adapt determination of git HEAD to recent git versions
[barvinok.git] / util.c
blob7d615f91a126f690a4877a785bdfea9a433b76eb
1 #include <polylib/polylibgmp.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 #include "config.h"
5 #include "version.h"
7 #ifndef HAVE_ENUMERATE4
8 #define Polyhedron_Enumerate(a,b,c,d) Polyhedron_Enumerate(a,b,c)
9 #endif
11 #ifdef __GNUC__
12 #define ALLOC(p) p = (typeof(p))malloc(sizeof(*p))
13 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
14 #else
15 #define ALLOC(p) p = (void *)malloc(sizeof(*p))
16 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
17 #endif
19 #ifndef HAVE_ENUMERATION_FREE
20 #define Enumeration_Free(en) /* just leak some memory */
21 #endif
23 void manual_count(Polyhedron *P, Value* result)
25 Polyhedron *U = Universe_Polyhedron(0);
26 Enumeration *en = Polyhedron_Enumerate(P,U,1024,NULL);
27 Value *v = compute_poly(en,NULL);
28 value_assign(*result, *v);
29 value_clear(*v);
30 free(v);
31 Enumeration_Free(en);
32 Polyhedron_Free(U);
35 #ifndef HAVE_ENUMERATION_FREE
36 #undef Enumeration_Free
37 #endif
39 #include <barvinok/evalue.h>
40 #include <barvinok/util.h>
41 #include <barvinok/barvinok.h>
43 /* Return random value between 0 and max-1 inclusive
45 int random_int(int max) {
46 return (int) (((double)(max))*rand()/(RAND_MAX+1.0));
49 /* Inplace polarization
51 void Polyhedron_Polarize(Polyhedron *P)
53 unsigned NbRows = P->NbConstraints + P->NbRays;
54 int i;
55 Value **q;
57 q = (Value **)malloc(NbRows * sizeof(Value *));
58 assert(q);
59 for (i = 0; i < P->NbRays; ++i)
60 q[i] = P->Ray[i];
61 for (; i < NbRows; ++i)
62 q[i] = P->Constraint[i-P->NbRays];
63 P->NbConstraints = NbRows - P->NbConstraints;
64 P->NbRays = NbRows - P->NbRays;
65 free(P->Constraint);
66 P->Constraint = q;
67 P->Ray = q + P->NbConstraints;
71 * Rather general polar
72 * We can optimize it significantly if we assume that
73 * P includes zero
75 * Also, we calculate the polar as defined in Schrijver
76 * The opposite should probably work as well and would
77 * eliminate the need for multiplying by -1
79 Polyhedron* Polyhedron_Polar(Polyhedron *P, unsigned NbMaxRays)
81 int i;
82 Value mone;
83 unsigned dim = P->Dimension + 2;
84 Matrix *M = Matrix_Alloc(P->NbRays, dim);
86 assert(M);
87 value_init(mone);
88 value_set_si(mone, -1);
89 for (i = 0; i < P->NbRays; ++i) {
90 Vector_Scale(P->Ray[i], M->p[i], mone, dim);
91 value_multiply(M->p[i][0], M->p[i][0], mone);
92 value_multiply(M->p[i][dim-1], M->p[i][dim-1], mone);
94 P = Constraints2Polyhedron(M, NbMaxRays);
95 assert(P);
96 Matrix_Free(M);
97 value_clear(mone);
98 return P;
102 * Returns the supporting cone of P at the vertex with index v
104 Polyhedron* supporting_cone(Polyhedron *P, int v)
106 Matrix *M;
107 Value tmp;
108 int i, n, j;
109 unsigned char *supporting = (unsigned char *)malloc(P->NbConstraints);
110 unsigned dim = P->Dimension + 2;
112 assert(v >=0 && v < P->NbRays);
113 assert(value_pos_p(P->Ray[v][dim-1]));
114 assert(supporting);
116 value_init(tmp);
117 for (i = 0, n = 0; i < P->NbConstraints; ++i) {
118 Inner_Product(P->Constraint[i] + 1, P->Ray[v] + 1, dim - 1, &tmp);
119 if ((supporting[i] = value_zero_p(tmp)))
120 ++n;
122 assert(n >= dim - 2);
123 value_clear(tmp);
124 M = Matrix_Alloc(n, dim);
125 assert(M);
126 for (i = 0, j = 0; i < P->NbConstraints; ++i)
127 if (supporting[i]) {
128 value_set_si(M->p[j][dim-1], 0);
129 Vector_Copy(P->Constraint[i], M->p[j++], dim-1);
131 free(supporting);
132 P = Constraints2Polyhedron(M, P->NbRays+1);
133 assert(P);
134 Matrix_Free(M);
135 return P;
138 void value_lcm(Value i, Value j, Value* lcm)
140 Value aux;
141 value_init(aux);
142 value_multiply(aux,i,j);
143 Gcd(i,j,lcm);
144 value_division(*lcm,aux,*lcm);
145 value_clear(aux);
148 Polyhedron* supporting_cone_p(Polyhedron *P, Param_Vertices *v)
150 Matrix *M;
151 Value lcm, tmp, tmp2;
152 unsigned char *supporting = (unsigned char *)malloc(P->NbConstraints);
153 unsigned dim = P->Dimension + 2;
154 unsigned nparam = v->Vertex->NbColumns - 2;
155 unsigned nvar = dim - nparam - 2;
156 int i, n, j;
157 Vector *row;
159 assert(supporting);
160 row = Vector_Alloc(nparam+1);
161 assert(row);
162 value_init(lcm);
163 value_init(tmp);
164 value_init(tmp2);
165 value_set_si(lcm, 1);
166 for (i = 0, n = 0; i < P->NbConstraints; ++i) {
167 Vector_Set(row->p, 0, nparam+1);
168 for (j = 0 ; j < nvar; ++j) {
169 value_set_si(tmp, 1);
170 value_assign(tmp2, P->Constraint[i][j+1]);
171 if (value_ne(lcm, v->Vertex->p[j][nparam+1])) {
172 value_assign(tmp, lcm);
173 value_lcm(lcm, v->Vertex->p[j][nparam+1], &lcm);
174 value_division(tmp, lcm, tmp);
175 value_multiply(tmp2, tmp2, lcm);
176 value_division(tmp2, tmp2, v->Vertex->p[j][nparam+1]);
178 Vector_Combine(row->p, v->Vertex->p[j], row->p,
179 tmp, tmp2, nparam+1);
181 value_set_si(tmp, 1);
182 Vector_Combine(row->p, P->Constraint[i]+1+nvar, row->p, tmp, lcm, nparam+1);
183 for (j = 0; j < nparam+1; ++j)
184 if (value_notzero_p(row->p[j]))
185 break;
186 if ((supporting[i] = (j == nparam + 1)))
187 ++n;
189 assert(n >= nvar);
190 value_clear(tmp);
191 value_clear(tmp2);
192 value_clear(lcm);
193 Vector_Free(row);
194 M = Matrix_Alloc(n, nvar+2);
195 assert(M);
196 for (i = 0, j = 0; i < P->NbConstraints; ++i)
197 if (supporting[i]) {
198 value_set_si(M->p[j][nvar+1], 0);
199 Vector_Copy(P->Constraint[i], M->p[j++], nvar+1);
201 free(supporting);
202 P = Constraints2Polyhedron(M, P->NbRays+1);
203 assert(P);
204 Matrix_Free(M);
205 return P;
208 Polyhedron* triangulate_cone(Polyhedron *P, unsigned NbMaxCons)
210 const static int MAX_TRY=10;
211 int i, j, r, n, t;
212 Value tmp;
213 unsigned dim = P->Dimension;
214 Matrix *M = Matrix_Alloc(P->NbRays+1, dim+3);
215 Matrix *M2, *M3;
216 Polyhedron *L, *R, *T;
217 assert(P->NbEq == 0);
219 R = NULL;
220 value_init(tmp);
222 Vector_Set(M->p[0]+1, 0, dim+1);
223 value_set_si(M->p[0][0], 1);
224 value_set_si(M->p[0][dim+2], 1);
225 Vector_Set(M->p[P->NbRays]+1, 0, dim+2);
226 value_set_si(M->p[P->NbRays][0], 1);
227 value_set_si(M->p[P->NbRays][dim+1], 1);
229 /* Delaunay triangulation */
230 for (i = 0, r = 1; i < P->NbRays; ++i) {
231 if (value_notzero_p(P->Ray[i][dim+1]))
232 continue;
233 Vector_Copy(P->Ray[i], M->p[r], dim+1);
234 Inner_Product(M->p[r]+1, M->p[r]+1, dim, &tmp);
235 value_assign(M->p[r][dim+1], tmp);
236 value_set_si(M->p[r][dim+2], 0);
237 ++r;
240 M3 = Matrix_Copy(M);
241 L = Rays2Polyhedron(M3, NbMaxCons);
242 Matrix_Free(M3);
244 M2 = Matrix_Alloc(dim+1, dim+2);
246 t = 1;
247 if (0) {
248 try_again:
249 /* Usually R should still be 0 */
250 Domain_Free(R);
251 Polyhedron_Free(L);
252 for (r = 1; r < P->NbRays; ++r) {
253 value_set_si(M->p[r][dim+1], random_int((t+1)*dim)+1);
255 M3 = Matrix_Copy(M);
256 L = Rays2Polyhedron(M3, NbMaxCons);
257 Matrix_Free(M3);
258 ++t;
260 assert(t <= MAX_TRY);
262 R = NULL;
263 n = 0;
265 for (i = 0; i < L->NbConstraints; ++i) {
266 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
267 if (value_negz_p(L->Constraint[i][dim+1]))
268 continue;
269 if (value_notzero_p(L->Constraint[i][dim+2]))
270 continue;
271 for (j = 1, r = 1; j < M->NbRows; ++j) {
272 Inner_Product(M->p[j]+1, L->Constraint[i]+1, dim+1, &tmp);
273 if (value_notzero_p(tmp))
274 continue;
275 if (r > dim)
276 goto try_again;
277 Vector_Copy(M->p[j]+1, M2->p[r]+1, dim);
278 value_set_si(M2->p[r][0], 1);
279 value_set_si(M2->p[r][dim+1], 0);
280 ++r;
282 assert(r == dim+1);
283 Vector_Set(M2->p[0]+1, 0, dim);
284 value_set_si(M2->p[0][0], 1);
285 value_set_si(M2->p[0][dim+1], 1);
286 T = Rays2Polyhedron(M2, P->NbConstraints+1);
287 T->next = R;
288 R = T;
289 ++n;
291 Matrix_Free(M2);
293 Polyhedron_Free(L);
294 value_clear(tmp);
295 Matrix_Free(M);
297 return R;
300 void check_triangulization(Polyhedron *P, Polyhedron *T)
302 Polyhedron *C, *D, *E, *F, *G, *U;
303 for (C = T; C; C = C->next) {
304 if (C == T)
305 U = C;
306 else
307 U = DomainConvex(DomainUnion(U, C, 100), 100);
308 for (D = C->next; D; D = D->next) {
309 F = C->next;
310 G = D->next;
311 C->next = NULL;
312 D->next = NULL;
313 E = DomainIntersection(C, D, 600);
314 assert(E->NbRays == 0 || E->NbEq >= 1);
315 Polyhedron_Free(E);
316 C->next = F;
317 D->next = G;
320 assert(PolyhedronIncludes(U, P));
321 assert(PolyhedronIncludes(P, U));
324 static void Euclid(Value a, Value b, Value *x, Value *y, Value *g)
326 Value c, d, e, f, tmp;
328 value_init(c);
329 value_init(d);
330 value_init(e);
331 value_init(f);
332 value_init(tmp);
333 value_absolute(c, a);
334 value_absolute(d, b);
335 value_set_si(e, 1);
336 value_set_si(f, 0);
337 while(value_pos_p(d)) {
338 value_division(tmp, c, d);
339 value_multiply(tmp, tmp, f);
340 value_subtract(e, e, tmp);
341 value_division(tmp, c, d);
342 value_multiply(tmp, tmp, d);
343 value_subtract(c, c, tmp);
344 value_swap(c, d);
345 value_swap(e, f);
347 value_assign(*g, c);
348 if (value_zero_p(a))
349 value_set_si(*x, 0);
350 else if (value_pos_p(a))
351 value_assign(*x, e);
352 else value_oppose(*x, e);
353 if (value_zero_p(b))
354 value_set_si(*y, 0);
355 else {
356 value_multiply(tmp, a, *x);
357 value_subtract(tmp, c, tmp);
358 value_division(*y, tmp, b);
360 value_clear(c);
361 value_clear(d);
362 value_clear(e);
363 value_clear(f);
364 value_clear(tmp);
367 Matrix * unimodular_complete(Vector *row)
369 Value g, b, c, old, tmp;
370 Matrix *m;
371 unsigned i, j;
373 value_init(b);
374 value_init(c);
375 value_init(g);
376 value_init(old);
377 value_init(tmp);
378 m = Matrix_Alloc(row->Size, row->Size);
379 for (j = 0; j < row->Size; ++j) {
380 value_assign(m->p[0][j], row->p[j]);
382 value_assign(g, row->p[0]);
383 for (i = 1; value_zero_p(g) && i < row->Size; ++i) {
384 for (j = 0; j < row->Size; ++j) {
385 if (j == i-1)
386 value_set_si(m->p[i][j], 1);
387 else
388 value_set_si(m->p[i][j], 0);
390 value_assign(g, row->p[i]);
392 for (; i < row->Size; ++i) {
393 value_assign(old, g);
394 Euclid(old, row->p[i], &c, &b, &g);
395 value_oppose(b, b);
396 for (j = 0; j < row->Size; ++j) {
397 if (j < i) {
398 value_multiply(tmp, row->p[j], b);
399 value_division(m->p[i][j], tmp, old);
400 } else if (j == i)
401 value_assign(m->p[i][j], c);
402 else
403 value_set_si(m->p[i][j], 0);
406 value_clear(b);
407 value_clear(c);
408 value_clear(g);
409 value_clear(old);
410 value_clear(tmp);
411 return m;
415 * Returns a full-dimensional polyhedron with the same number
416 * of integer points as P
418 Polyhedron *remove_equalities(Polyhedron *P)
420 Value g;
421 Vector *v;
422 Polyhedron *p = Polyhedron_Copy(P), *q;
423 unsigned dim = p->Dimension;
424 Matrix *m1, *m2;
425 int i;
427 value_init(g);
428 while (p->NbEq > 0) {
429 assert(dim > 0);
430 Vector_Gcd(p->Constraint[0]+1, dim+1, &g);
431 Vector_AntiScale(p->Constraint[0]+1, p->Constraint[0]+1, g, dim+1);
432 Vector_Gcd(p->Constraint[0]+1, dim, &g);
433 if (value_notone_p(g) && value_notmone_p(g)) {
434 Polyhedron_Free(p);
435 p = Empty_Polyhedron(0);
436 break;
438 v = Vector_Alloc(dim);
439 Vector_Copy(p->Constraint[0]+1, v->p, dim);
440 m1 = unimodular_complete(v);
441 m2 = Matrix_Alloc(dim, dim+1);
442 for (i = 0; i < dim-1 ; ++i) {
443 Vector_Copy(m1->p[i+1], m2->p[i], dim);
444 value_set_si(m2->p[i][dim], 0);
446 Vector_Set(m2->p[dim-1], 0, dim);
447 value_set_si(m2->p[dim-1][dim], 1);
448 q = Polyhedron_Image(p, m2, p->NbConstraints+1+p->NbRays);
449 Vector_Free(v);
450 Matrix_Free(m1);
451 Matrix_Free(m2);
452 Polyhedron_Free(p);
453 p = q;
454 --dim;
456 value_clear(g);
457 return p;
461 * Returns a full-dimensional polyhedron with the same number
462 * of integer points as P
463 * nvar specifies the number of variables
464 * The remaining dimensions are assumed to be parameters
465 * Destroys P
466 * factor is NbEq x (nparam+2) matrix, containing stride constraints
467 * on the parameters; column nparam is the constant;
468 * column nparam+1 is the stride
470 * if factor is NULL, only remove equalities that don't affect
471 * the number of points
473 Polyhedron *remove_equalities_p(Polyhedron *P, unsigned nvar, Matrix **factor)
475 Value g;
476 Vector *v;
477 Polyhedron *p = P, *q;
478 unsigned dim = p->Dimension;
479 Matrix *m1, *m2, *f;
480 int i, j, skip;
482 value_init(g);
483 if (factor) {
484 f = Matrix_Alloc(p->NbEq, dim-nvar+2);
485 *factor = f;
487 j = 0;
488 skip = 0;
489 while (nvar > 0 && p->NbEq - skip > 0) {
490 assert(dim > 0);
492 while (value_zero_p(p->Constraint[skip][0]) &&
493 First_Non_Zero(p->Constraint[skip]+1, nvar) == -1)
494 ++skip;
495 if (p->NbEq == skip)
496 break;
498 Vector_Gcd(p->Constraint[skip]+1, dim+1, &g);
499 Vector_AntiScale(p->Constraint[skip]+1, p->Constraint[skip]+1, g, dim+1);
500 Vector_Gcd(p->Constraint[skip]+1, nvar, &g);
501 if (!factor && value_notone_p(g) && value_notmone_p(g)) {
502 ++skip;
503 continue;
505 if (factor) {
506 Vector_Copy(p->Constraint[skip]+1+nvar, f->p[j], dim-nvar+1);
507 value_assign(f->p[j][dim-nvar+1], g);
509 v = Vector_Alloc(dim);
510 Vector_AntiScale(p->Constraint[skip]+1, v->p, g, nvar);
511 Vector_Set(v->p+nvar, 0, dim-nvar);
512 m1 = unimodular_complete(v);
513 m2 = Matrix_Alloc(dim, dim+1);
514 for (i = 0; i < dim-1 ; ++i) {
515 Vector_Copy(m1->p[i+1], m2->p[i], dim);
516 value_set_si(m2->p[i][dim], 0);
518 Vector_Set(m2->p[dim-1], 0, dim);
519 value_set_si(m2->p[dim-1][dim], 1);
520 q = Polyhedron_Image(p, m2, p->NbConstraints+1+p->NbRays);
521 Vector_Free(v);
522 Matrix_Free(m1);
523 Matrix_Free(m2);
524 Polyhedron_Free(p);
525 p = q;
526 --dim;
527 --nvar;
528 ++j;
530 value_clear(g);
531 return p;
534 void Line_Length(Polyhedron *P, Value *len)
536 Value tmp, pos, neg;
537 int p = 0, n = 0;
538 int i;
540 assert(P->Dimension == 1);
542 value_init(tmp);
543 value_init(pos);
544 value_init(neg);
546 for (i = 0; i < P->NbConstraints; ++i) {
547 value_oppose(tmp, P->Constraint[i][2]);
548 if (value_pos_p(P->Constraint[i][1])) {
549 mpz_cdiv_q(tmp, tmp, P->Constraint[i][1]);
550 if (!p || value_gt(tmp, pos))
551 value_assign(pos, tmp);
552 p = 1;
553 } else {
554 mpz_fdiv_q(tmp, tmp, P->Constraint[i][1]);
555 if (!n || value_lt(tmp, neg))
556 value_assign(neg, tmp);
557 n = 1;
559 if (n && p) {
560 value_subtract(tmp, neg, pos);
561 value_increment(*len, tmp);
562 } else
563 value_set_si(*len, -1);
566 value_clear(tmp);
567 value_clear(pos);
568 value_clear(neg);
572 * Factors the polyhedron P into polyhedra Q_i such that
573 * the number of integer points in P is equal to the product
574 * of the number of integer points in the individual Q_i
576 * If no factors can be found, NULL is returned.
577 * Otherwise, a linked list of the factors is returned.
579 * The algorithm works by first computing the Hermite normal form
580 * and then grouping columns linked by one or more constraints together,
581 * where a constraints "links" two or more columns if the constraint
582 * has nonzero coefficients in the columns.
584 Polyhedron* Polyhedron_Factor(Polyhedron *P, unsigned nparam,
585 unsigned NbMaxRays)
587 int i, j, k;
588 Matrix *M, *H, *Q, *U;
589 int *pos; /* for each column: row position of pivot */
590 int *group; /* group to which a column belongs */
591 int *cnt; /* number of columns in the group */
592 int *rowgroup; /* group to which a constraint belongs */
593 int nvar = P->Dimension - nparam;
594 Polyhedron *F = NULL;
596 if (nvar <= 1)
597 return NULL;
599 NALLOC(pos, nvar);
600 NALLOC(group, nvar);
601 NALLOC(cnt, nvar);
602 NALLOC(rowgroup, P->NbConstraints);
604 M = Matrix_Alloc(P->NbConstraints, nvar);
605 for (i = 0; i < P->NbConstraints; ++i)
606 Vector_Copy(P->Constraint[i]+1, M->p[i], nvar);
607 left_hermite(M, &H, &Q, &U);
608 Matrix_Free(M);
609 Matrix_Free(Q);
610 Matrix_Free(U);
612 for (i = 0; i < P->NbConstraints; ++i)
613 rowgroup[i] = -1;
614 for (i = 0, j = 0; i < H->NbColumns; ++i) {
615 for ( ; j < H->NbRows; ++j)
616 if (value_notzero_p(H->p[j][i]))
617 break;
618 assert (j < H->NbRows);
619 pos[i] = j;
621 for (i = 0; i < nvar; ++i) {
622 group[i] = i;
623 cnt[i] = 1;
625 for (i = 0; i < H->NbColumns && cnt[0] < nvar; ++i) {
626 if (rowgroup[pos[i]] == -1)
627 rowgroup[pos[i]] = i;
628 for (j = pos[i]+1; j < H->NbRows; ++j) {
629 if (value_zero_p(H->p[j][i]))
630 continue;
631 if (rowgroup[j] != -1)
632 continue;
633 rowgroup[j] = group[i];
634 for (k = i+1; k < H->NbColumns && j >= pos[k]; ++k) {
635 int g = group[k];
636 while (cnt[g] == 0)
637 g = group[g];
638 group[k] = g;
639 if (group[k] != group[i] && value_notzero_p(H->p[j][k])) {
640 assert(cnt[group[k]] != 0);
641 assert(cnt[group[i]] != 0);
642 if (group[i] < group[k]) {
643 cnt[group[i]] += cnt[group[k]];
644 cnt[group[k]] = 0;
645 group[k] = group[i];
646 } else {
647 cnt[group[k]] += cnt[group[i]];
648 cnt[group[i]] = 0;
649 group[i] = group[k];
656 if (cnt[0] != nvar) {
657 /* Extract out pure context constraints separately */
658 Polyhedron **next = &F;
659 for (i = nparam ? -1 : 0; i < nvar; ++i) {
660 int d;
662 if (i == -1) {
663 for (j = 0, k = 0; j < P->NbConstraints; ++j)
664 if (rowgroup[j] == -1) {
665 if (First_Non_Zero(P->Constraint[j]+1+nvar,
666 nparam) == -1)
667 rowgroup[j] = -2;
668 else
669 ++k;
671 if (k == 0)
672 continue;
673 d = 0;
674 } else {
675 if (cnt[i] == 0)
676 continue;
677 d = cnt[i];
678 for (j = 0, k = 0; j < P->NbConstraints; ++j)
679 if (rowgroup[j] >= 0 && group[rowgroup[j]] == i) {
680 rowgroup[j] = i;
681 ++k;
685 M = Matrix_Alloc(k, d+nparam+2);
686 for (j = 0, k = 0; j < P->NbConstraints; ++j) {
687 int l, m;
688 if (rowgroup[j] != i)
689 continue;
690 value_assign(M->p[k][0], P->Constraint[j][0]);
691 for (l = 0, m = 0; m < d; ++l) {
692 if (group[l] != i)
693 continue;
694 value_assign(M->p[k][1+m++], H->p[j][l]);
696 Vector_Copy(P->Constraint[j]+1+nvar, M->p[k]+1+m, nparam+1);
697 ++k;
699 *next = Constraints2Polyhedron(M, NbMaxRays);
700 next = &(*next)->next;
701 Matrix_Free(M);
704 Matrix_Free(H);
705 free(pos);
706 free(group);
707 free(cnt);
708 free(rowgroup);
709 return F;
713 * Project on final dim dimensions
715 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim)
717 int i;
718 int remove = P->Dimension - dim;
719 Matrix *T;
720 Polyhedron *I;
722 if (P->Dimension == dim)
723 return Polyhedron_Copy(P);
725 T = Matrix_Alloc(dim+1, P->Dimension+1);
726 for (i = 0; i < dim+1; ++i)
727 value_set_si(T->p[i][i+remove], 1);
728 I = Polyhedron_Image(P, T, P->NbConstraints);
729 Matrix_Free(T);
730 return I;
733 /* Constructs a new constraint that ensures that
734 * the first constraint is (strictly) smaller than
735 * the second.
737 static void smaller_constraint(Value *a, Value *b, Value *c, int pos, int shift,
738 int len, int strict, Value *tmp)
740 value_oppose(*tmp, b[pos+1]);
741 value_set_si(c[0], 1);
742 Vector_Combine(a+1+shift, b+1+shift, c+1, *tmp, a[pos+1], len-shift-1);
743 if (strict)
744 value_decrement(c[len-shift-1], c[len-shift-1]);
745 ConstraintSimplify(c, c, len-shift, tmp);
748 struct section { Polyhedron * D; evalue E; };
750 evalue * ParamLine_Length_mod(Polyhedron *P, Polyhedron *C, int MaxRays)
752 unsigned dim = P->Dimension;
753 unsigned nvar = dim - C->Dimension;
754 int *pos;
755 int i, j, p, n, z;
756 struct section *s;
757 Matrix *M, *M2;
758 int nd = 0;
759 int k, l, k2, l2, q;
760 evalue *L, *U;
761 evalue *F;
762 Value g;
763 Polyhedron *T;
764 evalue mone;
766 assert(nvar == 1);
768 NALLOC(pos, P->NbConstraints);
769 value_init(g);
770 value_init(mone.d);
771 evalue_set_si(&mone, -1, 1);
773 for (i = 0, z = 0; i < P->NbConstraints; ++i)
774 if (value_zero_p(P->Constraint[i][1]))
775 ++z;
776 /* put those with positive coefficients first; number: p */
777 for (i = 0, p = 0, n = P->NbConstraints-z-1; i < P->NbConstraints; ++i)
778 if (value_pos_p(P->Constraint[i][1]))
779 pos[p++] = i;
780 else if (value_neg_p(P->Constraint[i][1]))
781 pos[n--] = i;
782 n = P->NbConstraints-z-p;
783 assert (p >= 1 && n >= 1);
784 s = (struct section *) malloc(p * n * sizeof(struct section));
785 M = Matrix_Alloc((p-1) + (n-1), dim-nvar+2);
786 for (k = 0; k < p; ++k) {
787 for (k2 = 0; k2 < p; ++k2) {
788 if (k2 == k)
789 continue;
790 q = k2 - (k2 > k);
791 smaller_constraint(
792 P->Constraint[pos[k]],
793 P->Constraint[pos[k2]],
794 M->p[q], 0, nvar, dim+2, k2 > k, &g);
796 for (l = p; l < p+n; ++l) {
797 for (l2 = p; l2 < p+n; ++l2) {
798 if (l2 == l)
799 continue;
800 q = l2-1 - (l2 > l);
801 smaller_constraint(
802 P->Constraint[pos[l2]],
803 P->Constraint[pos[l]],
804 M->p[q], 0, nvar, dim+2, l2 > l, &g);
806 M2 = Matrix_Copy(M);
807 T = Constraints2Polyhedron(M2, P->NbRays);
808 Matrix_Free(M2);
809 s[nd].D = DomainIntersection(T, C, MaxRays);
810 Domain_Free(T);
811 POL_ENSURE_VERTICES(s[nd].D);
812 if (emptyQ(s[nd].D)) {
813 Polyhedron_Free(s[nd].D);
814 continue;
816 L = bv_ceil3(P->Constraint[pos[k]]+1+nvar,
817 dim-nvar+1,
818 P->Constraint[pos[k]][0+1], s[nd].D);
819 U = bv_ceil3(P->Constraint[pos[l]]+1+nvar,
820 dim-nvar+1,
821 P->Constraint[pos[l]][0+1], s[nd].D);
822 eadd(L, U);
823 eadd(&mone, U);
824 emul(&mone, U);
825 s[nd].E = *U;
826 free_evalue_refs(L);
827 free(L);
828 free(U);
829 ++nd;
833 Matrix_Free(M);
835 ALLOC(F);
836 value_init(F->d);
837 value_set_si(F->d, 0);
838 F->x.p = new_enode(partition, 2*nd, dim-nvar);
839 for (k = 0; k < nd; ++k) {
840 EVALUE_SET_DOMAIN(F->x.p->arr[2*k], s[k].D);
841 value_clear(F->x.p->arr[2*k+1].d);
842 F->x.p->arr[2*k+1] = s[k].E;
844 free(s);
846 free_evalue_refs(&mone);
847 value_clear(g);
848 free(pos);
850 return F;
853 #ifdef USE_MODULO
854 evalue* ParamLine_Length(Polyhedron *P, Polyhedron *C, unsigned MaxRays)
856 return ParamLine_Length_mod(P, C, MaxRays);
858 #else
859 evalue* ParamLine_Length(Polyhedron *P, Polyhedron *C, unsigned MaxRays)
861 evalue* tmp;
862 tmp = ParamLine_Length_mod(P, C, MaxRays);
863 evalue_mod2table(tmp, C->Dimension);
864 reduce_evalue(tmp);
865 return tmp;
867 #endif
869 Bool isIdentity(Matrix *M)
871 unsigned i, j;
872 if (M->NbRows != M->NbColumns)
873 return False;
875 for (i = 0;i < M->NbRows; i ++)
876 for (j = 0; j < M->NbColumns; j ++)
877 if (i == j) {
878 if(value_notone_p(M->p[i][j]))
879 return False;
880 } else {
881 if(value_notzero_p(M->p[i][j]))
882 return False;
884 return True;
887 void Param_Polyhedron_Print(FILE* DST, Param_Polyhedron *PP, char **param_names)
889 Param_Domain *P;
890 Param_Vertices *V;
892 for(P=PP->D;P;P=P->next) {
894 /* prints current val. dom. */
895 printf( "---------------------------------------\n" );
896 printf( "Domain :\n");
897 Print_Domain( stdout, P->Domain, param_names );
899 /* scan the vertices */
900 printf( "Vertices :\n");
901 FORALL_PVertex_in_ParamPolyhedron(V,P,PP) {
903 /* prints each vertex */
904 Print_Vertex( stdout, V->Vertex, param_names );
905 printf( "\n" );
907 END_FORALL_PVertex_in_ParamPolyhedron;
911 void Enumeration_Print(FILE *Dst, Enumeration *en, char **params)
913 for (; en; en = en->next) {
914 Print_Domain(Dst, en->ValidityDomain, params);
915 print_evalue(Dst, &en->EP, params);
919 void Enumeration_Free(Enumeration *en)
921 Enumeration *ee;
923 while( en )
925 free_evalue_refs( &(en->EP) );
926 Domain_Free( en->ValidityDomain );
927 ee = en ->next;
928 free( en );
929 en = ee;
933 void Enumeration_mod2table(Enumeration *en, unsigned nparam)
935 for (; en; en = en->next) {
936 evalue_mod2table(&en->EP, nparam);
937 reduce_evalue(&en->EP);
941 size_t Enumeration_size(Enumeration *en)
943 size_t s = 0;
945 for (; en; en = en->next) {
946 s += domain_size(en->ValidityDomain);
947 s += evalue_size(&en->EP);
949 return s;
952 void Free_ParamNames(char **params, int m)
954 while (--m >= 0)
955 free(params[m]);
956 free(params);
959 int DomainIncludes(Polyhedron *Pol1, Polyhedron *Pol2)
961 Polyhedron *P2;
962 for ( ; Pol1; Pol1 = Pol1->next) {
963 for (P2 = Pol2; P2; P2 = P2->next)
964 if (!PolyhedronIncludes(Pol1, P2))
965 break;
966 if (!P2)
967 return 1;
969 return 0;
972 int line_minmax(Polyhedron *I, Value *min, Value *max)
974 int i;
976 if (I->NbEq >= 1) {
977 value_oppose(I->Constraint[0][2], I->Constraint[0][2]);
978 /* There should never be a remainder here */
979 if (value_pos_p(I->Constraint[0][1]))
980 mpz_fdiv_q(*min, I->Constraint[0][2], I->Constraint[0][1]);
981 else
982 mpz_fdiv_q(*min, I->Constraint[0][2], I->Constraint[0][1]);
983 value_assign(*max, *min);
984 } else for (i = 0; i < I->NbConstraints; ++i) {
985 if (value_zero_p(I->Constraint[i][1])) {
986 Polyhedron_Free(I);
987 return 0;
990 value_oppose(I->Constraint[i][2], I->Constraint[i][2]);
991 if (value_pos_p(I->Constraint[i][1]))
992 mpz_cdiv_q(*min, I->Constraint[i][2], I->Constraint[i][1]);
993 else
994 mpz_fdiv_q(*max, I->Constraint[i][2], I->Constraint[i][1]);
996 Polyhedron_Free(I);
997 return 1;
1000 /**
1002 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1003 each imbriquation
1005 @param pos index position of current loop index (1..hdim-1)
1006 @param P loop domain
1007 @param context context values for fixed indices
1008 @param exist number of existential variables
1009 @return the number of integer points in this
1010 polyhedron
1013 void count_points_e (int pos, Polyhedron *P, int exist, int nparam,
1014 Value *context, Value *res)
1016 Value LB, UB, k, c;
1018 if (emptyQ(P)) {
1019 value_set_si(*res, 0);
1020 return;
1023 value_init(LB); value_init(UB); value_init(k);
1024 value_set_si(LB,0);
1025 value_set_si(UB,0);
1027 if (lower_upper_bounds(pos,P,context,&LB,&UB) !=0) {
1028 /* Problem if UB or LB is INFINITY */
1029 value_clear(LB); value_clear(UB); value_clear(k);
1030 if (pos > P->Dimension - nparam - exist)
1031 value_set_si(*res, 1);
1032 else
1033 value_set_si(*res, -1);
1034 return;
1037 #ifdef EDEBUG1
1038 if (!P->next) {
1039 int i;
1040 for (value_assign(k,LB); value_le(k,UB); value_increment(k,k)) {
1041 fprintf(stderr, "(");
1042 for (i=1; i<pos; i++) {
1043 value_print(stderr,P_VALUE_FMT,context[i]);
1044 fprintf(stderr,",");
1046 value_print(stderr,P_VALUE_FMT,k);
1047 fprintf(stderr,")\n");
1050 #endif
1052 value_set_si(context[pos],0);
1053 if (value_lt(UB,LB)) {
1054 value_clear(LB); value_clear(UB); value_clear(k);
1055 value_set_si(*res, 0);
1056 return;
1058 if (!P->next) {
1059 if (exist)
1060 value_set_si(*res, 1);
1061 else {
1062 value_subtract(k,UB,LB);
1063 value_add_int(k,k,1);
1064 value_assign(*res, k);
1066 value_clear(LB); value_clear(UB); value_clear(k);
1067 return;
1070 /*-----------------------------------------------------------------*/
1071 /* Optimization idea */
1072 /* If inner loops are not a function of k (the current index) */
1073 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1074 /* for all i, */
1075 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1076 /* (skip the for loop) */
1077 /*-----------------------------------------------------------------*/
1079 value_init(c);
1080 value_set_si(*res, 0);
1081 for (value_assign(k,LB);value_le(k,UB);value_increment(k,k)) {
1082 /* Insert k in context */
1083 value_assign(context[pos],k);
1084 count_points_e(pos+1, P->next, exist, nparam, context, &c);
1085 if(value_notmone_p(c))
1086 value_addto(*res, *res, c);
1087 else {
1088 value_set_si(*res, -1);
1089 break;
1091 if (pos > P->Dimension - nparam - exist &&
1092 value_pos_p(*res))
1093 break;
1095 value_clear(c);
1097 #ifdef EDEBUG11
1098 fprintf(stderr,"%d\n",CNT);
1099 #endif
1101 /* Reset context */
1102 value_set_si(context[pos],0);
1103 value_clear(LB); value_clear(UB); value_clear(k);
1104 return;
1105 } /* count_points_e */
1107 int DomainContains(Polyhedron *P, Value *list_args, int len,
1108 unsigned MaxRays, int set)
1110 int i;
1111 Value m;
1113 if (P->Dimension == len)
1114 return in_domain(P, list_args);
1116 assert(set); // assume list_args is large enough
1117 assert((P->Dimension - len) % 2 == 0);
1118 value_init(m);
1119 for (i = 0; i < P->Dimension - len; i += 2) {
1120 int j, k;
1121 for (j = 0 ; j < P->NbEq; ++j)
1122 if (value_notzero_p(P->Constraint[j][1+len+i]))
1123 break;
1124 assert(j < P->NbEq);
1125 value_absolute(m, P->Constraint[j][1+len+i]);
1126 k = First_Non_Zero(P->Constraint[j]+1, len);
1127 assert(k != -1);
1128 assert(First_Non_Zero(P->Constraint[j]+1+k+1, len - k - 1) == -1);
1129 mpz_fdiv_q(list_args[len+i], list_args[k], m);
1130 mpz_fdiv_r(list_args[len+i+1], list_args[k], m);
1132 value_clear(m);
1134 return in_domain(P, list_args);
1137 Polyhedron *DomainConcat(Polyhedron *head, Polyhedron *tail)
1139 Polyhedron *S;
1140 if (!head)
1141 return tail;
1142 for (S = head; S->next; S = S->next)
1144 S->next = tail;
1145 return head;
1148 #ifdef HAVE_LEXSMALLER
1149 #include <polylib/ranking.h>
1151 evalue *barvinok_lexsmaller_ev(Polyhedron *P, Polyhedron *D, unsigned dim,
1152 Polyhedron *C, unsigned MaxRays)
1154 evalue *ranking;
1155 Polyhedron *RC, *RD, *Q;
1156 unsigned nparam = dim + C->Dimension;
1157 unsigned exist;
1158 Polyhedron *CA;
1160 RC = LexSmaller(P, D, dim, C, MaxRays);
1161 RD = RC->next;
1162 RC->next = NULL;
1164 exist = RD->Dimension - nparam - dim;
1165 CA = align_context(RC, RD->Dimension, MaxRays);
1166 Q = DomainIntersection(RD, CA, MaxRays);
1167 Polyhedron_Free(CA);
1168 Domain_Free(RD);
1169 Polyhedron_Free(RC);
1170 RD = Q;
1172 for (Q = RD; Q; Q = Q->next) {
1173 evalue *t;
1174 Polyhedron *next = Q->next;
1175 Q->next = 0;
1177 t = barvinok_enumerate_e(Q, exist, nparam, MaxRays);
1179 if (Q == RD)
1180 ranking = t;
1181 else {
1182 eadd(t, ranking);
1183 free_evalue_refs(t);
1184 free(t);
1187 Q->next = next;
1190 Domain_Free(RD);
1192 return ranking;
1195 Enumeration *barvinok_lexsmaller(Polyhedron *P, Polyhedron *D, unsigned dim,
1196 Polyhedron *C, unsigned MaxRays)
1198 evalue *EP = barvinok_lexsmaller_ev(P, D, dim, C, MaxRays);
1200 return partition2enumeration(EP);
1202 #endif
1204 const char *barvinok_version(void)
1206 return
1207 "barvinok " VERSION " (" GIT_HEAD_ID ")\n"
1208 #ifdef USE_MODULO
1209 " +MODULO"
1210 #else
1211 " -MODULO"
1212 #endif
1213 #ifdef USE_INCREMENTAL_BF
1214 " INCREMENTAL=BF"
1215 #elif defined USE_INCREMENTAL_DF
1216 " INCREMENTAL=DF"
1217 #else
1218 " -INCREMENTAL"
1219 #endif
1220 "\n"
1221 #ifdef HAVE_CORRECT_VERTICES
1222 " +CORRECT_VERTICES"
1223 #else
1224 " -CORRECT_VERTICES"
1225 #endif
1226 #ifdef HAVE_PIPLIB
1227 " +PIPLIB"
1228 #else
1229 " -PIPLIB"
1230 #endif
1231 "\n"