1 #include <polylib/polylibgmp.h>
7 #ifndef HAVE_ENUMERATE4
8 #define Polyhedron_Enumerate(a,b,c,d) Polyhedron_Enumerate(a,b,c)
12 #define ALLOC(p) p = (typeof(p))malloc(sizeof(*p))
13 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
15 #define ALLOC(p) p = (void *)malloc(sizeof(*p))
16 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
19 #ifndef HAVE_ENUMERATION_FREE
20 #define Enumeration_Free(en) /* just leak some memory */
23 void manual_count(Polyhedron
*P
, Value
* result
)
25 Polyhedron
*U
= Universe_Polyhedron(0);
26 Enumeration
*en
= Polyhedron_Enumerate(P
,U
,1024,NULL
);
27 Value
*v
= compute_poly(en
,NULL
);
28 value_assign(*result
, *v
);
35 #ifndef HAVE_ENUMERATION_FREE
36 #undef Enumeration_Free
39 #include <barvinok/evalue.h>
40 #include <barvinok/util.h>
41 #include <barvinok/barvinok.h>
43 /* Return random value between 0 and max-1 inclusive
45 int random_int(int max
) {
46 return (int) (((double)(max
))*rand()/(RAND_MAX
+1.0));
49 /* Inplace polarization
51 void Polyhedron_Polarize(Polyhedron
*P
)
53 unsigned NbRows
= P
->NbConstraints
+ P
->NbRays
;
57 q
= (Value
**)malloc(NbRows
* sizeof(Value
*));
59 for (i
= 0; i
< P
->NbRays
; ++i
)
61 for (; i
< NbRows
; ++i
)
62 q
[i
] = P
->Constraint
[i
-P
->NbRays
];
63 P
->NbConstraints
= NbRows
- P
->NbConstraints
;
64 P
->NbRays
= NbRows
- P
->NbRays
;
67 P
->Ray
= q
+ P
->NbConstraints
;
71 * Rather general polar
72 * We can optimize it significantly if we assume that
75 * Also, we calculate the polar as defined in Schrijver
76 * The opposite should probably work as well and would
77 * eliminate the need for multiplying by -1
79 Polyhedron
* Polyhedron_Polar(Polyhedron
*P
, unsigned NbMaxRays
)
83 unsigned dim
= P
->Dimension
+ 2;
84 Matrix
*M
= Matrix_Alloc(P
->NbRays
, dim
);
88 value_set_si(mone
, -1);
89 for (i
= 0; i
< P
->NbRays
; ++i
) {
90 Vector_Scale(P
->Ray
[i
], M
->p
[i
], mone
, dim
);
91 value_multiply(M
->p
[i
][0], M
->p
[i
][0], mone
);
92 value_multiply(M
->p
[i
][dim
-1], M
->p
[i
][dim
-1], mone
);
94 P
= Constraints2Polyhedron(M
, NbMaxRays
);
102 * Returns the supporting cone of P at the vertex with index v
104 Polyhedron
* supporting_cone(Polyhedron
*P
, int v
)
109 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
110 unsigned dim
= P
->Dimension
+ 2;
112 assert(v
>=0 && v
< P
->NbRays
);
113 assert(value_pos_p(P
->Ray
[v
][dim
-1]));
117 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
118 Inner_Product(P
->Constraint
[i
] + 1, P
->Ray
[v
] + 1, dim
- 1, &tmp
);
119 if ((supporting
[i
] = value_zero_p(tmp
)))
122 assert(n
>= dim
- 2);
124 M
= Matrix_Alloc(n
, dim
);
126 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
128 value_set_si(M
->p
[j
][dim
-1], 0);
129 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], dim
-1);
132 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
138 void value_lcm(Value i
, Value j
, Value
* lcm
)
142 value_multiply(aux
,i
,j
);
144 value_division(*lcm
,aux
,*lcm
);
148 Polyhedron
* supporting_cone_p(Polyhedron
*P
, Param_Vertices
*v
)
151 Value lcm
, tmp
, tmp2
;
152 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
153 unsigned dim
= P
->Dimension
+ 2;
154 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
155 unsigned nvar
= dim
- nparam
- 2;
160 row
= Vector_Alloc(nparam
+1);
165 value_set_si(lcm
, 1);
166 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
167 Vector_Set(row
->p
, 0, nparam
+1);
168 for (j
= 0 ; j
< nvar
; ++j
) {
169 value_set_si(tmp
, 1);
170 value_assign(tmp2
, P
->Constraint
[i
][j
+1]);
171 if (value_ne(lcm
, v
->Vertex
->p
[j
][nparam
+1])) {
172 value_assign(tmp
, lcm
);
173 value_lcm(lcm
, v
->Vertex
->p
[j
][nparam
+1], &lcm
);
174 value_division(tmp
, lcm
, tmp
);
175 value_multiply(tmp2
, tmp2
, lcm
);
176 value_division(tmp2
, tmp2
, v
->Vertex
->p
[j
][nparam
+1]);
178 Vector_Combine(row
->p
, v
->Vertex
->p
[j
], row
->p
,
179 tmp
, tmp2
, nparam
+1);
181 value_set_si(tmp
, 1);
182 Vector_Combine(row
->p
, P
->Constraint
[i
]+1+nvar
, row
->p
, tmp
, lcm
, nparam
+1);
183 for (j
= 0; j
< nparam
+1; ++j
)
184 if (value_notzero_p(row
->p
[j
]))
186 if ((supporting
[i
] = (j
== nparam
+ 1)))
194 M
= Matrix_Alloc(n
, nvar
+2);
196 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
198 value_set_si(M
->p
[j
][nvar
+1], 0);
199 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], nvar
+1);
202 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
208 Polyhedron
* triangulate_cone(Polyhedron
*P
, unsigned NbMaxCons
)
210 const static int MAX_TRY
=10;
213 unsigned dim
= P
->Dimension
;
214 Matrix
*M
= Matrix_Alloc(P
->NbRays
+1, dim
+3);
216 Polyhedron
*L
, *R
, *T
;
217 assert(P
->NbEq
== 0);
222 Vector_Set(M
->p
[0]+1, 0, dim
+1);
223 value_set_si(M
->p
[0][0], 1);
224 value_set_si(M
->p
[0][dim
+2], 1);
225 Vector_Set(M
->p
[P
->NbRays
]+1, 0, dim
+2);
226 value_set_si(M
->p
[P
->NbRays
][0], 1);
227 value_set_si(M
->p
[P
->NbRays
][dim
+1], 1);
229 /* Delaunay triangulation */
230 for (i
= 0, r
= 1; i
< P
->NbRays
; ++i
) {
231 if (value_notzero_p(P
->Ray
[i
][dim
+1]))
233 Vector_Copy(P
->Ray
[i
], M
->p
[r
], dim
+1);
234 Inner_Product(M
->p
[r
]+1, M
->p
[r
]+1, dim
, &tmp
);
235 value_assign(M
->p
[r
][dim
+1], tmp
);
236 value_set_si(M
->p
[r
][dim
+2], 0);
241 L
= Rays2Polyhedron(M3
, NbMaxCons
);
244 M2
= Matrix_Alloc(dim
+1, dim
+2);
249 /* Usually R should still be 0 */
252 for (r
= 1; r
< P
->NbRays
; ++r
) {
253 value_set_si(M
->p
[r
][dim
+1], random_int((t
+1)*dim
)+1);
256 L
= Rays2Polyhedron(M3
, NbMaxCons
);
260 assert(t
<= MAX_TRY
);
265 for (i
= 0; i
< L
->NbConstraints
; ++i
) {
266 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
267 if (value_negz_p(L
->Constraint
[i
][dim
+1]))
269 if (value_notzero_p(L
->Constraint
[i
][dim
+2]))
271 for (j
= 1, r
= 1; j
< M
->NbRows
; ++j
) {
272 Inner_Product(M
->p
[j
]+1, L
->Constraint
[i
]+1, dim
+1, &tmp
);
273 if (value_notzero_p(tmp
))
277 Vector_Copy(M
->p
[j
]+1, M2
->p
[r
]+1, dim
);
278 value_set_si(M2
->p
[r
][0], 1);
279 value_set_si(M2
->p
[r
][dim
+1], 0);
283 Vector_Set(M2
->p
[0]+1, 0, dim
);
284 value_set_si(M2
->p
[0][0], 1);
285 value_set_si(M2
->p
[0][dim
+1], 1);
286 T
= Rays2Polyhedron(M2
, P
->NbConstraints
+1);
300 void check_triangulization(Polyhedron
*P
, Polyhedron
*T
)
302 Polyhedron
*C
, *D
, *E
, *F
, *G
, *U
;
303 for (C
= T
; C
; C
= C
->next
) {
307 U
= DomainConvex(DomainUnion(U
, C
, 100), 100);
308 for (D
= C
->next
; D
; D
= D
->next
) {
313 E
= DomainIntersection(C
, D
, 600);
314 assert(E
->NbRays
== 0 || E
->NbEq
>= 1);
320 assert(PolyhedronIncludes(U
, P
));
321 assert(PolyhedronIncludes(P
, U
));
324 static void Euclid(Value a
, Value b
, Value
*x
, Value
*y
, Value
*g
)
326 Value c
, d
, e
, f
, tmp
;
333 value_absolute(c
, a
);
334 value_absolute(d
, b
);
337 while(value_pos_p(d
)) {
338 value_division(tmp
, c
, d
);
339 value_multiply(tmp
, tmp
, f
);
340 value_subtract(e
, e
, tmp
);
341 value_division(tmp
, c
, d
);
342 value_multiply(tmp
, tmp
, d
);
343 value_subtract(c
, c
, tmp
);
350 else if (value_pos_p(a
))
352 else value_oppose(*x
, e
);
356 value_multiply(tmp
, a
, *x
);
357 value_subtract(tmp
, c
, tmp
);
358 value_division(*y
, tmp
, b
);
367 Matrix
* unimodular_complete(Vector
*row
)
369 Value g
, b
, c
, old
, tmp
;
378 m
= Matrix_Alloc(row
->Size
, row
->Size
);
379 for (j
= 0; j
< row
->Size
; ++j
) {
380 value_assign(m
->p
[0][j
], row
->p
[j
]);
382 value_assign(g
, row
->p
[0]);
383 for (i
= 1; value_zero_p(g
) && i
< row
->Size
; ++i
) {
384 for (j
= 0; j
< row
->Size
; ++j
) {
386 value_set_si(m
->p
[i
][j
], 1);
388 value_set_si(m
->p
[i
][j
], 0);
390 value_assign(g
, row
->p
[i
]);
392 for (; i
< row
->Size
; ++i
) {
393 value_assign(old
, g
);
394 Euclid(old
, row
->p
[i
], &c
, &b
, &g
);
396 for (j
= 0; j
< row
->Size
; ++j
) {
398 value_multiply(tmp
, row
->p
[j
], b
);
399 value_division(m
->p
[i
][j
], tmp
, old
);
401 value_assign(m
->p
[i
][j
], c
);
403 value_set_si(m
->p
[i
][j
], 0);
415 * Returns a full-dimensional polyhedron with the same number
416 * of integer points as P
418 Polyhedron
*remove_equalities(Polyhedron
*P
)
422 Polyhedron
*p
= Polyhedron_Copy(P
), *q
;
423 unsigned dim
= p
->Dimension
;
428 while (p
->NbEq
> 0) {
430 Vector_Gcd(p
->Constraint
[0]+1, dim
+1, &g
);
431 Vector_AntiScale(p
->Constraint
[0]+1, p
->Constraint
[0]+1, g
, dim
+1);
432 Vector_Gcd(p
->Constraint
[0]+1, dim
, &g
);
433 if (value_notone_p(g
) && value_notmone_p(g
)) {
435 p
= Empty_Polyhedron(0);
438 v
= Vector_Alloc(dim
);
439 Vector_Copy(p
->Constraint
[0]+1, v
->p
, dim
);
440 m1
= unimodular_complete(v
);
441 m2
= Matrix_Alloc(dim
, dim
+1);
442 for (i
= 0; i
< dim
-1 ; ++i
) {
443 Vector_Copy(m1
->p
[i
+1], m2
->p
[i
], dim
);
444 value_set_si(m2
->p
[i
][dim
], 0);
446 Vector_Set(m2
->p
[dim
-1], 0, dim
);
447 value_set_si(m2
->p
[dim
-1][dim
], 1);
448 q
= Polyhedron_Image(p
, m2
, p
->NbConstraints
+1+p
->NbRays
);
461 * Returns a full-dimensional polyhedron with the same number
462 * of integer points as P
463 * nvar specifies the number of variables
464 * The remaining dimensions are assumed to be parameters
466 * factor is NbEq x (nparam+2) matrix, containing stride constraints
467 * on the parameters; column nparam is the constant;
468 * column nparam+1 is the stride
470 * if factor is NULL, only remove equalities that don't affect
471 * the number of points
473 Polyhedron
*remove_equalities_p(Polyhedron
*P
, unsigned nvar
, Matrix
**factor
)
477 Polyhedron
*p
= P
, *q
;
478 unsigned dim
= p
->Dimension
;
484 f
= Matrix_Alloc(p
->NbEq
, dim
-nvar
+2);
489 while (nvar
> 0 && p
->NbEq
- skip
> 0) {
492 while (value_zero_p(p
->Constraint
[skip
][0]) &&
493 First_Non_Zero(p
->Constraint
[skip
]+1, nvar
) == -1)
498 Vector_Gcd(p
->Constraint
[skip
]+1, dim
+1, &g
);
499 Vector_AntiScale(p
->Constraint
[skip
]+1, p
->Constraint
[skip
]+1, g
, dim
+1);
500 Vector_Gcd(p
->Constraint
[skip
]+1, nvar
, &g
);
501 if (!factor
&& value_notone_p(g
) && value_notmone_p(g
)) {
506 Vector_Copy(p
->Constraint
[skip
]+1+nvar
, f
->p
[j
], dim
-nvar
+1);
507 value_assign(f
->p
[j
][dim
-nvar
+1], g
);
509 v
= Vector_Alloc(dim
);
510 Vector_AntiScale(p
->Constraint
[skip
]+1, v
->p
, g
, nvar
);
511 Vector_Set(v
->p
+nvar
, 0, dim
-nvar
);
512 m1
= unimodular_complete(v
);
513 m2
= Matrix_Alloc(dim
, dim
+1);
514 for (i
= 0; i
< dim
-1 ; ++i
) {
515 Vector_Copy(m1
->p
[i
+1], m2
->p
[i
], dim
);
516 value_set_si(m2
->p
[i
][dim
], 0);
518 Vector_Set(m2
->p
[dim
-1], 0, dim
);
519 value_set_si(m2
->p
[dim
-1][dim
], 1);
520 q
= Polyhedron_Image(p
, m2
, p
->NbConstraints
+1+p
->NbRays
);
534 void Line_Length(Polyhedron
*P
, Value
*len
)
540 assert(P
->Dimension
== 1);
546 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
547 value_oppose(tmp
, P
->Constraint
[i
][2]);
548 if (value_pos_p(P
->Constraint
[i
][1])) {
549 mpz_cdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
550 if (!p
|| value_gt(tmp
, pos
))
551 value_assign(pos
, tmp
);
554 mpz_fdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
555 if (!n
|| value_lt(tmp
, neg
))
556 value_assign(neg
, tmp
);
560 value_subtract(tmp
, neg
, pos
);
561 value_increment(*len
, tmp
);
563 value_set_si(*len
, -1);
572 * Factors the polyhedron P into polyhedra Q_i such that
573 * the number of integer points in P is equal to the product
574 * of the number of integer points in the individual Q_i
576 * If no factors can be found, NULL is returned.
577 * Otherwise, a linked list of the factors is returned.
579 * The algorithm works by first computing the Hermite normal form
580 * and then grouping columns linked by one or more constraints together,
581 * where a constraints "links" two or more columns if the constraint
582 * has nonzero coefficients in the columns.
584 Polyhedron
* Polyhedron_Factor(Polyhedron
*P
, unsigned nparam
,
588 Matrix
*M
, *H
, *Q
, *U
;
589 int *pos
; /* for each column: row position of pivot */
590 int *group
; /* group to which a column belongs */
591 int *cnt
; /* number of columns in the group */
592 int *rowgroup
; /* group to which a constraint belongs */
593 int nvar
= P
->Dimension
- nparam
;
594 Polyhedron
*F
= NULL
;
602 NALLOC(rowgroup
, P
->NbConstraints
);
604 M
= Matrix_Alloc(P
->NbConstraints
, nvar
);
605 for (i
= 0; i
< P
->NbConstraints
; ++i
)
606 Vector_Copy(P
->Constraint
[i
]+1, M
->p
[i
], nvar
);
607 left_hermite(M
, &H
, &Q
, &U
);
612 for (i
= 0; i
< P
->NbConstraints
; ++i
)
614 for (i
= 0, j
= 0; i
< H
->NbColumns
; ++i
) {
615 for ( ; j
< H
->NbRows
; ++j
)
616 if (value_notzero_p(H
->p
[j
][i
]))
618 assert (j
< H
->NbRows
);
621 for (i
= 0; i
< nvar
; ++i
) {
625 for (i
= 0; i
< H
->NbColumns
&& cnt
[0] < nvar
; ++i
) {
626 if (rowgroup
[pos
[i
]] == -1)
627 rowgroup
[pos
[i
]] = i
;
628 for (j
= pos
[i
]+1; j
< H
->NbRows
; ++j
) {
629 if (value_zero_p(H
->p
[j
][i
]))
631 if (rowgroup
[j
] != -1)
633 rowgroup
[j
] = group
[i
];
634 for (k
= i
+1; k
< H
->NbColumns
&& j
>= pos
[k
]; ++k
) {
639 if (group
[k
] != group
[i
] && value_notzero_p(H
->p
[j
][k
])) {
640 assert(cnt
[group
[k
]] != 0);
641 assert(cnt
[group
[i
]] != 0);
642 if (group
[i
] < group
[k
]) {
643 cnt
[group
[i
]] += cnt
[group
[k
]];
647 cnt
[group
[k
]] += cnt
[group
[i
]];
656 if (cnt
[0] != nvar
) {
657 /* Extract out pure context constraints separately */
658 Polyhedron
**next
= &F
;
659 for (i
= nparam
? -1 : 0; i
< nvar
; ++i
) {
663 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
664 if (rowgroup
[j
] == -1) {
665 if (First_Non_Zero(P
->Constraint
[j
]+1+nvar
,
678 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
679 if (rowgroup
[j
] >= 0 && group
[rowgroup
[j
]] == i
) {
685 M
= Matrix_Alloc(k
, d
+nparam
+2);
686 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
) {
688 if (rowgroup
[j
] != i
)
690 value_assign(M
->p
[k
][0], P
->Constraint
[j
][0]);
691 for (l
= 0, m
= 0; m
< d
; ++l
) {
694 value_assign(M
->p
[k
][1+m
++], H
->p
[j
][l
]);
696 Vector_Copy(P
->Constraint
[j
]+1+nvar
, M
->p
[k
]+1+m
, nparam
+1);
699 *next
= Constraints2Polyhedron(M
, NbMaxRays
);
700 next
= &(*next
)->next
;
713 * Project on final dim dimensions
715 Polyhedron
* Polyhedron_Project(Polyhedron
*P
, int dim
)
718 int remove
= P
->Dimension
- dim
;
722 if (P
->Dimension
== dim
)
723 return Polyhedron_Copy(P
);
725 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
726 for (i
= 0; i
< dim
+1; ++i
)
727 value_set_si(T
->p
[i
][i
+remove
], 1);
728 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
733 /* Constructs a new constraint that ensures that
734 * the first constraint is (strictly) smaller than
737 static void smaller_constraint(Value
*a
, Value
*b
, Value
*c
, int pos
, int shift
,
738 int len
, int strict
, Value
*tmp
)
740 value_oppose(*tmp
, b
[pos
+1]);
741 value_set_si(c
[0], 1);
742 Vector_Combine(a
+1+shift
, b
+1+shift
, c
+1, *tmp
, a
[pos
+1], len
-shift
-1);
744 value_decrement(c
[len
-shift
-1], c
[len
-shift
-1]);
745 ConstraintSimplify(c
, c
, len
-shift
, tmp
);
748 struct section
{ Polyhedron
* D
; evalue E
; };
750 evalue
* ParamLine_Length_mod(Polyhedron
*P
, Polyhedron
*C
, int MaxRays
)
752 unsigned dim
= P
->Dimension
;
753 unsigned nvar
= dim
- C
->Dimension
;
768 NALLOC(pos
, P
->NbConstraints
);
771 evalue_set_si(&mone
, -1, 1);
773 for (i
= 0, z
= 0; i
< P
->NbConstraints
; ++i
)
774 if (value_zero_p(P
->Constraint
[i
][1]))
776 /* put those with positive coefficients first; number: p */
777 for (i
= 0, p
= 0, n
= P
->NbConstraints
-z
-1; i
< P
->NbConstraints
; ++i
)
778 if (value_pos_p(P
->Constraint
[i
][1]))
780 else if (value_neg_p(P
->Constraint
[i
][1]))
782 n
= P
->NbConstraints
-z
-p
;
783 assert (p
>= 1 && n
>= 1);
784 s
= (struct section
*) malloc(p
* n
* sizeof(struct section
));
785 M
= Matrix_Alloc((p
-1) + (n
-1), dim
-nvar
+2);
786 for (k
= 0; k
< p
; ++k
) {
787 for (k2
= 0; k2
< p
; ++k2
) {
792 P
->Constraint
[pos
[k
]],
793 P
->Constraint
[pos
[k2
]],
794 M
->p
[q
], 0, nvar
, dim
+2, k2
> k
, &g
);
796 for (l
= p
; l
< p
+n
; ++l
) {
797 for (l2
= p
; l2
< p
+n
; ++l2
) {
802 P
->Constraint
[pos
[l2
]],
803 P
->Constraint
[pos
[l
]],
804 M
->p
[q
], 0, nvar
, dim
+2, l2
> l
, &g
);
807 T
= Constraints2Polyhedron(M2
, P
->NbRays
);
809 s
[nd
].D
= DomainIntersection(T
, C
, MaxRays
);
811 POL_ENSURE_VERTICES(s
[nd
].D
);
812 if (emptyQ(s
[nd
].D
)) {
813 Polyhedron_Free(s
[nd
].D
);
816 L
= bv_ceil3(P
->Constraint
[pos
[k
]]+1+nvar
,
818 P
->Constraint
[pos
[k
]][0+1], s
[nd
].D
);
819 U
= bv_ceil3(P
->Constraint
[pos
[l
]]+1+nvar
,
821 P
->Constraint
[pos
[l
]][0+1], s
[nd
].D
);
837 value_set_si(F
->d
, 0);
838 F
->x
.p
= new_enode(partition
, 2*nd
, dim
-nvar
);
839 for (k
= 0; k
< nd
; ++k
) {
840 EVALUE_SET_DOMAIN(F
->x
.p
->arr
[2*k
], s
[k
].D
);
841 value_clear(F
->x
.p
->arr
[2*k
+1].d
);
842 F
->x
.p
->arr
[2*k
+1] = s
[k
].E
;
846 free_evalue_refs(&mone
);
854 evalue
* ParamLine_Length(Polyhedron
*P
, Polyhedron
*C
, unsigned MaxRays
)
856 return ParamLine_Length_mod(P
, C
, MaxRays
);
859 evalue
* ParamLine_Length(Polyhedron
*P
, Polyhedron
*C
, unsigned MaxRays
)
862 tmp
= ParamLine_Length_mod(P
, C
, MaxRays
);
863 evalue_mod2table(tmp
, C
->Dimension
);
869 Bool
isIdentity(Matrix
*M
)
872 if (M
->NbRows
!= M
->NbColumns
)
875 for (i
= 0;i
< M
->NbRows
; i
++)
876 for (j
= 0; j
< M
->NbColumns
; j
++)
878 if(value_notone_p(M
->p
[i
][j
]))
881 if(value_notzero_p(M
->p
[i
][j
]))
887 void Param_Polyhedron_Print(FILE* DST
, Param_Polyhedron
*PP
, char **param_names
)
892 for(P
=PP
->D
;P
;P
=P
->next
) {
894 /* prints current val. dom. */
895 printf( "---------------------------------------\n" );
896 printf( "Domain :\n");
897 Print_Domain( stdout
, P
->Domain
, param_names
);
899 /* scan the vertices */
900 printf( "Vertices :\n");
901 FORALL_PVertex_in_ParamPolyhedron(V
,P
,PP
) {
903 /* prints each vertex */
904 Print_Vertex( stdout
, V
->Vertex
, param_names
);
907 END_FORALL_PVertex_in_ParamPolyhedron
;
911 void Enumeration_Print(FILE *Dst
, Enumeration
*en
, char **params
)
913 for (; en
; en
= en
->next
) {
914 Print_Domain(Dst
, en
->ValidityDomain
, params
);
915 print_evalue(Dst
, &en
->EP
, params
);
919 void Enumeration_Free(Enumeration
*en
)
925 free_evalue_refs( &(en
->EP
) );
926 Domain_Free( en
->ValidityDomain
);
933 void Enumeration_mod2table(Enumeration
*en
, unsigned nparam
)
935 for (; en
; en
= en
->next
) {
936 evalue_mod2table(&en
->EP
, nparam
);
937 reduce_evalue(&en
->EP
);
941 size_t Enumeration_size(Enumeration
*en
)
945 for (; en
; en
= en
->next
) {
946 s
+= domain_size(en
->ValidityDomain
);
947 s
+= evalue_size(&en
->EP
);
952 void Free_ParamNames(char **params
, int m
)
959 int DomainIncludes(Polyhedron
*Pol1
, Polyhedron
*Pol2
)
962 for ( ; Pol1
; Pol1
= Pol1
->next
) {
963 for (P2
= Pol2
; P2
; P2
= P2
->next
)
964 if (!PolyhedronIncludes(Pol1
, P2
))
972 int line_minmax(Polyhedron
*I
, Value
*min
, Value
*max
)
977 value_oppose(I
->Constraint
[0][2], I
->Constraint
[0][2]);
978 /* There should never be a remainder here */
979 if (value_pos_p(I
->Constraint
[0][1]))
980 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
982 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
983 value_assign(*max
, *min
);
984 } else for (i
= 0; i
< I
->NbConstraints
; ++i
) {
985 if (value_zero_p(I
->Constraint
[i
][1])) {
990 value_oppose(I
->Constraint
[i
][2], I
->Constraint
[i
][2]);
991 if (value_pos_p(I
->Constraint
[i
][1]))
992 mpz_cdiv_q(*min
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
994 mpz_fdiv_q(*max
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1002 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1005 @param pos index position of current loop index (1..hdim-1)
1006 @param P loop domain
1007 @param context context values for fixed indices
1008 @param exist number of existential variables
1009 @return the number of integer points in this
1013 void count_points_e (int pos
, Polyhedron
*P
, int exist
, int nparam
,
1014 Value
*context
, Value
*res
)
1019 value_set_si(*res
, 0);
1023 value_init(LB
); value_init(UB
); value_init(k
);
1027 if (lower_upper_bounds(pos
,P
,context
,&LB
,&UB
) !=0) {
1028 /* Problem if UB or LB is INFINITY */
1029 value_clear(LB
); value_clear(UB
); value_clear(k
);
1030 if (pos
> P
->Dimension
- nparam
- exist
)
1031 value_set_si(*res
, 1);
1033 value_set_si(*res
, -1);
1040 for (value_assign(k
,LB
); value_le(k
,UB
); value_increment(k
,k
)) {
1041 fprintf(stderr
, "(");
1042 for (i
=1; i
<pos
; i
++) {
1043 value_print(stderr
,P_VALUE_FMT
,context
[i
]);
1044 fprintf(stderr
,",");
1046 value_print(stderr
,P_VALUE_FMT
,k
);
1047 fprintf(stderr
,")\n");
1052 value_set_si(context
[pos
],0);
1053 if (value_lt(UB
,LB
)) {
1054 value_clear(LB
); value_clear(UB
); value_clear(k
);
1055 value_set_si(*res
, 0);
1060 value_set_si(*res
, 1);
1062 value_subtract(k
,UB
,LB
);
1063 value_add_int(k
,k
,1);
1064 value_assign(*res
, k
);
1066 value_clear(LB
); value_clear(UB
); value_clear(k
);
1070 /*-----------------------------------------------------------------*/
1071 /* Optimization idea */
1072 /* If inner loops are not a function of k (the current index) */
1073 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1075 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1076 /* (skip the for loop) */
1077 /*-----------------------------------------------------------------*/
1080 value_set_si(*res
, 0);
1081 for (value_assign(k
,LB
);value_le(k
,UB
);value_increment(k
,k
)) {
1082 /* Insert k in context */
1083 value_assign(context
[pos
],k
);
1084 count_points_e(pos
+1, P
->next
, exist
, nparam
, context
, &c
);
1085 if(value_notmone_p(c
))
1086 value_addto(*res
, *res
, c
);
1088 value_set_si(*res
, -1);
1091 if (pos
> P
->Dimension
- nparam
- exist
&&
1098 fprintf(stderr
,"%d\n",CNT
);
1102 value_set_si(context
[pos
],0);
1103 value_clear(LB
); value_clear(UB
); value_clear(k
);
1105 } /* count_points_e */
1107 int DomainContains(Polyhedron
*P
, Value
*list_args
, int len
,
1108 unsigned MaxRays
, int set
)
1113 if (P
->Dimension
== len
)
1114 return in_domain(P
, list_args
);
1116 assert(set
); // assume list_args is large enough
1117 assert((P
->Dimension
- len
) % 2 == 0);
1119 for (i
= 0; i
< P
->Dimension
- len
; i
+= 2) {
1121 for (j
= 0 ; j
< P
->NbEq
; ++j
)
1122 if (value_notzero_p(P
->Constraint
[j
][1+len
+i
]))
1124 assert(j
< P
->NbEq
);
1125 value_absolute(m
, P
->Constraint
[j
][1+len
+i
]);
1126 k
= First_Non_Zero(P
->Constraint
[j
]+1, len
);
1128 assert(First_Non_Zero(P
->Constraint
[j
]+1+k
+1, len
- k
- 1) == -1);
1129 mpz_fdiv_q(list_args
[len
+i
], list_args
[k
], m
);
1130 mpz_fdiv_r(list_args
[len
+i
+1], list_args
[k
], m
);
1134 return in_domain(P
, list_args
);
1137 Polyhedron
*DomainConcat(Polyhedron
*head
, Polyhedron
*tail
)
1142 for (S
= head
; S
->next
; S
= S
->next
)
1148 #ifdef HAVE_LEXSMALLER
1149 #include <polylib/ranking.h>
1151 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1152 Polyhedron
*C
, unsigned MaxRays
)
1155 Polyhedron
*RC
, *RD
, *Q
;
1156 unsigned nparam
= dim
+ C
->Dimension
;
1160 RC
= LexSmaller(P
, D
, dim
, C
, MaxRays
);
1164 exist
= RD
->Dimension
- nparam
- dim
;
1165 CA
= align_context(RC
, RD
->Dimension
, MaxRays
);
1166 Q
= DomainIntersection(RD
, CA
, MaxRays
);
1167 Polyhedron_Free(CA
);
1169 Polyhedron_Free(RC
);
1172 for (Q
= RD
; Q
; Q
= Q
->next
) {
1174 Polyhedron
*next
= Q
->next
;
1177 t
= barvinok_enumerate_e(Q
, exist
, nparam
, MaxRays
);
1183 free_evalue_refs(t
);
1195 Enumeration
*barvinok_lexsmaller(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1196 Polyhedron
*C
, unsigned MaxRays
)
1198 evalue
*EP
= barvinok_lexsmaller_ev(P
, D
, dim
, C
, MaxRays
);
1200 return partition2enumeration(EP
);
1204 const char *barvinok_version(void)
1207 "barvinok " VERSION
" (" GIT_HEAD_ID
")\n"
1213 #ifdef USE_INCREMENTAL_BF
1215 #elif defined USE_INCREMENTAL_DF
1221 #ifdef HAVE_CORRECT_VERTICES
1222 " +CORRECT_VERTICES"
1224 " -CORRECT_VERTICES"