free_evalue_refs(factor
);
1495 virtual bool constant_vertex(int dim
) { return E_num(0, dim
) == 0; }
1497 virtual void cum(bf_reducer
*bfr
, bfc_term_base
*t
, int k
, dpoly_r
*r
,
1498 barvinok_options
*options
);
1501 enumerator_base
*enumerator_base::create(Polyhedron
*P
, unsigned dim
, unsigned nbV
,
1502 barvinok_options
*options
)
1504 enumerator_base
*eb
;
1506 if (options
->incremental_specialization
== BV_SPECIALIZATION_BF
)
1507 eb
= new bfenumerator(P
, dim
, nbV
);
1508 else if (options
->incremental_specialization
== BV_SPECIALIZATION_DF
)
1509 eb
= new ienumerator(P
, dim
, nbV
);
1511 eb
= new enumerator(P
, dim
, nbV
);
1516 struct bfe_cum
: public cumulator
{
1518 bfc_term_base
*told
;
1522 bfe_cum(evalue
*factor
, evalue
*v
, dpoly_r
*r
, bf_reducer
*bfr
,
1523 bfc_term_base
*t
, int k
, bfenumerator
*e
) :
1524 cumulator(factor
, v
, r
), told(t
), k(k
),
1528 virtual void add_term(const vector
<int>& powers
, evalue
*f2
);
1531 void bfe_cum::add_term(const vector
<int>& powers
, evalue
*f2
)
1533 bfr
->update_powers(powers
);
1535 bfc_term_base
* t
= bfe
->find_bfc_term(bfr
->vn
, bfr
->npowers
, bfr
->nnf
);
1536 bfe
->set_factor(f2
, bfr
->l_changes
% 2);
1537 bfe
->add_term(t
, told
->terms
[k
], bfr
->l_extra_num
);
1540 void bfenumerator::cum(bf_reducer
*bfr
, bfc_term_base
*t
, int k
,
1541 dpoly_r
*r
, barvinok_options
*options
)
1543 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1544 bfe_cum
cum(bfet
->factors
[k
], E_num(0, bfr
->d
), r
, bfr
, t
, k
, this);
1545 cum
.cumulate(options
);
1548 void bfenumerator::base(mat_ZZ
& factors
, bfc_vec
& v
)
1550 for (int i
= 0; i
< v
.size(); ++i
) {
1551 assert(v
[i
]->terms
.NumRows() == 1);
1552 evalue
*factor
= static_cast<bfe_term
*>(v
[i
])->factors
[0];
1553 eadd(factor
, vE
[vert
]);
1558 void bfenumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
1560 assert(sc
.det
== 1);
1562 assert(sc
.rays
.NumRows() == enumerator_base::dim
);
1564 bfe_term
* t
= new bfe_term(enumerator_base::dim
);
1565 vector
< bfc_term_base
* > v
;
1568 t
->factors
.resize(1);
1570 t
->terms
.SetDims(1, enumerator_base::dim
);
1571 lattice_point(V
, sc
.rays
, t
->terms
[0], E_vertex
, options
);
1573 // the elements of factors are always lexpositive
1575 int s
= setup_factors(sc
.rays
, factors
, t
, sc
.sign
);
1577 t
->factors
[0] = new evalue
;
1578 value_init(t
->factors
[0]->d
);
1579 evalue_set_si(t
->factors
[0], s
, 1);
1580 reduce(factors
, v
, options
);
1582 for (int i
= 0; i
< enumerator_base::dim
; ++i
)
1584 free_evalue_refs(E_vertex
[i
]);
1589 static inline Param_Polyhedron
*Polyhedron2Param_MR(Polyhedron
*Din
,
1590 Polyhedron
*Cin
, int WS
)
1592 if (WS
& POL_NO_DUAL
)
1594 return Polyhedron2Param_Domain(Din
, Cin
, WS
);
1597 static evalue
* barvinok_enumerate_ev_f(Polyhedron
*P
, Polyhedron
* C
,
1598 barvinok_options
*options
);
1601 static evalue
* barvinok_enumerate_cst(Polyhedron
*P
, Polyhedron
* C
,
1602 struct barvinok_options
*options
)
1606 ALLOC(evalue
, eres
);
1607 value_init(eres
->d
);
1608 value_set_si(eres
->d
, 0);
1609 eres
->x
.p
= new_enode(partition
, 2, C
->Dimension
);
1610 EVALUE_SET_DOMAIN(eres
->x
.p
->arr
[0],
1611 DomainConstraintSimplify(C
, options
->MaxRays
));
1612 value_set_si(eres
->x
.p
->arr
[1].d
, 1);
1613 value_init(eres
->x
.p
->arr
[1].x
.n
);
1615 value_set_si(eres
->x
.p
->arr
[1].x
.n
, 0);
1617 barvinok_count_with_options(P
, &eres
->x
.p
->arr
[1].x
.n
, options
);
1623 static evalue
* enumerate(Polyhedron
*P
, Polyhedron
* C
,
1624 struct barvinok_options
*options
)
1626 //P = unfringe(P, MaxRays);
1628 Polyhedron
*Corig
= C
;
1629 Polyhedron
*CEq
= NULL
, *rVD
;
1631 unsigned nparam
= C
->Dimension
;
1636 value_init(factor
.d
);
1637 evalue_set_si(&factor
, 1, 1);
1640 POL_ENSURE_FACETS(P
);
1641 POL_ENSURE_VERTICES(P
);
1642 POL_ENSURE_FACETS(C
);
1643 POL_ENSURE_VERTICES(C
);
1645 if (C
->Dimension
== 0 || emptyQ(P
)) {
1647 eres
= barvinok_enumerate_cst(P
, CEq
? CEq
: Polyhedron_Copy(C
), options
);
1650 evalue_backsubstitute(eres
, CP
, options
->MaxRays
);
1654 emul(&factor
, eres
);
1655 if (options
->approximation_method
== BV_APPROX_DROP
) {
1656 if (options
->polynomial_approximation
== BV_APPROX_SIGN_UPPER
)
1657 evalue_frac2polynomial(eres
, 1, options
->MaxRays
);
1658 if (options
->polynomial_approximation
== BV_APPROX_SIGN_LOWER
)
1659 evalue_frac2polynomial(eres
, -1, options
->MaxRays
);
1660 if (options
->polynomial_approximation
== BV_APPROX_SIGN_APPROX
)
1661 evalue_frac2polynomial(eres
, 0, options
->MaxRays
);
1663 reduce_evalue(eres
);
1664 free_evalue_refs(&factor
);
1671 if (Polyhedron_is_unbounded(P
, nparam
, options
->MaxRays
))
1676 P
= remove_equalities_p(P
, P
->Dimension
-nparam
, &f
, options
->MaxRays
);
1677 mask(f
, &factor
, options
);
1680 if (P
->Dimension
== nparam
) {
1682 P
= Universe_Polyhedron(0);
1688 remove_all_equalities(&Q
, &C
, &CP
, NULL
, nparam
, options
->MaxRays
);
1689 if (C
!= D
&& D
!= Corig
)
1691 eres
= enumerate(Q
, C
, options
);
1695 Polyhedron
*T
= Polyhedron_Factor(P
, nparam
, NULL
, options
->MaxRays
);
1696 if (T
|| (P
->Dimension
== nparam
+1)) {
1699 for (Q
= T
? T
: P
; Q
; Q
= Q
->next
) {
1700 Polyhedron
*next
= Q
->next
;
1704 if (Q
->Dimension
!= C
->Dimension
)
1705 QC
= Polyhedron_Project(Q
, nparam
);
1708 C
= DomainIntersection(C
, QC
, options
->MaxRays
);
1710 Polyhedron_Free(C2
);
1712 Polyhedron_Free(QC
);
1720 if (T
->Dimension
== C
->Dimension
) {
1729 eres
= barvinok_enumerate_ev_f(P
, C
, options
);
1736 for (Q
= P
->next
; Q
; Q
= Q
->next
) {
1737 Polyhedron
*next
= Q
->next
;
1740 f
= barvinok_enumerate_ev_f(Q
, C
, options
);
1742 free_evalue_refs(f
);
1752 evalue
* barvinok_enumerate_with_options(Polyhedron
*P
, Polyhedron
* C
,
1753 struct barvinok_options
*options
)
1755 Polyhedron
*next
, *Cnext
, *CA
;
1756 Polyhedron
*Porig
= P
;
1761 "barvinok_enumerate: input is a union; only first polyhedron is enumerated\n");
1765 "barvinok_enumerate: context is a union; only first polyhedron is considered\n");
1769 CA
= align_context(C
, P
->Dimension
, options
->MaxRays
);
1772 P
= DomainIntersection(P
, CA
, options
->MaxRays
);
1774 Polyhedron_Free(CA
);
1776 eres
= enumerate(P
, C
, options
);
1783 evalue
* barvinok_enumerate_ev(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
1786 barvinok_options
*options
= barvinok_options_new_with_defaults();
1787 options
->MaxRays
= MaxRays
;
1788 E
= barvinok_enumerate_with_options(P
, C
, options
);
1789 barvinok_options_free(options
);
1793 evalue
*Param_Polyhedron_Enumerate(Param_Polyhedron
*PP
, Polyhedron
*P
,
1795 struct barvinok_options
*options
)
1799 unsigned nparam
= C
->Dimension
;
1800 unsigned dim
= P
->Dimension
- nparam
;
1802 ALLOC(evalue
, eres
);
1803 value_init(eres
->d
);
1804 value_set_si(eres
->d
, 0);
1807 for (nd
= 0, D
=PP
->D
; D
; ++nd
, D
=D
->next
);
1808 struct section
{ Polyhedron
*D
; evalue E
; };
1809 section
*s
= new section
[nd
];
1811 enumerator_base
*et
= NULL
;
1816 et
= enumerator_base::create(P
, dim
, PP
->nbV
, options
);
1818 Polyhedron
*TC
= true_context(P
, C
, options
->MaxRays
);
1819 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
, i
, D
, rVD
)
1822 value_init(s
[i
].E
.d
);
1823 evalue_set_si(&s
[i
].E
, 0, 1);
1826 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
1829 et
->decompose_at(V
, _i
, options
);
1830 } catch (OrthogonalException
&e
) {
1831 FORALL_REDUCED_DOMAIN_RESET
;
1832 for (; i
>= 0; --i
) {
1833 free_evalue_refs(&s
[i
].E
);
1834 Domain_Free(s
[i
].D
);
1838 eadd(et
->vE
[_i
] , &s
[i
].E
);
1839 END_FORALL_PVertex_in_ParamPolyhedron
;
1840 evalue_range_reduction_in_domain(&s
[i
].E
, rVD
);
1841 END_FORALL_REDUCED_DOMAIN
1842 Polyhedron_Free(TC
);
1846 evalue_set_si(eres
, 0, 1);
1848 eres
->x
.p
= new_enode(partition
, 2*nd
, C
->Dimension
);
1849 for (int j
= 0; j
< nd
; ++j
) {
1850 EVALUE_SET_DOMAIN(eres
->x
.p
->arr
[2*j
], s
[j
].D
);
1851 value_clear(eres
->x
.p
->arr
[2*j
+1].d
);
1852 eres
->x
.p
->arr
[2*j
+1] = s
[j
].E
;
1860 static evalue
* barvinok_enumerate_ev_f(Polyhedron
*P
, Polyhedron
* C
,
1861 barvinok_options
*options
)
1863 unsigned nparam
= C
->Dimension
;
1864 bool do_scale
= options
->approximation_method
== BV_APPROX_SCALE
;
1866 if (options
->approximation_method
== BV_APPROX_VOLUME
)
1867 return Param_Polyhedron_Volume(P
, C
, options
);
1869 if (P
->Dimension
- nparam
== 1 && !do_scale
)
1870 return ParamLine_Length(P
, C
, options
);
1872 Param_Polyhedron
*PP
= NULL
;
1876 eres
= scale_bound(P
, C
, options
);
1881 PP
= Polyhedron2Param_MR(P
, C
, options
->MaxRays
);
1884 eres
= scale(PP
, P
, C
, options
);
1886 eres
= Param_Polyhedron_Enumerate(PP
, P
, C
, options
);
1889 Param_Polyhedron_Free(PP
);
1894 Enumeration
* barvinok_enumerate(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
1896 evalue
*EP
= barvinok_enumerate_ev(P
, C
, MaxRays
);
1898 return partition2enumeration(EP
);
1901 static void SwapColumns(Value
**V
, int n
, int i
, int j
)
1903 for (int r
= 0; r
< n
; ++r
)
1904 value_swap(V
[r
][i
], V
[r
][j
]);
1907 static void SwapColumns(Polyhedron
*P
, int i
, int j
)
1909 SwapColumns(P
->Constraint
, P
->NbConstraints
, i
, j
);
1910 SwapColumns(P
->Ray
, P
->NbRays
, i
, j
);
1913 /* Construct a constraint c from constraints l and u such that if
1914 * if constraint c holds then for each value of the other variables
1915 * there is at most one value of variable pos (position pos+1 in the constraints).
1917 * Given a lower and an upper bound
1918 * n_l v_i + <c_l,x> + c_l >= 0
1919 * -n_u v_i + <c_u,x> + c_u >= 0
1920 * the constructed constraint is
1922 * -(n_l<c_u,x> + n_u<c_l,x>) + (-n_l c_u - n_u c_l + n_l n_u - 1)
1924 * which is then simplified to remove the content of the non-constant coefficients
1926 * len is the total length of the constraints.
1927 * v is a temporary variable that can be used by this procedure
1929 static void negative_test_constraint(Value
*l
, Value
*u
, Value
*c
, int pos
,
1932 value_oppose(*v
, u
[pos
+1]);
1933 Vector_Combine(l
+1, u
+1, c
+1, *v
, l
[pos
+1], len
-1);
1934 value_multiply(*v
, *v
, l
[pos
+1]);
1935 value_subtract(c
[len
-1], c
[len
-1], *v
);
1936 value_set_si(*v
, -1);
1937 Vector_Scale(c
+1, c
+1, *v
, len
-1);
1938 value_decrement(c
[len
-1], c
[len
-1]);
1939 ConstraintSimplify(c
, c
, len
, v
);
1942 static bool parallel_constraints(Value
*l
, Value
*u
, Value
*c
, int pos
,
1951 Vector_Gcd(&l
[1+pos
], len
, &g1
);
1952 Vector_Gcd(&u
[1+pos
], len
, &g2
);
1953 Vector_Combine(l
+1+pos
, u
+1+pos
, c
+1, g2
, g1
, len
);
1954 parallel
= First_Non_Zero(c
+1, len
) == -1;
1962 static void negative_test_constraint7(Value
*l
, Value
*u
, Value
*c
, int pos
,
1963 int exist
, int len
, Value
*v
)
1968 Vector_Gcd(&u
[1+pos
], exist
, v
);
1969 Vector_Gcd(&l
[1+pos
], exist
, &g
);
1970 Vector_Combine(l
+1, u
+1, c
+1, *v
, g
, len
-1);
1971 value_multiply(*v
, *v
, g
);
1972 value_subtract(c
[len
-1], c
[len
-1], *v
);
1973 value_set_si(*v
, -1);
1974 Vector_Scale(c
+1, c
+1, *v
, len
-1);
1975 value_decrement(c
[len
-1], c
[len
-1]);
1976 ConstraintSimplify(c
, c
, len
, v
);
1981 /* Turns a x + b >= 0 into a x + b <= -1
1983 * len is the total length of the constraint.
1984 * v is a temporary variable that can be used by this procedure
1986 static void oppose_constraint(Value
*c
, int len
, Value
*v
)
1988 value_set_si(*v
, -1);
1989 Vector_Scale(c
+1, c
+1, *v
, len
-1);
1990 value_decrement(c
[len
-1], c
[len
-1]);
1993 /* Split polyhedron P into two polyhedra *pos and *neg, where
1994 * existential variable i has at most one solution for each
1995 * value of the other variables in *neg.
1997 * The splitting is performed using constraints l and u.
1999 * nvar: number of set variables
2000 * row: temporary vector that can be used by this procedure
2001 * f: temporary value that can be used by this procedure
2003 static bool SplitOnConstraint(Polyhedron
*P
, int i
, int l
, int u
,
2004 int nvar
, int MaxRays
, Vector
*row
, Value
& f
,
2005 Polyhedron
**pos
, Polyhedron
**neg
)
2007 negative_test_constraint(P
->Constraint
[l
], P
->Constraint
[u
],
2008 row
->p
, nvar
+i
, P
->Dimension
+2, &f
);
2009 *neg
= AddConstraints(row
->p
, 1, P
, MaxRays
);
2011 /* We found an independent, but useless constraint
2012 * Maybe we should detect this earlier and not
2013 * mark the variable as INDEPENDENT
2015 if (emptyQ((*neg
))) {
2016 Polyhedron_Free(*neg
);
2020 oppose_constraint(row
->p
, P
->Dimension
+2, &f
);
2021 *pos
= AddConstraints(row
->p
, 1, P
, MaxRays
);
2023 if (emptyQ((*pos
))) {
2024 Polyhedron_Free(*neg
);
2025 Polyhedron_Free(*pos
);
2033 * unimodularly transform P such that constraint r is transformed
2034 * into a constraint that involves only a single (the first)
2035 * existential variable
2038 static Polyhedron
*rotate_along(Polyhedron
*P
, int r
, int nvar
, int exist
,
2044 Matrix
*M
= Matrix_Alloc(exist
, exist
);
2045 Vector_Copy(P
->Constraint
[r
]+1+nvar
, M
->p
[0], exist
);
2046 Vector_Gcd(M
->p
[0], exist
, &g
);
2047 if (value_notone_p(g
))
2048 Vector_AntiScale(M
->p
[0], M
->p
[0], g
, exist
);
2051 int ok
= unimodular_complete(M
, 1);
2053 Matrix
*M2
= Matrix_Alloc(P
->Dimension
+1, P
->Dimension
+1);
2054 for (r
= 0; r
< nvar
; ++r
)
2055 value_set_si(M2
->p
[r
][r
], 1);
2056 for ( ; r
< nvar
+exist
; ++r
)
2057 Vector_Copy(M
->p
[r
-nvar
], M2
->p
[r
]+nvar
, exist
);
2058 for ( ; r
< P
->Dimension
+1; ++r
)
2059 value_set_si(M2
->p
[r
][r
], 1);
2060 Polyhedron
*T
= Polyhedron_Image(P
, M2
, MaxRays
);
2068 /* Split polyhedron P into two polyhedra *pos and *neg, where
2069 * existential variable i has at most one solution for each
2070 * value of the other variables in *neg.
2072 * If independent is set, then the two constraints on which the
2073 * split will be performed need to be independent of the other
2074 * existential variables.
2076 * Return true if an appropriate split could be performed.
2078 * nvar: number of set variables
2079 * exist: number of existential variables
2080 * row: temporary vector that can be used by this procedure
2081 * f: temporary value that can be used by this procedure
2083 static bool SplitOnVar(Polyhedron
*P
, int i
,
2084 int nvar
, int exist
, int MaxRays
,
2085 Vector
*row
, Value
& f
, bool independent
,
2086 Polyhedron
**pos
, Polyhedron
**neg
)
2090 for (int l
= P
->NbEq
; l
< P
->NbConstraints
; ++l
) {
2091 if (value_negz_p(P
->Constraint
[l
][nvar
+i
+1]))
2095 for (j
= 0; j
< exist
; ++j
)
2096 if (j
!= i
&& value_notzero_p(P
->Constraint
[l
][nvar
+j
+1]))
2102 for (int u
= P
->NbEq
; u
< P
->NbConstraints
; ++u
) {
2103 if (value_posz_p(P
->Constraint
[u
][nvar
+i
+1]))
2107 for (j
= 0; j
< exist
; ++j
)
2108 if (j
!= i
&& value_notzero_p(P
->Constraint
[u
][nvar
+j
+1]))
2114 if (SplitOnConstraint(P
, i
, l
, u
, nvar
, MaxRays
, row
, f
, pos
, neg
)) {
2117 SwapColumns(*neg
, nvar
+1, nvar
+1+i
);
2127 static bool double_bound_pair(Polyhedron
*P
, int nvar
, int exist
,
2128 int i
, int l1
, int l2
,
2129 Polyhedron
**pos
, Polyhedron
**neg
)
2133 Vector
*row
= Vector_Alloc(P
->Dimension
+2);
2134 value_set_si(row
->p
[0], 1);
2135 value_oppose(f
, P
->Constraint
[l1
][nvar
+i
+1]);
2136 Vector_Combine(P
->Constraint
[l1
]+1, P
->Constraint
[l2
]+1,
2138 P
->Constraint
[l2
][nvar
+i
+1], f
,
2140 ConstraintSimplify(row
->p
, row
->p
, P
->Dimension
+2, &f
);
2141 *pos
= AddConstraints(row
->p
, 1, P
, 0);
2142 value_set_si(f
, -1);
2143 Vector_Scale(row
->p
+1, row
->p
+1, f
, P
->Dimension
+1);
2144 value_decrement(row
->p
[P
->Dimension
+1], row
->p
[P
->Dimension
+1]);
2145 *neg
= AddConstraints(row
->p
, 1, P
, 0);
2149 return !emptyQ((*pos
)) && !emptyQ((*neg
));
2152 static bool double_bound(Polyhedron
*P
, int nvar
, int exist
,
2153 Polyhedron
**pos
, Polyhedron
**neg
)
2155 for (int i
= 0; i
< exist
; ++i
) {
2157 for (l1
= P
->NbEq
; l1
< P
->NbConstraints
; ++l1
) {
2158 if (value_negz_p(P
->Constraint
[l1
][nvar
+i
+1]))
2160 for (l2
= l1
+ 1; l2
< P
->NbConstraints
; ++l2
) {
2161 if (value_negz_p(P
->Constraint
[l2
][nvar
+i
+1]))
2163 if (double_bound_pair(P
, nvar
, exist
, i
, l1
, l2
, pos
, neg
))
2167 for (l1
= P
->NbEq
; l1
< P
->NbConstraints
; ++l1
) {
2168 if (value_posz_p(P
->Constraint
[l1
][nvar
+i
+1]))
2170 if (l1
< P
->NbConstraints
)
2171 for (l2
= l1
+ 1; l2
< P
->NbConstraints
; ++l2
) {
2172 if (value_posz_p(P
->Constraint
[l2
][nvar
+i
+1]))
2174 if (double_bound_pair(P
, nvar
, exist
, i
, l1
, l2
, pos
, neg
))
2186 INDEPENDENT
= 1 << 2,
2190 static evalue
* enumerate_or(Polyhedron
*D
,
2191 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2194 fprintf(stderr
, "\nER: Or\n");
2195 #endif /* DEBUG_ER */
2197 Polyhedron
*N
= D
->next
;
2200 barvinok_enumerate_e_with_options(D
, exist
, nparam
, options
);
2203 for (D
= N
; D
; D
= N
) {
2208 barvinok_enumerate_e_with_options(D
, exist
, nparam
, options
);
2211 free_evalue_refs(EN
);
2221 static evalue
* enumerate_sum(Polyhedron
*P
,
2222 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2224 int nvar
= P
->Dimension
- exist
- nparam
;
2225 int toswap
= nvar
< exist
? nvar
: exist
;
2226 for (int i
= 0; i
< toswap
; ++i
)
2227 SwapColumns(P
, 1 + i
, nvar
+exist
- i
);
2231 fprintf(stderr
, "\nER: Sum\n");
2232 #endif /* DEBUG_ER */
2234 evalue
*EP
= barvinok_enumerate_e_with_options(P
, exist
, nparam
, options
);
2236 evalue_split_domains_into_orthants(EP
, options
->MaxRays
);
2238 evalue_range_reduction(EP
);
2240 evalue_frac2floor2(EP
, 1);
2242 evalue
*sum
= esum(EP
, nvar
);
2244 free_evalue_refs(EP
);
2248 evalue_range_reduction(EP
);
2253 static evalue
* split_sure(Polyhedron
*P
, Polyhedron
*S
,
2254 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2256 int nvar
= P
->Dimension
- exist
- nparam
;
2258 Matrix
*M
= Matrix_Alloc(exist
, S
->Dimension
+2);
2259 for (int i
= 0; i
< exist
; ++i
)
2260 value_set_si(M
->p
[i
][nvar
+i
+1], 1);
2262 S
= DomainAddRays(S
, M
, options
->MaxRays
);
2264 Polyhedron
*F
= DomainAddRays(P
, M
, options
->MaxRays
);
2265 Polyhedron
*D
= DomainDifference(F
, S
, options
->MaxRays
);
2267 D
= Disjoint_Domain(D
, 0, options
->MaxRays
);
2272 M
= Matrix_Alloc(P
->Dimension
+1-exist
, P
->Dimension
+1);
2273 for (int j
= 0; j
< nvar
; ++j
)
2274 value_set_si(M
->p
[j
][j
], 1);
2275 for (int j
= 0; j
< nparam
+1; ++j
)
2276 value_set_si(M
->p
[nvar
+j
][nvar
+exist
+j
], 1);
2277 Polyhedron
*T
= Polyhedron_Image(S
, M
, options
->MaxRays
);
2278 evalue
*EP
= barvinok_enumerate_e_with_options(T
, 0, nparam
, options
);
2283 for (Polyhedron
*Q
= D
; Q
; Q
= Q
->next
) {
2284 Polyhedron
*N
= Q
->next
;
2286 T
= DomainIntersection(P
, Q
, options
->MaxRays
);
2287 evalue
*E
= barvinok_enumerate_e_with_options(T
, exist
, nparam
, options
);
2289 free_evalue_refs(E
);
2298 static evalue
* enumerate_sure(Polyhedron
*P
,
2299 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2303 int nvar
= P
->Dimension
- exist
- nparam
;
2309 for (i
= 0; i
< exist
; ++i
) {
2310 Matrix
*M
= Matrix_Alloc(S
->NbConstraints
, S
->Dimension
+2);
2312 value_set_si(lcm
, 1);
2313 for (int j
= 0; j
< S
->NbConstraints
; ++j
) {
2314 if (value_negz_p(S
->Constraint
[j
][1+nvar
+i
]))
2316 if (value_one_p(S
->Constraint
[j
][1+nvar
+i
]))
2318 value_lcm(lcm
, S
->Constraint
[j
][1+nvar
+i
], &lcm
);
2321 for (int j
= 0; j
< S
->NbConstraints
; ++j
) {
2322 if (value_negz_p(S
->Constraint
[j
][1+nvar
+i
]))
2324 if (value_one_p(S
->Constraint
[j
][1+nvar
+i
]))
2326 value_division(f
, lcm
, S
->Constraint
[j
][1+nvar
+i
]);
2327 Vector_Scale(S
->Constraint
[j
], M
->p
[c
], f
, S
->Dimension
+2);
2328 value_subtract(M
->p
[c
][S
->Dimension
+1],
2329 M
->p
[c
][S
->Dimension
+1],
2331 value_increment(M
->p
[c
][S
->Dimension
+1],
2332 M
->p
[c
][S
->Dimension
+1]);
2336 S
= AddConstraints(M
->p
[0], c
, S
, options
->MaxRays
);
2351 fprintf(stderr
, "\nER: Sure\n");
2352 #endif /* DEBUG_ER */
2354 return split_sure(P
, S
, exist
, nparam
, options
);
2357 static evalue
* enumerate_sure2(Polyhedron
*P
,
2358 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2360 int nvar
= P
->Dimension
- exist
- nparam
;
2362 for (r
= 0; r
< P
->NbRays
; ++r
)
2363 if (value_one_p(P
->Ray
[r
][0]) &&
2364 value_one_p(P
->Ray
[r
][P
->Dimension
+1]))
2370 Matrix
*M
= Matrix_Alloc(nvar
+ 1 + nparam
, P
->Dimension
+2);
2371 for (int i
= 0; i
< nvar
; ++i
)
2372 value_set_si(M
->p
[i
][1+i
], 1);
2373 for (int i
= 0; i
< nparam
; ++i
)
2374 value_set_si(M
->p
[i
+nvar
][1+nvar
+exist
+i
], 1);
2375 Vector_Copy(P
->Ray
[r
]+1+nvar
, M
->p
[nvar
+nparam
]+1+nvar
, exist
);
2376 value_set_si(M
->p
[nvar
+nparam
][0], 1);
2377 value_set_si(M
->p
[nvar
+nparam
][P
->Dimension
+1], 1);
2378 Polyhedron
* F
= Rays2Polyhedron(M
, options
->MaxRays
);
2381 Polyhedron
*I
= DomainIntersection(F
, P
, options
->MaxRays
);
2385 fprintf(stderr
, "\nER: Sure2\n");
2386 #endif /* DEBUG_ER */
2388 return split_sure(P
, I
, exist
, nparam
, options
);
2391 static evalue
* enumerate_cyclic(Polyhedron
*P
,
2392 unsigned exist
, unsigned nparam
,
2393 evalue
* EP
, int r
, int p
, unsigned MaxRays
)
2395 int nvar
= P
->Dimension
- exist
- nparam
;
2397 /* If EP in its fractional maps only contains references
2398 * to the remainder parameter with appropriate coefficients
2399 * then we could in principle avoid adding existentially
2400 * quantified variables to the validity domains.
2401 * We'd have to replace the remainder by m { p/m }
2402 * and multiply with an appropriate factor that is one
2403 * only in the appropriate range.
2404 * This last multiplication can be avoided if EP
2405 * has a single validity domain with no (further)
2406 * constraints on the remainder parameter
2409 Matrix
*CT
= Matrix_Alloc(nparam
+1, nparam
+3);
2410 Matrix
*M
= Matrix_Alloc(1, 1+nparam
+3);
2411 for (int j
= 0; j
< nparam
; ++j
)
2413 value_set_si(CT
->p
[j
][j
], 1);
2414 value_set_si(CT
->p
[p
][nparam
+1], 1);
2415 value_set_si(CT
->p
[nparam
][nparam
+2], 1);
2416 value_set_si(M
->p
[0][1+p
], -1);
2417 value_absolute(M
->p
[0][1+nparam
], P
->Ray
[0][1+nvar
+exist
+p
]);
2418 value_set_si(M
->p
[0][1+nparam
+1], 1);
2419 Polyhedron
*CEq
= Constraints2Polyhedron(M
, 1);
2421 addeliminatedparams_enum(EP
, CT
, CEq
, MaxRays
, nparam
);
2422 Polyhedron_Free(CEq
);
2428 static void enumerate_vd_add_ray(evalue
*EP
, Matrix
*Rays
, unsigned MaxRays
)
2430 if (value_notzero_p(EP
->d
))
2433 assert(EP
->x
.p
->type
== partition
);
2434 assert(EP
->x
.p
->pos
== EVALUE_DOMAIN(EP
->x
.p
->arr
[0])->Dimension
);
2435 for (int i
= 0; i
< EP
->x
.p
->size
/2; ++i
) {
2436 Polyhedron
*D
= EVALUE_DOMAIN(EP
->x
.p
->arr
[2*i
]);
2437 Polyhedron
*N
= DomainAddRays(D
, Rays
, MaxRays
);
2438 EVALUE_SET_DOMAIN(EP
->x
.p
->arr
[2*i
], N
);
2443 static evalue
* enumerate_line(Polyhedron
*P
,
2444 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2450 fprintf(stderr
, "\nER: Line\n");
2451 #endif /* DEBUG_ER */
2453 int nvar
= P
->Dimension
- exist
- nparam
;
2455 for (i
= 0; i
< nparam
; ++i
)
2456 if (value_notzero_p(P
->Ray
[0][1+nvar
+exist
+i
]))
2459 for (j
= i
+1; j
< nparam
; ++j
)
2460 if (value_notzero_p(P
->Ray
[0][1+nvar
+exist
+i
]))
2462 assert(j
>= nparam
); // for now
2464 Matrix
*M
= Matrix_Alloc(2, P
->Dimension
+2);
2465 value_set_si(M
->p
[0][0], 1);
2466 value_set_si(M
->p
[0][1+nvar
+exist
+i
], 1);
2467 value_set_si(M
->p
[1][0], 1);
2468 value_set_si(M
->p
[1][1+nvar
+exist
+i
], -1);
2469 value_absolute(M
->p
[1][1+P
->Dimension
], P
->Ray
[0][1+nvar
+exist
+i
]);
2470 value_decrement(M
->p
[1][1+P
->Dimension
], M
->p
[1][1+P
->Dimension
]);
2471 Polyhedron
*S
= AddConstraints(M
->p
[0], 2, P
, options
->MaxRays
);
2472 evalue
*EP
= barvinok_enumerate_e_with_options(S
, exist
, nparam
, options
);
2476 return enumerate_cyclic(P
, exist
, nparam
, EP
, 0, i
, options
->MaxRays
);
2479 static int single_param_pos(Polyhedron
*P
, unsigned exist
, unsigned nparam
,
2482 int nvar
= P
->Dimension
- exist
- nparam
;
2483 if (First_Non_Zero(P
->Ray
[r
]+1, nvar
) != -1)
2485 int i
= First_Non_Zero(P
->Ray
[r
]+1+nvar
+exist
, nparam
);
2488 if (First_Non_Zero(P
->Ray
[r
]+1+nvar
+exist
+1, nparam
-i
-1) != -1)
2493 static evalue
* enumerate_remove_ray(Polyhedron
*P
, int r
,
2494 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2497 fprintf(stderr
, "\nER: RedundantRay\n");
2498 #endif /* DEBUG_ER */
2502 value_set_si(one
, 1);
2503 int len
= P
->NbRays
-1;
2504 Matrix
*M
= Matrix_Alloc(2 * len
, P
->Dimension
+2);
2505 Vector_Copy(P
->Ray
[0], M
->p
[0], r
* (P
->Dimension
+2));
2506 Vector_Copy(P
->Ray
[r
+1], M
->p
[r
], (len
-r
) * (P
->Dimension
+2));
2507 for (int j
= 0; j
< P
->NbRays
; ++j
) {
2510 Vector_Combine(P
->Ray
[j
], P
->Ray
[r
], M
->p
[len
+j
-(j
>r
)],
2511 one
, P
->Ray
[j
][P
->Dimension
+1], P
->Dimension
+2);
2514 P
= Rays2Polyhedron(M
, options
->MaxRays
);
2516 evalue
*EP
= barvinok_enumerate_e_with_options(P
, exist
, nparam
, options
);
2523 static evalue
* enumerate_redundant_ray(Polyhedron
*P
,
2524 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2526 assert(P
->NbBid
== 0);
2527 int nvar
= P
->Dimension
- exist
- nparam
;
2531 for (int r
= 0; r
< P
->NbRays
; ++r
) {
2532 if (value_notzero_p(P
->Ray
[r
][P
->Dimension
+1]))
2534 int i1
= single_param_pos(P
, exist
, nparam
, r
);
2537 for (int r2
= r
+1; r2
< P
->NbRays
; ++r2
) {
2538 if (value_notzero_p(P
->Ray
[r2
][P
->Dimension
+1]))
2540 int i2
= single_param_pos(P
, exist
, nparam
, r2
);
2546 value_division(m
, P
->Ray
[r
][1+nvar
+exist
+i1
],
2547 P
->Ray
[r2
][1+nvar
+exist
+i1
]);
2548 value_multiply(m
, m
, P
->Ray
[r2
][1+nvar
+exist
+i1
]);
2549 /* r2 divides r => r redundant */
2550 if (value_eq(m
, P
->Ray
[r
][1+nvar
+exist
+i1
])) {
2552 return enumerate_remove_ray(P
, r
, exist
, nparam
, options
);
2555 value_division(m
, P
->Ray
[r2
][1+nvar
+exist
+i1
],
2556 P
->Ray
[r
][1+nvar
+exist
+i1
]);
2557 value_multiply(m
, m
, P
->Ray
[r
][1+nvar
+exist
+i1
]);
2558 /* r divides r2 => r2 redundant */
2559 if (value_eq(m
, P
->Ray
[r2
][1+nvar
+exist
+i1
])) {
2561 return enumerate_remove_ray(P
, r2
, exist
, nparam
, options
);
2569 static Polyhedron
*upper_bound(Polyhedron
*P
,
2570 int pos
, Value
*max
, Polyhedron
**R
)
2579 for (Polyhedron
*Q
= P
; Q
; Q
= N
) {
2581 for (r
= 0; r
< P
->NbRays
; ++r
) {
2582 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1]) &&
2583 value_pos_p(P
->Ray
[r
][1+pos
]))
2586 if (r
< P
->NbRays
) {
2594 for (r
= 0; r
< P
->NbRays
; ++r
) {
2595 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1]))
2597 mpz_fdiv_q(v
, P
->Ray
[r
][1+pos
], P
->Ray
[r
][1+P
->Dimension
]);
2598 if ((!Q
->next
&& r
== 0) || value_gt(v
, *max
))
2599 value_assign(*max
, v
);
2606 static evalue
* enumerate_ray(Polyhedron
*P
,
2607 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2609 assert(P
->NbBid
== 0);
2610 int nvar
= P
->Dimension
- exist
- nparam
;
2613 for (r
= 0; r
< P
->NbRays
; ++r
)
2614 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1]))
2620 for (r2
= r
+1; r2
< P
->NbRays
; ++r2
)
2621 if (value_zero_p(P
->Ray
[r2
][P
->Dimension
+1]))
2623 if (r2
< P
->NbRays
) {
2625 return enumerate_sum(P
, exist
, nparam
, options
);
2629 fprintf(stderr
, "\nER: Ray\n");
2630 #endif /* DEBUG_ER */
2636 value_set_si(one
, 1);
2637 int i
= single_param_pos(P
, exist
, nparam
, r
);
2638 assert(i
!= -1); // for now;
2640 Matrix
*M
= Matrix_Alloc(P
->NbRays
, P
->Dimension
+2);
2641 for (int j
= 0; j
< P
->NbRays
; ++j
) {
2642 Vector_Combine(P
->Ray
[j
], P
->Ray
[r
], M
->p
[j
],
2643 one
, P
->Ray
[j
][P
->Dimension
+1], P
->Dimension
+2);
2645 Polyhedron
*S
= Rays2Polyhedron(M
, options
->MaxRays
);
2647 Polyhedron
*D
= DomainDifference(P
, S
, options
->MaxRays
);
2649 // Polyhedron_Print(stderr, P_VALUE_FMT, D);
2650 assert(value_pos_p(P
->Ray
[r
][1+nvar
+exist
+i
])); // for now
2652 D
= upper_bound(D
, nvar
+exist
+i
, &m
, &R
);
2656 M
= Matrix_Alloc(2, P
->Dimension
+2);
2657 value_set_si(M
->p
[0][0], 1);
2658 value_set_si(M
->p
[1][0], 1);
2659 value_set_si(M
->p
[0][1+nvar
+exist
+i
], -1);
2660 value_set_si(M
->p
[1][1+nvar
+exist
+i
], 1);
2661 value_assign(M
->p
[0][1+P
->Dimension
], m
);
2662 value_oppose(M
->p
[1][1+P
->Dimension
], m
);
2663 value_addto(M
->p
[1][1+P
->Dimension
], M
->p
[1][1+P
->Dimension
],
2664 P
->Ray
[r
][1+nvar
+exist
+i
]);
2665 value_decrement(M
->p
[1][1+P
->Dimension
], M
->p
[1][1+P
->Dimension
]);
2666 // Matrix_Print(stderr, P_VALUE_FMT, M);
2667 D
= AddConstraints(M
->p
[0], 2, P
, options
->MaxRays
);
2668 // Polyhedron_Print(stderr, P_VALUE_FMT, D);
2669 value_subtract(M
->p
[0][1+P
->Dimension
], M
->p
[0][1+P
->Dimension
],
2670 P
->Ray
[r
][1+nvar
+exist
+i
]);
2671 // Matrix_Print(stderr, P_VALUE_FMT, M);
2672 S
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2673 // Polyhedron_Print(stderr, P_VALUE_FMT, S);
2676 evalue
*EP
= barvinok_enumerate_e_with_options(D
, exist
, nparam
, options
);
2681 if (value_notone_p(P
->Ray
[r
][1+nvar
+exist
+i
]))
2682 EP
= enumerate_cyclic(P
, exist
, nparam
, EP
, r
, i
, options
->MaxRays
);
2684 M
= Matrix_Alloc(1, nparam
+2);
2685 value_set_si(M
->p
[0][0], 1);
2686 value_set_si(M
->p
[0][1+i
], 1);
2687 enumerate_vd_add_ray(EP
, M
, options
->MaxRays
);
2692 evalue
*E
= barvinok_enumerate_e_with_options(S
, exist
, nparam
, options
);
2694 free_evalue_refs(E
);
2701 evalue
*ER
= enumerate_or(R
, exist
, nparam
, options
);
2703 free_evalue_refs(ER
);
2710 static evalue
* enumerate_vd(Polyhedron
**PA
,
2711 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
2713 Polyhedron
*P
= *PA
;
2714 int nvar
= P
->Dimension
- exist
- nparam
;
2715 Param_Polyhedron
*PP
= NULL
;
2716 Polyhedron
*C
= Universe_Polyhedron(nparam
);
2720 PP
= Polyhedron2Param_Domain(PR
,C
, options
->MaxRays
);
2724 Param_Domain
*D
, *last
;
2727 for (nd
= 0, D
=PP
->D
; D
; D
=D
->next
, ++nd
)
2730 Polyhedron
**VD
= new Polyhedron_p
[nd
];
2731 Polyhedron
*TC
= true_context(P
, C
, options
->MaxRays
);
2732 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
, i
, D
, rVD
)
2735 END_FORALL_REDUCED_DOMAIN
2736 Polyhedron_Free(TC
);
2743 /* This doesn't seem to have any effect */
2745 Polyhedron
*CA
= align_context(VD
[0], P
->Dimension
, options
->MaxRays
);
2747 P
= DomainIntersection(P
, CA
, options
->MaxRays
);
2750 Polyhedron_Free(CA
);
2756 Polyhedron_Free(PR
);
2759 if (!EP
&& nd
> 1) {
2761 fprintf(stderr
, "\nER: VD\n");
2762 #endif /* DEBUG_ER */
2763 for (int i
= 0; i
< nd
; ++i
) {
2764 Polyhedron
*CA
= align_context(VD
[i
], P
->Dimension
, options
->MaxRays
);
2765 Polyhedron
*I
= DomainIntersection(P
, CA
, options
->MaxRays
);
2768 EP
= barvinok_enumerate_e_with_options(I
, exist
, nparam
, options
);
2770 evalue
*E
= barvinok_enumerate_e_with_options(I
, exist
, nparam
,
2773 free_evalue_refs(E
);
2777 Polyhedron_Free(CA
);
2781 for (int i
= 0; i
< nd
; ++i
)
2782 Polyhedron_Free(VD
[i
]);
2786 if (!EP
&& nvar
== 0) {
2789 Param_Vertices
*V
, *V2
;
2790 Matrix
* M
= Matrix_Alloc(1, P
->Dimension
+2);
2792 FORALL_PVertex_in_ParamPolyhedron(V
, last
, PP
) {
2794 FORALL_PVertex_in_ParamPolyhedron(V2
, last
, PP
) {
2801 for (int i
= 0; i
< exist
; ++i
) {
2802 value_oppose(f
, V
->Vertex
->p
[i
][nparam
+1]);
2803 Vector_Combine(V
->Vertex
->p
[i
],
2805 M
->p
[0] + 1 + nvar
+ exist
,
2806 V2
->Vertex
->p
[i
][nparam
+1],
2810 for (j
= 0; j
< nparam
; ++j
)
2811 if (value_notzero_p(M
->p
[0][1+nvar
+exist
+j
]))
2815 ConstraintSimplify(M
->p
[0], M
->p
[0],
2816 P
->Dimension
+2, &f
);
2817 value_set_si(M
->p
[0][0], 0);
2818 Polyhedron
*para
= AddConstraints(M
->p
[0], 1, P
,
2821 Polyhedron_Free(para
);
2824 Polyhedron
*pos
, *neg
;
2825 value_set_si(M
->p
[0][0], 1);
2826 value_decrement(M
->p
[0][P
->Dimension
+1],
2827 M
->p
[0][P
->Dimension
+1]);
2828 neg
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2829 value_set_si(f
, -1);
2830 Vector_Scale(M
->p
[0]+1, M
->p
[0]+1, f
,
2832 value_decrement(M
->p
[0][P
->Dimension
+1],
2833 M
->p
[0][P
->Dimension
+1]);
2834 value_decrement(M
->p
[0][P
->Dimension
+1],
2835 M
->p
[0][P
->Dimension
+1]);
2836 pos
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2837 if (emptyQ(neg
) && emptyQ(pos
)) {
2838 Polyhedron_Free(para
);
2839 Polyhedron_Free(pos
);
2840 Polyhedron_Free(neg
);
2844 fprintf(stderr
, "\nER: Order\n");
2845 #endif /* DEBUG_ER */
2846 EP
= barvinok_enumerate_e_with_options(para
, exist
, nparam
,
2850 E
= barvinok_enumerate_e_with_options(pos
, exist
, nparam
,
2853 free_evalue_refs(E
);
2857 E
= barvinok_enumerate_e_with_options(neg
, exist
, nparam
,
2860 free_evalue_refs(E
);
2863 Polyhedron_Free(para
);
2864 Polyhedron_Free(pos
);
2865 Polyhedron_Free(neg
);
2870 } END_FORALL_PVertex_in_ParamPolyhedron
;
2873 } END_FORALL_PVertex_in_ParamPolyhedron
;
2876 /* Search for vertex coordinate to split on */
2877 /* First look for one independent of the parameters */
2878 FORALL_PVertex_in_ParamPolyhedron(V
, last
, PP
) {
2879 for (int i
= 0; i
< exist
; ++i
) {
2881 for (j
= 0; j
< nparam
; ++j
)
2882 if (value_notzero_p(V
->Vertex
->p
[i
][j
]))
2886 value_set_si(M
->p
[0][0], 1);
2887 Vector_Set(M
->p
[0]+1, 0, nvar
+exist
);
2888 Vector_Copy(V
->Vertex
->p
[i
],
2889 M
->p
[0] + 1 + nvar
+ exist
, nparam
+1);
2890 value_oppose(M
->p
[0][1+nvar
+i
],
2891 V
->Vertex
->p
[i
][nparam
+1]);
2893 Polyhedron
*pos
, *neg
;
2894 value_set_si(M
->p
[0][0], 1);
2895 value_decrement(M
->p
[0][P
->Dimension
+1],
2896 M
->p
[0][P
->Dimension
+1]);
2897 neg
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2898 value_set_si(f
, -1);
2899 Vector_Scale(M
->p
[0]+1, M
->p
[0]+1, f
,
2901 value_decrement(M
->p
[0][P
->Dimension
+1],
2902 M
->p
[0][P
->Dimension
+1]);
2903 value_decrement(M
->p
[0][P
->Dimension
+1],
2904 M
->p
[0][P
->Dimension
+1]);
2905 pos
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2906 if (emptyQ(neg
) || emptyQ(pos
)) {
2907 Polyhedron_Free(pos
);
2908 Polyhedron_Free(neg
);
2911 Polyhedron_Free(pos
);
2912 value_increment(M
->p
[0][P
->Dimension
+1],
2913 M
->p
[0][P
->Dimension
+1]);
2914 pos
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2916 fprintf(stderr
, "\nER: Vertex\n");
2917 #endif /* DEBUG_ER */
2919 EP
= enumerate_or(pos
, exist
, nparam
, options
);
2924 } END_FORALL_PVertex_in_ParamPolyhedron
;
2928 /* Search for vertex coordinate to split on */
2929 /* Now look for one that depends on the parameters */
2930 FORALL_PVertex_in_ParamPolyhedron(V
, last
, PP
) {
2931 for (int i
= 0; i
< exist
; ++i
) {
2932 value_set_si(M
->p
[0][0], 1);
2933 Vector_Set(M
->p
[0]+1, 0, nvar
+exist
);
2934 Vector_Copy(V
->Vertex
->p
[i
],
2935 M
->p
[0] + 1 + nvar
+ exist
, nparam
+1);
2936 value_oppose(M
->p
[0][1+nvar
+i
],
2937 V
->Vertex
->p
[i
][nparam
+1]);
2939 Polyhedron
*pos
, *neg
;
2940 value_set_si(M
->p
[0][0], 1);
2941 value_decrement(M
->p
[0][P
->Dimension
+1],
2942 M
->p
[0][P
->Dimension
+1]);
2943 neg
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2944 value_set_si(f
, -1);
2945 Vector_Scale(M
->p
[0]+1, M
->p
[0]+1, f
,
2947 value_decrement(M
->p
[0][P
->Dimension
+1],
2948 M
->p
[0][P
->Dimension
+1]);
2949 value_decrement(M
->p
[0][P
->Dimension
+1],
2950 M
->p
[0][P
->Dimension
+1]);
2951 pos
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2952 if (emptyQ(neg
) || emptyQ(pos
)) {
2953 Polyhedron_Free(pos
);
2954 Polyhedron_Free(neg
);
2957 Polyhedron_Free(pos
);
2958 value_increment(M
->p
[0][P
->Dimension
+1],
2959 M
->p
[0][P
->Dimension
+1]);
2960 pos
= AddConstraints(M
->p
[0], 1, P
, options
->MaxRays
);
2962 fprintf(stderr
, "\nER: ParamVertex\n");
2963 #endif /* DEBUG_ER */
2965 EP
= enumerate_or(pos
, exist
, nparam
, options
);
2970 } END_FORALL_PVertex_in_ParamPolyhedron
;
2978 Polyhedron_Free(CEq
);
2982 Param_Polyhedron_Free(PP
);
2988 evalue
* barvinok_enumerate_pip(Polyhedron
*P
, unsigned exist
, unsigned nparam
,
2992 barvinok_options
*options
= barvinok_options_new_with_defaults();
2993 options
->MaxRays
= MaxRays
;
2994 E
= barvinok_enumerate_pip_with_options(P
, exist
, nparam
, options
);
2995 barvinok_options_free(options
);
3000 evalue
*barvinok_enumerate_pip_with_options(Polyhedron
*P
,
3001 unsigned exist
, unsigned nparam
, struct barvinok_options
*options
)
3006 evalue
*barvinok_enumerate_pip_with_options(Polyhedron
*P
,
3007 unsigned exist
, unsigned nparam
, struct barvinok_options
*options
)
3009 int nvar
= P
->Dimension
- exist
- nparam
;
3010 evalue
*EP
= evalue_zero();
3014 fprintf(stderr
, "\nER: PIP\n");
3015 #endif /* DEBUG_ER */
3017 Polyhedron
*D
= pip_projectout(P
, nvar
, exist
, nparam
);
3018 for (Q
= D
; Q
; Q
= N
) {
3022 exist
= Q
->Dimension
- nvar
- nparam
;
3023 E
= barvinok_enumerate_e_with_options(Q
, exist
, nparam
, options
);
3026 free_evalue_refs(E
);
3035 static bool is_single(Value
*row
, int pos
, int len
)
3037 return First_Non_Zero(row
, pos
) == -1 &&
3038 First_Non_Zero(row
+pos
+1, len
-pos
-1) == -1;
3041 static evalue
* barvinok_enumerate_e_r(Polyhedron
*P
,
3042 unsigned exist
, unsigned nparam
, barvinok_options
*options
);
3045 static int er_level
= 0;
3047 evalue
* barvinok_enumerate_e_with_options(Polyhedron
*P
,
3048 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
3050 fprintf(stderr
, "\nER: level %i\n", er_level
);
3052 Polyhedron_PrintConstraints(stderr
, P_VALUE_FMT
, P
);
3053 fprintf(stderr
, "\nE %d\nP %d\n", exist
, nparam
);
3055 P
= DomainConstraintSimplify(Polyhedron_Copy(P
), options
->MaxRays
);
3056 evalue
*EP
= barvinok_enumerate_e_r(P
, exist
, nparam
, options
);
3062 evalue
* barvinok_enumerate_e_with_options(Polyhedron
*P
,
3063 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
3065 P
= DomainConstraintSimplify(Polyhedron_Copy(P
), options
->MaxRays
);
3066 evalue
*EP
= barvinok_enumerate_e_r(P
, exist
, nparam
, options
);
3072 evalue
* barvinok_enumerate_e(Polyhedron
*P
, unsigned exist
, unsigned nparam
,
3076 barvinok_options
*options
= barvinok_options_new_with_defaults();
3077 options
->MaxRays
= MaxRays
;
3078 E
= barvinok_enumerate_e_with_options(P
, exist
, nparam
, options
);
3079 barvinok_options_free(options
);
3083 static evalue
* barvinok_enumerate_e_r(Polyhedron
*P
,
3084 unsigned exist
, unsigned nparam
, barvinok_options
*options
)
3087 Polyhedron
*U
= Universe_Polyhedron(nparam
);
3088 evalue
*EP
= barvinok_enumerate_with_options(P
, U
, options
);
3089 //char *param_name[] = {"P", "Q", "R", "S", "T" };
3090 //print_evalue(stdout, EP, param_name);
3095 int nvar
= P
->Dimension
- exist
- nparam
;
3096 int len
= P
->Dimension
+ 2;
3099 POL_ENSURE_FACETS(P
);
3100 POL_ENSURE_VERTICES(P
);
3103 return evalue_zero();
3105 if (nvar
== 0 && nparam
== 0) {
3106 evalue
*EP
= evalue_zero();
3107 barvinok_count_with_options(P
, &EP
->x
.n
, options
);
3108 if (value_pos_p(EP
->x
.n
))
3109 value_set_si(EP
->x
.n
, 1);
3114 for (r
= 0; r
< P
->NbRays
; ++r
)
3115 if (value_zero_p(P
->Ray
[r
][0]) ||
3116 value_zero_p(P
->Ray
[r
][P
->Dimension
+1])) {
3118 for (i
= 0; i
< nvar
; ++i
)
3119 if (value_notzero_p(P
->Ray
[r
][i
+1]))
3123 for (i
= nvar
+ exist
; i
< nvar
+ exist
+ nparam
; ++i
)
3124 if (value_notzero_p(P
->Ray
[r
][i
+1]))
3126 if (i
>= nvar
+ exist
+ nparam
)
3129 if (r
< P
->NbRays
) {
3130 evalue
*EP
= evalue_zero();
3131 value_set_si(EP
->x
.n
, -1);
3136 for (r
= 0; r
< P
->NbEq
; ++r
)
3137 if ((first
= First_Non_Zero(P
->Constraint
[r
]+1+nvar
, exist
)) != -1)
3140 if (First_Non_Zero(P
->Constraint
[r
]+1+nvar
+first
+1,
3141 exist
-first
-1) != -1) {
3142 Polyhedron
*T
= rotate_along(P
, r
, nvar
, exist
, options
->MaxRays
);
3144 fprintf(stderr
, "\nER: Equality\n");
3145 #endif /* DEBUG_ER */
3146 evalue
*EP
= barvinok_enumerate_e_with_options(T
, exist
-1, nparam
,
3152 fprintf(stderr
, "\nER: Fixed\n");
3153 #endif /* DEBUG_ER */
3155 return barvinok_enumerate_e_with_options(P
, exist
-1, nparam
,
3158 Polyhedron
*T
= Polyhedron_Copy(P
);
3159 SwapColumns(T
, nvar
+1, nvar
+1+first
);
3160 evalue
*EP
= barvinok_enumerate_e_with_options(T
, exist
-1, nparam
,
3168 Vector
*row
= Vector_Alloc(len
);
3169 value_set_si(row
->p
[0], 1);
3174 enum constraint
* info
= new constraint
[exist
];
3175 for (int i
= 0; i
< exist
; ++i
) {
3177 for (int l
= P
->NbEq
; l
< P
->NbConstraints
; ++l
) {
3178 if (value_negz_p(P
->Constraint
[l
][nvar
+i
+1]))
3180 bool l_parallel
= is_single(P
->Constraint
[l
]+nvar
+1, i
, exist
);
3181 for (int u
= P
->NbEq
; u
< P
->NbConstraints
; ++u
) {
3182 if (value_posz_p(P
->Constraint
[u
][nvar
+i
+1]))
3184 bool lu_parallel
= l_parallel
||
3185 is_single(P
->Constraint
[u
]+nvar
+1, i
, exist
);
3186 value_oppose(f
, P
->Constraint
[u
][nvar
+i
+1]);
3187 Vector_Combine(P
->Constraint
[l
]+1, P
->Constraint
[u
]+1, row
->p
+1,
3188 f
, P
->Constraint
[l
][nvar
+i
+1], len
-1);
3189 if (!(info
[i
] & INDEPENDENT
)) {
3191 for (j
= 0; j
< exist
; ++j
)
3192 if (j
!= i
&& value_notzero_p(row
->p
[nvar
+j
+1]))
3195 //printf("independent: i: %d, l: %d, u: %d\n", i, l, u);
3196 info
[i
] = (constraint
)(info
[i
] | INDEPENDENT
);
3199 if (info
[i
] & ALL_POS
) {
3200 value_addto(row
->p
[len
-1], row
->p
[len
-1],
3201 P
->Constraint
[l
][nvar
+i
+1]);
3202 value_addto(row
->p
[len
-1], row
->p
[len
-1], f
);
3203 value_multiply(f
, f
, P
->Constraint
[l
][nvar
+i
+1]);
3204 value_subtract(row
->p
[len
-1], row
->p
[len
-1], f
);
3205 value_decrement(row
->p
[len
-1], row
->p
[len
-1]);
3206 ConstraintSimplify(row
->p
, row
->p
, len
, &f
);
3207 value_set_si(f
, -1);
3208 Vector_Scale(row
->p
+1, row
->p
+1, f
, len
-1);
3209 value_decrement(row
->p
[len
-1], row
->p
[len
-1]);
3210 Polyhedron
*T
= AddConstraints(row
->p
, 1, P
, options
->MaxRays
);
3212 //printf("not all_pos: i: %d, l: %d, u: %d\n", i, l, u);
3213 info
[i
] = (constraint
)(info
[i
] ^ ALL_POS
);
3215 //puts("pos remainder");
3216 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
3219 if (!(info
[i
] & ONE_NEG
)) {
3221 negative_test_constraint(P
->Constraint
[l
],
3223 row
->p
, nvar
+i
, len
, &f
);
3224 oppose_constraint(row
->p
, len
, &f
);
3225 Polyhedron
*T
= AddConstraints(row
->p
, 1, P
,
3228 //printf("one_neg i: %d, l: %d, u: %d\n", i, l, u);
3229 info
[i
] = (constraint
)(info
[i
] | ONE_NEG
);
3231 //puts("neg remainder");
3232 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
3234 } else if (!(info
[i
] & ROT_NEG
)) {
3235 if (parallel_constraints(P
->Constraint
[l
],
3237 row
->p
, nvar
, exist
)) {
3238 negative_test_constraint7(P
->Constraint
[l
],
3240 row
->p
, nvar
, exist
,
3242 oppose_constraint(row
->p
, len
, &f
);
3243 Polyhedron
*T
= AddConstraints(row
->p
, 1, P
,
3246 // printf("rot_neg i: %d, l: %d, u: %d\n", i, l, u);
3247 info
[i
] = (constraint
)(info
[i
] | ROT_NEG
);
3250 //puts("neg remainder");
3251 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
3256 if (!(info
[i
] & ALL_POS
) && (info
[i
] & (ONE_NEG
| ROT_NEG
)))
3260 if (info
[i
] & ALL_POS
)
3267 for (int i = 0; i < exist; ++i)
3268 printf("%i: %i\n", i, info[i]);
3270 for (int i
= 0; i
< exist
; ++i
)
3271 if (info
[i
] & ALL_POS
) {
3273 fprintf(stderr
, "\nER: Positive\n");
3274 #endif /* DEBUG_ER */
3276 // Maybe we should chew off some of the fat here
3277 Matrix
*M
= Matrix_Alloc(P
->Dimension
, P
->Dimension
+1);
3278 for (int j
= 0; j
< P
->Dimension
; ++j
)
3279 value_set_si(M
->p
[j
][j
+ (j
>= i
+nvar
)], 1);
3280 Polyhedron
*T
= Polyhedron_Image(P
, M
, options
->MaxRays
);
3282 evalue
*EP
= barvinok_enumerate_e_with_options(T
, exist
-1, nparam
,
3290 for (int i
= 0; i
< exist
; ++i
)
3291 if (info
[i
] & ONE_NEG
) {
3293 fprintf(stderr
, "\nER: Negative\n");
3294 #endif /* DEBUG_ER */
3299 return barvinok_enumerate_e_with_options(P
, exist
-1, nparam
,
3302 Polyhedron
*T
= Polyhedron_Copy(P
);
3303 SwapColumns(T
, nvar
+1, nvar
+1+i
);
3304 evalue
*EP
= barvinok_enumerate_e_with_options(T
, exist
-1, nparam
,
3310 for (int i
= 0; i
< exist
; ++i
)
3311 if (info
[i
] & ROT_NEG
) {
3313 fprintf(stderr
, "\nER: Rotate\n");
3314 #endif /* DEBUG_ER */
3318 Polyhedron
*T
= rotate_along(P
, r
, nvar
, exist
, options
->MaxRays
);
3319 evalue
*EP
= barvinok_enumerate_e_with_options(T
, exist
-1, nparam
,
3324 for (int i
= 0; i
< exist
; ++i
)
3325 if (info
[i
] & INDEPENDENT
) {
3326 Polyhedron
*pos
, *neg
;
3328 /* Find constraint again and split off negative part */
3330 if (SplitOnVar(P
, i
, nvar
, exist
, options
->MaxRays
,
3331 row
, f
, true, &pos
, &neg
)) {
3333 fprintf(stderr
, "\nER: Split\n");
3334 #endif /* DEBUG_ER */
3337 barvinok_enumerate_e_with_options(neg
, exist
-1, nparam
, options
);
3339 barvinok_enumerate_e_with_options(pos
, exist
, nparam
, options
);
3341 free_evalue_refs(E
);
3343 Polyhedron_Free(neg
);
3344 Polyhedron_Free(pos
);
3358 EP
= enumerate_line(P
, exist
, nparam
, options
);
3362 EP
= barvinok_enumerate_pip_with_options(P
, exist
, nparam
, options
);
3366 EP
= enumerate_redundant_ray(P
, exist
, nparam
, options
);
3370 EP
= enumerate_sure(P
, exist
, nparam
, options
);
3374 EP
= enumerate_ray(P
, exist
, nparam
, options
);
3378 EP
= enumerate_sure2(P
, exist
, nparam
, options
);
3382 F
= unfringe(P
, options
->MaxRays
);
3383 if (!PolyhedronIncludes(F
, P
)) {
3385 fprintf(stderr
, "\nER: Fringed\n");
3386 #endif /* DEBUG_ER */
3387 EP
= barvinok_enumerate_e_with_options(F
, exist
, nparam
, options
);
3394 EP
= enumerate_vd(&P
, exist
, nparam
, options
);
3399 EP
= enumerate_sum(P
, exist
, nparam
, options
);
3406 Polyhedron
*pos
, *neg
;
3407 for (i
= 0; i
< exist
; ++i
)
3408 if (SplitOnVar(P
, i
, nvar
, exist
, options
->MaxRays
,
3409 row
, f
, false, &pos
, &neg
))
3415 EP
= enumerate_or(pos
, exist
, nparam
, options
);
3428 * remove equalities that require a "compression" of the parameters
3430 static Polyhedron
*remove_more_equalities(Polyhedron
*P
, unsigned nparam
,
3431 Matrix
**CP
, unsigned MaxRays
)
3434 remove_all_equalities(&P
, NULL
, CP
, NULL
, nparam
, MaxRays
);
3441 static gen_fun
*series(Polyhedron
*P
, unsigned nparam
, barvinok_options
*options
)
3451 assert(!Polyhedron_is_unbounded(P
, nparam
, options
->MaxRays
));
3452 assert(P
->NbBid
== 0);
3453 assert(Polyhedron_has_revlex_positive_rays(P
, nparam
));
3455 P
= remove_more_equalities(P
, nparam
, &CP
, options
->MaxRays
);
3456 assert(P
->NbEq
== 0);
3458 nparam
= CP
->NbColumns
-1;
3463 barvinok_count_with_options(P
, &c
, options
);
3464 gf
= new gen_fun(c
);
3468 red
= gf_base::create(Polyhedron_Project(P
, nparam
),
3469 P
->Dimension
, nparam
, options
);
3470 POL_ENSURE_VERTICES(P
);
3471 red
->start_gf(P
, options
);
3483 gen_fun
* barvinok_series_with_options(Polyhedron
*P
, Polyhedron
* C
,
3484 barvinok_options
*options
)
3487 unsigned nparam
= C
->Dimension
;
3490 CA
= align_context(C
, P
->Dimension
, options
->MaxRays
);
3491 P
= DomainIntersection(P
, CA
, options
->MaxRays
);
3492 Polyhedron_Free(CA
);
3494 gf
= series(P
, nparam
, options
);
3499 gen_fun
* barvinok_series(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
3502 barvinok_options
*options
= barvinok_options_new_with_defaults();
3503 options
->MaxRays
= MaxRays
;
3504 gf
= barvinok_series_with_options(P
, C
, options
);
3505 barvinok_options_free(options
);
3509 static Polyhedron
*skew_into_positive_orthant(Polyhedron
*D
, unsigned nparam
,
3515 for (Polyhedron
*P
= D
; P
; P
= P
->next
) {
3516 POL_ENSURE_VERTICES(P
);
3517 assert(!Polyhedron_is_unbounded(P
, nparam
, MaxRays
));
3518 assert(P
->NbBid
== 0);
3519 assert(Polyhedron_has_positive_rays(P
, nparam
));
3521 for (int r
= 0; r
< P
->NbRays
; ++r
) {
3522 if (value_notzero_p(P
->Ray
[r
][P
->Dimension
+1]))
3524 for (int i
= 0; i
< nparam
; ++i
) {
3526 if (value_posz_p(P
->Ray
[r
][i
+1]))
3529 M
= Matrix_Alloc(D
->Dimension
+1, D
->Dimension
+1);
3530 for (int i
= 0; i
< D
->Dimension
+1; ++i
)
3531 value_set_si(M
->p
[i
][i
], 1);
3533 Inner_Product(P
->Ray
[r
]+1, M
->p
[i
], D
->Dimension
+1, &tmp
);
3534 if (value_posz_p(tmp
))
3537 for (j
= P
->Dimension
- nparam
; j
< P
->Dimension
; ++j
)
3538 if (value_pos_p(P
->Ray
[r
][j
+1]))
3540 assert(j
< P
->Dimension
);
3541 value_pdivision(tmp
, P
->Ray
[r
][j
+1], P
->Ray
[r
][i
+1]);
3542 value_subtract(M
->p
[i
][j
], M
->p
[i
][j
], tmp
);
3548 D
= DomainImage(D
, M
, MaxRays
);
3554 gen_fun
* barvinok_enumerate_union_series_with_options(Polyhedron
*D
, Polyhedron
* C
,
3555 barvinok_options
*options
)
3557 Polyhedron
*conv
, *D2
;
3559 gen_fun
*gf
= NULL
, *gf2
;
3560 unsigned nparam
= C
->Dimension
;
3565 CA
= align_context(C
, D
->Dimension
, options
->MaxRays
);
3566 D
= DomainIntersection(D
, CA
, options
->MaxRays
);
3567 Polyhedron_Free(CA
);
3569 D2
= skew_into_positive_orthant(D
, nparam
, options
->MaxRays
);
3570 for (Polyhedron
*P
= D2
; P
; P
= P
->next
) {
3571 assert(P
->Dimension
== D2
->Dimension
);
3574 P_gf
= series(Polyhedron_Copy(P
), nparam
, options
);
3578 gf
->add_union(P_gf
, options
);
3582 /* we actually only need the convex union of the parameter space
3583 * but the reducer classes currently expect a polyhedron in
3584 * the combined space
3586 Polyhedron_Free(gf
->context
);
3587 gf
->context
= DomainConvex(D2
, options
->MaxRays
);
3589 gf2
= gf
->summate(D2
->Dimension
- nparam
, options
);
3598 gen_fun
* barvinok_enumerate_union_series(Polyhedron
*D
, Polyhedron
* C
,
3602 barvinok_options
*options
= barvinok_options_new_with_defaults();
3603 options
->MaxRays
= MaxRays
;
3604 gf
= barvinok_enumerate_union_series_with_options(D
, C
, options
);
3605 barvinok_options_free(options
);
3609 evalue
* barvinok_enumerate_union(Polyhedron
*D
, Polyhedron
* C
, unsigned MaxRays
)
3612 gen_fun
*gf
= barvinok_enumerate_union_series(D
, C
, MaxRays
);