lexmin.cc: move some code around to prepare for new version
[barvinok.git] / sample.c
blobfd138f5bf7075e6e175579bac06189bb5e57df33
1 #include <polylib/polylibgmp.h>
2 #include <barvinok/util.h>
3 #include "basis_reduction.h"
4 #include "sample.h"
6 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
8 /* If P has no rays, then we return NULL.
9 * Otherwise, look for the coordinate axis with the smallest maximal non-zero
10 * coefficient over all rays and a constraint that bounds the values on
11 * this axis to the maximal value over the vertices plus the above maximal
12 * non-zero coefficient times the number of rays minus 1.
13 * Any integer point x outside this region is the sum of a point inside
14 * the region and an integer multiple of the rays.
15 * Write x = \sum_i a_i v_i + \sum_j b_j r_j
16 * with \sum_i a_i = 1.
17 * Then x = \sum_i a_i v_i + \sum_j {b_j} r_j + \sum_j [b_j] r_j
18 * with y = \sum_i a_i v_i + \sum_j {b_j} r_j a point inside the region.
20 static Polyhedron *remove_ray(Polyhedron *P, unsigned MaxRays)
22 int r = 0;
23 Vector *min, *max, *c;
24 int i;
25 Value s, v, tmp;
26 int pos;
27 Polyhedron *R;
28 int rays;
30 if (P->NbBid == 0)
31 for (; r < P->NbRays; ++r)
32 if (value_zero_p(P->Ray[r][P->Dimension+1]))
33 break;
34 if (P->NbBid == 0 && r == P->NbRays)
35 return NULL;
37 max = Vector_Alloc(P->Dimension);
38 min = Vector_Alloc(P->Dimension);
39 for (r = 0; r < P->NbBid; ++r)
40 for (i = 0 ; i < P->Dimension; ++i)
41 if (value_abs_gt(P->Ray[r][1+i], max->p[i]))
42 value_absolute(max->p[i], P->Ray[r][1+i]);
44 for (i = 0 ; i < P->Dimension; ++i)
45 value_oppose(min->p[i], max->p[i]);
47 rays = P->NbBid;
48 for (r = P->NbBid; r < P->NbRays; ++r) {
49 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
50 continue;
51 for (i = 0 ; i < P->Dimension; ++i) {
52 if (value_gt(P->Ray[r][1+i], max->p[i]))
53 value_assign(max->p[i], P->Ray[r][1+i]);
54 if (value_lt(P->Ray[r][1+i], min->p[i]))
55 value_assign(min->p[i], P->Ray[r][1+i]);
57 ++rays;
60 value_init(s);
61 value_init(v);
62 value_init(tmp);
64 for (i = 0 ; i < P->Dimension; ++i) {
65 if (value_notzero_p(min->p[i]) &&
66 (value_zero_p(s) || value_abs_lt(min->p[i], s))) {
67 value_assign(s, min->p[i]);
68 pos = i;
70 if (value_notzero_p(max->p[i]) &&
71 (value_zero_p(s) || value_abs_lt(max->p[i], s))) {
72 value_assign(s, max->p[i]);
73 pos = i;
77 for (r = P->NbBid; r < P->NbRays; ++r)
78 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
79 break;
81 if (value_pos_p(s))
82 mpz_cdiv_q(v, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
83 else
84 mpz_fdiv_q(v, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
86 for ( ; r < P->NbRays; ++r) {
87 if (value_zero_p(P->Ray[r][P->Dimension+1]))
88 continue;
90 if (value_pos_p(s)) {
91 mpz_cdiv_q(tmp, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
92 if (value_gt(tmp, v))
93 value_assign(v, tmp);
94 } else {
95 mpz_fdiv_q(tmp, P->Ray[r][1+pos], P->Ray[r][P->Dimension+1]);
96 if (value_lt(tmp, v))
97 value_assign(v, tmp);
101 c = Vector_Alloc(1+P->Dimension+1);
103 value_set_si(tmp, rays);
104 value_addmul(v, tmp, s);
105 value_set_si(c->p[0], 1);
106 if (value_pos_p(s)) {
107 value_set_si(c->p[1+pos], -1);
108 value_assign(c->p[1+P->Dimension], v);
109 } else {
110 value_set_si(c->p[1+pos], 1);
111 value_oppose(c->p[1+P->Dimension], v);
113 value_decrement(c->p[1+P->Dimension], c->p[1+P->Dimension]);
115 R = AddConstraints(c->p, 1, P, MaxRays);
117 Vector_Free(c);
119 Vector_Free(min);
120 Vector_Free(max);
122 value_clear(tmp);
123 value_clear(s);
124 value_clear(v);
126 return R;
129 static void print_minmax(Polyhedron *P)
131 int i, j;
132 POL_ENSURE_VERTICES(P);
133 Polyhedron_Print(stderr, P_VALUE_FMT, P);
134 for (i = 0; i < P->Dimension; ++i) {
135 Value min, max, tmp;
136 value_init(min);
137 value_init(max);
138 value_init(tmp);
140 mpz_cdiv_q(min, P->Ray[0][1+i], P->Ray[0][1+P->Dimension]);
141 mpz_fdiv_q(max, P->Ray[0][1+i], P->Ray[0][1+P->Dimension]);
143 for (j = 1; j < P->NbRays; ++j) {
144 mpz_cdiv_q(tmp, P->Ray[j][1+i], P->Ray[j][1+P->Dimension]);
145 if (value_lt(tmp, min))
146 value_assign(min, tmp);
147 mpz_fdiv_q(tmp, P->Ray[j][1+i], P->Ray[j][1+P->Dimension]);
148 if (value_gt(tmp, max))
149 value_assign(max, tmp);
151 fprintf(stderr, "i: %d, min: ", i);
152 value_print(stderr, VALUE_FMT, min);
153 fprintf(stderr, ", max: ");
154 value_print(stderr, VALUE_FMT, max);
155 fprintf(stderr, "\n");
157 value_clear(min);
158 value_clear(max);
159 value_clear(tmp);
163 /* Remove coordinates that have a fixed value and return the matrix
164 * that adds these fixed coordinates again through T.
166 static Polyhedron *Polyhedron_RemoveFixedColumns(Polyhedron *P, Matrix **T)
168 int i, j, k, n;
169 int dim = P->Dimension;
170 int *remove = ALLOCN(int, dim);
171 Polyhedron *Q;
172 int NbEq;
174 assert(POL_HAS(P, POL_INEQUALITIES));
175 for (i = 0; i < dim; ++i)
176 remove[i] = 0;
177 NbEq = 0;
178 for (i = 0; i < P->NbEq; ++i) {
179 int pos = First_Non_Zero(P->Constraint[i]+1, dim);
180 if (First_Non_Zero(P->Constraint[i]+1+pos+1, dim-pos-1) != -1)
181 continue;
182 remove[pos] = 1;
183 ++NbEq;
185 assert(NbEq > 0);
186 Q = Polyhedron_Alloc(P->Dimension-NbEq, P->NbConstraints-NbEq, P->NbRays);
187 for (i = 0, k = 0; i < P->NbConstraints; ++i) {
188 if (i < P->NbEq) {
189 int pos = First_Non_Zero(P->Constraint[i]+1, dim);
190 if (First_Non_Zero(P->Constraint[i]+1+pos+1, dim-pos-1) == -1)
191 continue;
193 value_assign(Q->Constraint[k][0], P->Constraint[i][0]);
194 for (j = 0, n = 0; j < P->Dimension; ++j) {
195 if (remove[j])
196 ++n;
197 else
198 value_assign(Q->Constraint[k][1+j-n], P->Constraint[i][1+j]);
200 value_assign(Q->Constraint[k][1+j-n], P->Constraint[i][1+j]);
201 ++k;
203 for (i = 0; i < Q->NbRays; ++i) {
204 value_assign(Q->Ray[i][0], P->Ray[i][0]);
205 for (j = 0, n = 0; j < P->Dimension; ++j) {
206 if (remove[j])
207 ++n;
208 else
209 value_assign(Q->Ray[i][1+j-n], P->Ray[i][1+j]);
211 value_assign(Q->Ray[i][1+j-n], P->Ray[i][1+j]);
213 *T = Matrix_Alloc(P->Dimension+1, Q->Dimension+1);
214 for (i = 0, n = 0; i < P->Dimension; ++i) {
215 if (remove[i]) {
216 value_oppose((*T)->p[i][Q->Dimension], P->Constraint[n][1+P->Dimension]);
217 ++n;
218 } else
219 value_set_si((*T)->p[i][i-n], 1);
221 value_set_si((*T)->p[i][i-n], 1);
222 POL_SET(Q, POL_VALID);
223 if (POL_HAS(P, POL_INEQUALITIES))
224 POL_SET(Q, POL_INEQUALITIES);
225 if (POL_HAS(P, POL_FACETS))
226 POL_SET(Q, POL_FACETS);
227 if (POL_HAS(P, POL_POINTS))
228 POL_SET(Q, POL_POINTS);
229 if (POL_HAS(P, POL_VERTICES))
230 POL_SET(Q, POL_VERTICES);
231 free(remove);
232 return Q;
235 /* This function implements the algorithm described in
236 * "An Implementation of the Generalized Basis Reduction Algorithm
237 * for Integer Programming" of Cook el al. to find an integer point
238 * in a polyhedron.
239 * If the polyhedron is unbounded, we first remove its rays.
241 Vector *Polyhedron_Sample(Polyhedron *P, unsigned MaxRays)
243 int i, j;
244 Vector *sample = NULL;
245 Polyhedron *Q;
246 Matrix *T, *inv, *M;
247 Value min, max, tmp;
248 Vector *v;
249 int ok;
251 POL_ENSURE_VERTICES(P);
252 if (emptyQ(P))
253 return NULL;
255 if (P->Dimension == 0) {
256 sample = Vector_Alloc(1);
257 value_set_si(sample->p[0], 1);
258 return sample;
261 for (i = 0; i < P->NbRays; ++i)
262 if (value_one_p(P->Ray[i][1+P->Dimension])) {
263 sample = Vector_Alloc(P->Dimension+1);
264 Vector_Copy(P->Ray[i]+1, sample->p, P->Dimension+1);
265 return sample;
268 Q = remove_ray(P, MaxRays);
269 if (Q) {
270 sample = Polyhedron_Sample(Q, MaxRays);
271 Polyhedron_Free(Q);
272 return sample;
275 Matrix *basis = reduced_basis(P);
277 T = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
278 inv = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
279 for (i = 0; i < P->Dimension; ++i)
280 for (j = 0; j < P->Dimension; ++j)
281 value_assign(T->p[i][j], basis->p[i][j]);
282 value_set_si(T->p[P->Dimension][P->Dimension], 1);
283 Matrix_Free(basis);
285 M = Matrix_Copy(T);
286 ok = Matrix_Inverse(M, inv);
287 assert(ok);
288 Matrix_Free(M);
290 Q = Polyhedron_Image(P, T, MaxRays);
292 POL_ENSURE_VERTICES(Q);
294 value_init(min);
295 value_init(max);
296 value_init(tmp);
298 mpz_cdiv_q(min, Q->Ray[0][1], Q->Ray[0][1+Q->Dimension]);
299 mpz_fdiv_q(max, Q->Ray[0][1], Q->Ray[0][1+Q->Dimension]);
301 for (j = 1; j < Q->NbRays; ++j) {
302 mpz_cdiv_q(tmp, Q->Ray[j][1], Q->Ray[j][1+Q->Dimension]);
303 if (value_lt(tmp, min))
304 value_assign(min, tmp);
305 mpz_fdiv_q(tmp, Q->Ray[j][1], Q->Ray[j][1+Q->Dimension]);
306 if (value_gt(tmp, max))
307 value_assign(max, tmp);
310 v = Vector_Alloc(1+Q->Dimension+1);
311 value_set_si(v->p[1], -1);
313 for (value_assign(tmp, min); value_le(tmp, max); value_increment(tmp, tmp)) {
314 Polyhedron *R, *S;
315 Matrix *T;
316 Vector *S_sample;
317 value_assign(v->p[1+Q->Dimension], tmp);
319 R = AddConstraints(v->p, 1, Q, MaxRays);
320 R = DomainConstraintSimplify(R, MaxRays);
321 if (emptyQ(R)) {
322 Polyhedron_Free(R);
323 continue;
326 S = Polyhedron_RemoveFixedColumns(R, &T);
327 Polyhedron_Free(R);
328 S_sample = Polyhedron_Sample(S, MaxRays);
329 Polyhedron_Free(S);
330 if (S_sample) {
331 Vector *Q_sample = Vector_Alloc(Q->Dimension + 1);
332 Matrix_Vector_Product(T, S_sample->p, Q_sample->p);
333 Matrix_Free(T);
334 Vector_Free(S_sample);
335 sample = Vector_Alloc(P->Dimension + 1);
336 Matrix_Vector_Product(inv, Q_sample->p, sample->p);
337 Vector_Free(Q_sample);
338 break;
340 Matrix_Free(T);
343 Matrix_Free(T);
344 Matrix_Free(inv);
345 Polyhedron_Free(Q);
346 Vector_Free(v);
348 value_clear(min);
349 value_clear(max);
350 value_clear(tmp);
352 return sample;