evalue.c: make some evalue arguments const
[barvinok.git] / bernstein.cc
bloba6d713949bb30b7391aae01cf397aaee289641f0
1 #include <vector>
2 #include <bernstein/bernstein.h>
3 #include <bernstein/piecewise_lst.h>
4 #include <barvinok/barvinok.h>
5 #include <barvinok/util.h>
6 #include <barvinok/bernstein.h>
7 #include <barvinok/options.h>
9 using namespace GiNaC;
10 using namespace bernstein;
12 using std::pair;
13 using std::vector;
14 using std::cerr;
15 using std::endl;
17 namespace barvinok {
19 ex evalue2ex(evalue *e, const exvector& vars)
21 if (value_notzero_p(e->d))
22 return value2numeric(e->x.n)/value2numeric(e->d);
23 if (e->x.p->type != polynomial)
24 return fail();
25 ex poly = 0;
26 for (int i = e->x.p->size-1; i >= 0; --i) {
27 poly *= vars[e->x.p->pos-1];
28 ex t = evalue2ex(&e->x.p->arr[i], vars);
29 if (is_exactly_a<fail>(t))
30 return t;
31 poly += t;
33 return poly;
36 static int type_offset(enode *p)
38 return p->type == fractional ? 1 :
39 p->type == flooring ? 1 : 0;
42 typedef pair<bool, const evalue *> typed_evalue;
44 static ex evalue2ex_add_var(evalue *e, exvector& extravar,
45 vector<typed_evalue>& expr, bool is_fract)
47 ex base_var = 0;
49 for (int i = 0; i < expr.size(); ++i) {
50 if (is_fract == expr[i].first && eequal(e, expr[i].second)) {
51 base_var = extravar[i];
52 break;
55 if (base_var != 0)
56 return base_var;
58 char name[20];
59 snprintf(name, sizeof(name), "f%c%d", is_fract ? 'r' : 'l', expr.size());
60 extravar.push_back(base_var = symbol(name));
61 expr.push_back(typed_evalue(is_fract, e));
63 return base_var;
66 /* For the argument e=(f/d) of a fractional, return (d-1)/d times
67 * a variable in [0,1] (see setup_constraints).
69 static ex evalue2ex_get_fract(evalue *e, exvector& extravar,
70 vector<typed_evalue>& expr)
72 ex f;
73 Value d;
74 ex den;
75 value_init(d);
76 value_set_si(d, 1);
77 evalue_denom(e, &d);
78 den = value2numeric(d);
79 value_clear(d);
80 f = (den-1)/den;
82 ex base_var = evalue2ex_add_var(e, extravar, expr, true);
83 base_var *= f;
84 return base_var;
87 static ex evalue2ex_r(const evalue *e, const exvector& vars,
88 exvector& extravar, vector<typed_evalue>& expr,
89 Vector *coset)
91 if (value_notzero_p(e->d))
92 return value2numeric(e->x.n)/value2numeric(e->d);
93 ex base_var = 0;
94 ex poly = 0;
96 switch (e->x.p->type) {
97 case polynomial:
98 base_var = vars[e->x.p->pos-1];
99 break;
100 case flooring:
101 base_var = evalue2ex_add_var(&e->x.p->arr[0], extravar, expr, false);
102 break;
103 case fractional:
104 base_var = evalue2ex_get_fract(&e->x.p->arr[0], extravar, expr);
105 break;
106 case periodic:
107 assert(coset);
108 return evalue2ex_r(&e->x.p->arr[VALUE_TO_INT(coset->p[e->x.p->pos-1])],
109 vars, extravar, expr, coset);
110 default:
111 return fail();
114 int offset = type_offset(e->x.p);
115 for (int i = e->x.p->size-1; i >= offset; --i) {
116 poly *= base_var;
117 ex t = evalue2ex_r(&e->x.p->arr[i], vars, extravar, expr, coset);
118 if (is_exactly_a<fail>(t))
119 return t;
120 poly += t;
122 return poly;
125 /* For each t = floor(e/d), set up two constraints
127 * e - d t >= 0
128 * -e + d t + d-1 >= 0
130 * e is assumed to be an affine expression.
132 * For each t = fract(e/d), set up two constraints
134 * -d t + d-1 >= 0
135 * t >= 0
137 static Matrix *setup_constraints(const vector<typed_evalue> expr, int nvar)
139 int extra = expr.size();
140 if (!extra)
141 return NULL;
142 Matrix *M = Matrix_Alloc(2*extra, 1+extra+nvar+1);
143 for (int i = 0; i < extra; ++i) {
144 if (expr[i].first) {
145 value_set_si(M->p[2*i][0], 1);
146 value_set_si(M->p[2*i][1+i], -1);
147 value_set_si(M->p[2*i][1+extra+nvar], 1);
148 value_set_si(M->p[2*i+1][0], 1);
149 value_set_si(M->p[2*i+1][1+i], 1);
150 } else {
151 Value *d = &M->p[2*i][1+i];
152 evalue_extract_affine(expr[i].second, M->p[2*i]+1+extra,
153 M->p[2*i]+1+extra+nvar, d);
154 value_oppose(*d, *d);
155 value_set_si(M->p[2*i][0], -1);
156 Vector_Scale(M->p[2*i], M->p[2*i+1], M->p[2*i][0], 1+extra+nvar+1);
157 value_set_si(M->p[2*i][0], 1);
158 value_subtract(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar], *d);
159 value_decrement(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar]);
162 return M;
165 static bool evalue_is_periodic(const evalue *e, Vector *periods)
167 int i, offset;
168 bool is_periodic = false;
170 if (value_notzero_p(e->d))
171 return false;
173 assert(e->x.p->type != partition);
174 if (e->x.p->type == periodic) {
175 Value size;
176 value_init(size);
177 value_set_si(size, e->x.p->size);
178 value_lcm(periods->p[e->x.p->pos-1], size, &periods->p[e->x.p->pos-1]);
179 value_clear(size);
180 is_periodic = true;
182 offset = type_offset(e->x.p);
183 for (i = e->x.p->size-1; i >= offset; --i)
184 is_periodic = evalue_is_periodic(&e->x.p->arr[i], periods) || is_periodic;
185 return is_periodic;
188 static ex evalue2lst(const evalue *e, const exvector& vars,
189 exvector& extravar, vector<typed_evalue>& expr,
190 Vector *periods)
192 Vector *coset = Vector_Alloc(periods->Size);
193 lst list;
194 for (;;) {
195 int i;
196 list.append(evalue2ex_r(e, vars, extravar, expr, coset));
197 for (i = coset->Size-1; i >= 0; --i) {
198 value_increment(coset->p[i], coset->p[i]);
199 if (value_lt(coset->p[i], periods->p[i]))
200 break;
201 value_set_si(coset->p[i], 0);
203 if (i < 0)
204 break;
206 Vector_Free(coset);
207 return list;
210 ex evalue2ex(const evalue *e, const exvector& vars, exvector& floorvar,
211 Matrix **C, Vector **p)
213 vector<typed_evalue> expr;
214 Vector *periods = Vector_Alloc(vars.size());
215 assert(p);
216 assert(C);
217 for (int i = 0; i < periods->Size; ++i)
218 value_set_si(periods->p[i], 1);
219 if (evalue_is_periodic(e, periods)) {
220 *p = periods;
221 *C = NULL;
222 lst list;
223 return list;
224 } else {
225 Vector_Free(periods);
226 *p = NULL;
227 ex poly = evalue2ex_r(e, vars, floorvar, expr, NULL);
228 Matrix *M = setup_constraints(expr, vars.size());
229 *C = M;
230 return poly;
234 /* if the evalue is a relation, we use the relation to cut off the
235 * the edges of the domain
237 static void evalue_extract_poly(evalue *e, int i, Polyhedron **D, evalue **poly,
238 unsigned MaxRays)
240 *D = EVALUE_DOMAIN(e->x.p->arr[2*i]);
241 *poly = e = &e->x.p->arr[2*i+1];
242 if (value_notzero_p(e->d))
243 return;
244 if (e->x.p->type != relation)
245 return;
246 if (e->x.p->size > 2)
247 return;
248 evalue *fr = &e->x.p->arr[0];
249 assert(value_zero_p(fr->d));
250 assert(fr->x.p->type == fractional);
251 assert(fr->x.p->size == 3);
252 Matrix *T = Matrix_Alloc(2, (*D)->Dimension+1);
253 value_set_si(T->p[1][(*D)->Dimension], 1);
255 /* convert argument of fractional to polylib */
256 /* the argument is assumed to be linear */
257 evalue *p = &fr->x.p->arr[0];
258 evalue_denom(p, &T->p[1][(*D)->Dimension]);
259 for (;value_zero_p(p->d); p = &p->x.p->arr[0]) {
260 assert(p->x.p->type == polynomial);
261 assert(p->x.p->size == 2);
262 assert(value_notzero_p(p->x.p->arr[1].d));
263 int pos = p->x.p->pos - 1;
264 value_assign(T->p[0][pos], p->x.p->arr[1].x.n);
265 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][(*D)->Dimension]);
266 value_division(T->p[0][pos], T->p[0][pos], p->x.p->arr[1].d);
268 int pos = (*D)->Dimension;
269 value_assign(T->p[0][pos], p->x.n);
270 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][(*D)->Dimension]);
271 value_division(T->p[0][pos], T->p[0][pos], p->d);
273 Polyhedron *E = NULL;
274 for (Polyhedron *P = *D; P; P = P->next) {
275 Polyhedron *I = Polyhedron_Image(P, T, MaxRays);
276 I = DomainConstraintSimplify(I, MaxRays);
277 Polyhedron *R = Polyhedron_Preimage(I, T, MaxRays);
278 Polyhedron_Free(I);
279 Polyhedron *next = P->next;
280 P->next = NULL;
281 Polyhedron *S = DomainIntersection(P, R, MaxRays);
282 Polyhedron_Free(R);
283 P->next = next;
284 if (emptyQ2(S))
285 Polyhedron_Free(S);
286 else
287 E = DomainConcat(S, E);
289 Matrix_Free(T);
291 *D = E;
292 *poly = &e->x.p->arr[1];
295 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
296 Polyhedron *ctx, const exvector& params)
298 piecewise_lst *pl;
299 barvinok_options *options = barvinok_options_new_with_defaults();
300 pl = evalue_bernstein_coefficients(pl_all, e, ctx, params, options);
301 barvinok_options_free(options);
302 return pl;
305 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
306 Polyhedron *D, const ex& poly,
307 Polyhedron *ctx,
308 const exvector& params, const exvector& floorvar,
309 barvinok_options *options);
311 /* Recursively apply Bernstein expansion on P, optimizing over dims[i]
312 * variables in each level. The context ctx is assumed to have been adapted
313 * to the first level in the recursion.
315 static piecewise_lst *bernstein_coefficients_recursive(piecewise_lst *pl_all,
316 Polyhedron *P, const vector<int>& dims, const ex& poly,
317 Polyhedron *ctx,
318 const exvector& params, const exvector& vars,
319 barvinok_options *options)
321 assert(dims.size() > 0);
322 assert(ctx->Dimension == P->Dimension - dims[0]);
323 piecewise_lst *pl;
324 unsigned done = 0;
325 for (int j = 0; j < dims.size(); ++j) {
326 exvector pl_vars;
327 pl_vars.insert(pl_vars.end(), vars.begin()+done, vars.begin()+done+dims[j]);
328 exvector pl_params;
329 pl_params.insert(pl_params.end(), vars.begin()+done+dims[j], vars.end());
330 pl_params.insert(pl_params.end(), params.begin(), params.end());
332 if (!j)
333 pl = bernstein_coefficients(NULL, P, poly, ctx,
334 pl_params, pl_vars, options);
335 else {
336 piecewise_lst *new_pl = NULL;
337 Polyhedron *U = Universe_Polyhedron(pl_params.size());
339 for (int i = 0; i < pl->list.size(); ++i) {
340 Polyhedron *D = pl->list[i].first;
341 lst polys = pl->list[i].second;
342 new_pl = bernstein_coefficients(new_pl, D, polys, U, pl_params,
343 pl_vars, options);
346 Polyhedron_Free(U);
348 delete pl;
349 pl = new_pl;
352 done += dims[j];
355 if (!pl_all)
356 pl_all = pl;
357 else {
358 pl_all->combine(*pl);
359 delete pl;
362 return pl_all;
365 static piecewise_lst *bernstein_coefficients_full_recurse(piecewise_lst *pl_all,
366 Polyhedron *P, const ex& poly,
367 Polyhedron *ctx,
368 const exvector& params, const exvector& vars,
369 barvinok_options *options)
371 Polyhedron *CR = align_context(ctx, P->Dimension-1, options->MaxRays);
372 vector<int> dims(vars.size());
373 for (int i = 0; i < dims.size(); ++i)
374 dims[i] = 1;
375 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, poly, CR,
376 params, vars, options);
377 Polyhedron_Free(CR);
379 return pl_all;
382 static piecewise_lst *bernstein_coefficients_product(piecewise_lst *pl_all,
383 Polyhedron *F, Matrix *T, const ex& poly,
384 Polyhedron *ctx,
385 const exvector& params, const exvector& vars,
386 barvinok_options *options)
388 if (emptyQ2(ctx))
389 return pl_all;
390 for (Polyhedron *G = F; G; G = G->next)
391 if (emptyQ2(G))
392 return pl_all;
394 unsigned nparam = params.size();
395 unsigned nvar = vars.size();
396 unsigned constraints;
397 unsigned factors;
398 Polyhedron *C = NULL;
400 /* More context constraints */
401 if (F->Dimension == ctx->Dimension) {
402 C = F;
403 F = F->next;
405 assert(F);
406 assert(F->next);
408 Matrix *M;
409 Polyhedron *P;
410 Polyhedron *PC;
411 M = Matrix_Alloc(F->NbConstraints, 1+nvar+nparam+1);
412 for (int i = 0; i < F->NbConstraints; ++i) {
413 Vector_Copy(F->Constraint[i], M->p[i], 1+F->Dimension-nparam);
414 Vector_Copy(F->Constraint[i]+1+F->Dimension-nparam,
415 M->p[i]+1+nvar, nparam+1);
417 P = Constraints2Polyhedron(M, options->MaxRays);
418 Matrix_Free(M);
420 factors = 1;
421 constraints = C ? C->NbConstraints : 0;
422 constraints += ctx->NbConstraints;
423 for (Polyhedron *G = F->next; G; G = G->next) {
424 constraints += G->NbConstraints;
425 ++factors;
428 unsigned total_var = nvar-(F->Dimension-nparam);
429 unsigned skip = 0;
430 unsigned c = 0;
431 M = Matrix_Alloc(constraints, 1+total_var+nparam+1);
432 for (Polyhedron *G = F->next; G; G = G->next) {
433 unsigned this_var = G->Dimension - nparam;
434 for (int i = 0; i < G->NbConstraints; ++i) {
435 value_assign(M->p[c+i][0], G->Constraint[i][0]);
436 Vector_Copy(G->Constraint[i]+1, M->p[c+i]+1+skip, this_var);
437 Vector_Copy(G->Constraint[i]+1+this_var, M->p[c+i]+1+total_var,
438 nparam+1);
440 c += G->NbConstraints;
441 skip += this_var;
443 assert(skip == total_var);
444 if (C) {
445 for (int i = 0; i < C->NbConstraints; ++i) {
446 value_assign(M->p[c+i][0], C->Constraint[i][0]);
447 Vector_Copy(C->Constraint[i]+1, M->p[c+i]+1+total_var,
448 nparam+1);
450 c += C->NbConstraints;
452 for (int i = 0; i < ctx->NbConstraints; ++i) {
453 value_assign(M->p[c+i][0], ctx->Constraint[i][0]);
454 Vector_Copy(ctx->Constraint[i]+1, M->p[c+i]+1+total_var, nparam+1);
456 PC = Constraints2Polyhedron(M, options->MaxRays);
457 Matrix_Free(M);
459 exvector newvars = constructVariableVector(nvar, "t");
460 matrix subs(1, nvar);
461 for (int i = 0; i < nvar; ++i)
462 for (int j = 0; j < nvar; ++j)
463 subs(0,i) += value2numeric(T->p[i][j]) * newvars[j];
465 ex newpoly = replaceVariablesInPolynomial(poly, vars, subs);
467 vector<int> dims(factors);
468 for (int i = 0; F; ++i, F = F->next)
469 dims[i] = F->Dimension-nparam;
471 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, newpoly, PC,
472 params, newvars, options);
474 Polyhedron_Free(P);
475 Polyhedron_Free(PC);
477 return pl_all;
480 static piecewise_lst *bernstein_coefficients_polyhedron(piecewise_lst *pl_all,
481 Polyhedron *P, const ex& poly,
482 Polyhedron *ctx,
483 const exvector& params, const exvector& floorvar,
484 barvinok_options *options)
486 if (Polyhedron_is_unbounded(P, ctx->Dimension, options->MaxRays)) {
487 fprintf(stderr, "warning: unbounded domain skipped\n");
488 Polyhedron_Print(stderr, P_VALUE_FMT, P);
489 return pl_all;
492 if (options->bernstein_recurse & BV_BERNSTEIN_FACTORS) {
493 Matrix *T = NULL;
494 Polyhedron *F = Polyhedron_Factor(P, ctx->Dimension, &T, options->MaxRays);
495 if (F) {
496 pl_all = bernstein_coefficients_product(pl_all, F, T, poly, ctx, params,
497 floorvar, options);
498 Domain_Free(F);
499 Matrix_Free(T);
500 return pl_all;
503 if (floorvar.size() > 1 &&
504 options->bernstein_recurse & BV_BERNSTEIN_INTERVALS)
505 return bernstein_coefficients_full_recurse(pl_all, P, poly, ctx,
506 params, floorvar, options);
508 unsigned PP_MaxRays = options->MaxRays;
509 if (PP_MaxRays & POL_NO_DUAL)
510 PP_MaxRays = 0;
512 Param_Polyhedron *PP = Polyhedron2Param_Domain(P, ctx, PP_MaxRays);
513 assert(PP);
514 piecewise_lst *pl = new piecewise_lst(params, options->bernstein_optimize);
515 for (Param_Domain *Q = PP->D; Q; Q = Q->next) {
516 matrix VM = domainVertices(PP, Q, params);
517 lst coeffs = bernsteinExpansion(VM, poly, floorvar, params);
518 pl->add_guarded_lst(Polyhedron_Copy(Q->Domain), coeffs);
520 Param_Polyhedron_Free(PP);
521 if (!pl_all)
522 pl_all = pl;
523 else {
524 pl_all->combine(*pl);
525 delete pl;
528 return pl_all;
531 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
532 Polyhedron *D, const ex& poly,
533 Polyhedron *ctx,
534 const exvector& params, const exvector& floorvar,
535 barvinok_options *options)
537 if (!D->next && emptyQ2(D))
538 return pl_all;
540 for (Polyhedron *P = D; P; P = P->next) {
541 /* This shouldn't happen */
542 if (emptyQ2(P))
543 continue;
544 Polyhedron *next = P->next;
545 P->next = NULL;
546 pl_all = bernstein_coefficients_polyhedron(pl_all, P, poly, ctx,
547 params, floorvar, options);
548 P->next = next;
550 return pl_all;
553 /* Compute the coefficients of the polynomial corresponding to each coset
554 * on its own domain. This allows us to cut the domain on multiples of
555 * the period.
556 * To perform the cutting for a coset "i mod n = c" we map the domain
557 * to the quotient space trough "i = i' n + c", simplify the constraints
558 * (implicitly) and then map back to the original space.
560 static piecewise_lst *bernstein_coefficients_periodic(piecewise_lst *pl_all,
561 Polyhedron *D, const evalue *e,
562 Polyhedron *ctx, const exvector& vars,
563 const exvector& params, Vector *periods,
564 barvinok_options *options)
566 assert(D->Dimension == periods->Size);
567 Matrix *T = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
568 Matrix *T2 = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
569 Vector *coset = Vector_Alloc(periods->Size);
570 exvector extravar;
571 vector<typed_evalue> expr;
572 exvector allvars = vars;
573 allvars.insert(allvars.end(), params.begin(), params.end());
575 value_set_si(T2->p[D->Dimension][D->Dimension], 1);
576 for (int i = 0; i < D->Dimension; ++i) {
577 value_assign(T->p[i][i], periods->p[i]);
578 value_lcm(T2->p[D->Dimension][D->Dimension], periods->p[i],
579 &T2->p[D->Dimension][D->Dimension]);
581 value_set_si(T->p[D->Dimension][D->Dimension], 1);
582 for (int i = 0; i < D->Dimension; ++i)
583 value_division(T2->p[i][i], T2->p[D->Dimension][D->Dimension],
584 periods->p[i]);
585 for (;;) {
586 int i;
587 ex poly = evalue2ex_r(e, allvars, extravar, expr, coset);
588 assert(extravar.size() == 0);
589 assert(expr.size() == 0);
590 Polyhedron *E = DomainPreimage(D, T, options->MaxRays);
591 Polyhedron *F = DomainPreimage(E, T2, options->MaxRays);
592 Polyhedron_Free(E);
593 if (!emptyQ2(F))
594 pl_all = bernstein_coefficients(pl_all, F, poly, ctx, params,
595 vars, options);
596 Polyhedron_Free(F);
597 for (i = D->Dimension-1; i >= 0; --i) {
598 value_increment(coset->p[i], coset->p[i]);
599 value_increment(T->p[i][D->Dimension], T->p[i][D->Dimension]);
600 value_subtract(T2->p[i][D->Dimension], T2->p[i][D->Dimension],
601 T2->p[i][i]);
602 if (value_lt(coset->p[i], periods->p[i]))
603 break;
604 value_set_si(coset->p[i], 0);
605 value_set_si(T->p[i][D->Dimension], 0);
606 value_set_si(T2->p[i][D->Dimension], 0);
608 if (i < 0)
609 break;
611 Vector_Free(coset);
612 Matrix_Free(T);
613 Matrix_Free(T2);
614 return pl_all;
617 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
618 Polyhedron *ctx, const exvector& params,
619 barvinok_options *options)
621 unsigned nparam = ctx->Dimension;
622 if (EVALUE_IS_ZERO(*e))
623 return pl_all;
624 assert(value_zero_p(e->d));
625 assert(e->x.p->type == partition);
626 assert(e->x.p->size >= 2);
627 unsigned nvars = EVALUE_DOMAIN(e->x.p->arr[0])->Dimension - nparam;
629 exvector vars = constructVariableVector(nvars, "v");
630 exvector allvars = vars;
631 allvars.insert(allvars.end(), params.begin(), params.end());
633 for (int i = 0; i < e->x.p->size/2; ++i) {
634 Polyhedron *E;
635 evalue *EP;
636 Matrix *M;
637 Vector *periods;
638 exvector floorvar;
640 evalue_extract_poly(e, i, &E, &EP, options->MaxRays);
641 ex poly = evalue2ex(EP, allvars, floorvar, &M, &periods);
642 floorvar.insert(floorvar.end(), vars.begin(), vars.end());
643 if (M) {
644 Polyhedron *AE = align_context(E, M->NbColumns-2, options->MaxRays);
645 if (E != EVALUE_DOMAIN(e->x.p->arr[2*i]))
646 Domain_Free(E);
647 E = DomainAddConstraints(AE, M, options->MaxRays);
648 Matrix_Free(M);
649 Domain_Free(AE);
651 if (is_exactly_a<fail>(poly)) {
652 if (E != EVALUE_DOMAIN(e->x.p->arr[2*i]))
653 Domain_Free(E);
654 delete pl_all;
655 return NULL;
657 if (periods)
658 pl_all = bernstein_coefficients_periodic(pl_all, E, EP, ctx, vars,
659 params, periods, options);
660 else
661 pl_all = bernstein_coefficients(pl_all, E, poly, ctx, params,
662 floorvar, options);
663 if (periods)
664 Vector_Free(periods);
665 if (E != EVALUE_DOMAIN(e->x.p->arr[2*i]))
666 Domain_Free(E);
668 return pl_all;