2 #include <barvinok/util.h>
3 #include "normalization.h"
5 static int is_unit_row(Value
*row
, int pos
, int len
)
7 if (!value_one_p(row
[pos
]) && !value_mone_p(row
[pos
]))
9 return First_Non_Zero(row
+pos
+1, len
-(pos
+1)) == -1;
12 /* Transform the constraints C to "standard form".
13 * In particular, if C is described by
15 * then this function returns a matrix H = A U, A = H Q, such
16 * that D x' = D Q x >= -b(p), with D a diagonal matrix with
17 * positive entries. The calling function can then construct
18 * the standard form H' x' - I s + b(p) = 0, with H' the rows of H
19 * that are not positive multiples of unit vectors
20 * (since those correspond to D x' >= -b(p)).
21 * The number of rows in H' is returned in *rows_p.
22 * Optionally returns the matrix that maps the new variables
23 * back to the old variables x = U x'.
24 * Note that the rows of H (and C) may be reordered by this function.
26 Matrix
*standard_constraints(Matrix
*C
, unsigned nparam
, int *rows_p
,
29 unsigned dim
= C
->NbColumns
- 2;
30 unsigned nvar
= dim
- nparam
;
36 /* move constraints only involving parameters down
37 * and move unit vectors (if there are any) to the right place.
39 for (d
= 0, j
= C
->NbRows
; d
< j
; ++d
) {
41 index
= First_Non_Zero(C
->p
[d
]+1, nvar
);
44 is_unit_row(C
->p
[d
]+1, index
, nvar
)) {
45 Vector_Exchange(C
->p
[d
], C
->p
[index
], dim
+2);
51 while (d
< --j
&& First_Non_Zero(C
->p
[j
]+1, nvar
) == -1)
55 Vector_Exchange(C
->p
[d
], C
->p
[j
], dim
+2);
57 M
= Matrix_Alloc(d
, nvar
);
58 for (j
= 0; j
< d
; ++j
)
59 Vector_Copy(C
->p
[j
]+1, M
->p
[j
], nvar
);
61 neg_left_hermite(M
, &H
, &Q
, &U
);
69 /* Rearrange rows such that top of H is lower diagonal and
70 * compute the number of non (multiple of) unit-vector rows.
72 rows
= H
->NbRows
-nvar
;
73 for (i
= 0; i
< H
->NbColumns
; ++i
) {
74 for (j
= i
; j
< H
->NbRows
; ++j
)
75 if (value_notzero_p(H
->p
[j
][i
]))
78 Vector_Exchange(C
->p
[i
], C
->p
[j
], dim
+2);
79 Vector_Exchange(H
->p
[i
], H
->p
[j
], H
->NbColumns
);
81 if (First_Non_Zero(H
->p
[i
], i
) != -1)
91 * Transform the constraints of PE involving existentially
92 * quantified variables, placed in front in PE, to "standard form".
94 * The resulting matrix has the existential variables after
95 * the unquantified variables again.
97 static Matrix
*exist_standard_constraints(Polyhedron
*PE
, unsigned nvar
)
100 unsigned exist
= PE
->Dimension
- nvar
;
101 Matrix
*M
= Matrix_Alloc(PE
->NbConstraints
, 2+PE
->Dimension
);
102 Matrix
*M2
= Matrix_Alloc(PE
->NbConstraints
, 2+PE
->Dimension
);
106 for (i
= i1
= i2
= 0; i
< PE
->NbConstraints
; ++i
) {
107 if (First_Non_Zero(PE
->Constraint
[i
]+1, exist
) == -1) {
108 value_assign(M
->p
[i1
][0], PE
->Constraint
[i
][0]);
109 Vector_Copy(PE
->Constraint
[i
]+1+exist
, M
->p
[i1
]+1, nvar
);
110 value_assign(M
->p
[i1
][1+PE
->Dimension
],
111 PE
->Constraint
[i
][1+PE
->Dimension
]);
114 Vector_Copy(PE
->Constraint
[i
], M2
->p
[i2
], M2
->NbColumns
);
121 S2
= standard_constraints(M2
, nvar
, NULL
, NULL
);
123 for (i
= 0; i
< M2
->NbRows
; ++i
) {
124 value_assign(M
->p
[M
->NbRows
+i
][0], M2
->p
[i
][0]);
125 Vector_Copy(M2
->p
[i
]+1+exist
, M
->p
[M
->NbRows
+i
]+1, nvar
);
126 Vector_Copy(S2
->p
[i
], M
->p
[M
->NbRows
+i
]+1+nvar
, exist
);
127 value_assign(M
->p
[M
->NbRows
+i
][1+PE
->Dimension
],
128 M2
->p
[i
][1+PE
->Dimension
]);
131 /* Make sure "standard" constraints for existential variables
132 * have only non-positive coefficients for the variables.
134 assert(M2
->NbRows
>= exist
);
136 for (i
= 0; i
< exist
; ++i
) {
137 assert(value_pos_p(S2
->p
[i
][i
]));
138 for (i1
= 0; i1
< nvar
; ++i1
) {
139 if (value_negz_p(M
->p
[M
->NbRows
+i
][1+i1
]))
141 mpz_cdiv_q(c
, M
->p
[M
->NbRows
+i
][1+i1
], S2
->p
[i
][i
]);
143 for (i2
= i
; i2
< M2
->NbRows
; ++i2
)
144 value_addmul(M
->p
[M
->NbRows
+i2
][1+i1
], c
, S2
->p
[i2
][i
]);
148 M
->NbRows
+= M2
->NbRows
;
156 * For those variables x that may attain negative values,
157 * compute a translations t such that x' = x + t is sure
158 * to attain only non-negative values, i.e., if M is
164 * A x' + b - A t >= 0
166 * are sure to attain only non-negative values.
168 * The first nvar shifts have already been set prior to
169 * calling this function.
171 static void compute_shifts(Matrix
*M
, unsigned nvar
, Vector
*shifts
)
174 unsigned dim
= M
->NbColumns
-2;
175 for (c
= nvar
, r
= 0; c
< dim
; ++c
) {
176 for ( ; r
< M
->NbRows
; ++r
) {
177 if (value_notzero_p(M
->p
[r
][1+c
]))
180 assert(r
< M
->NbRows
);
181 assert(value_pos_p(M
->p
[r
][1+c
]));
183 Inner_Product(M
->p
[r
]+1, shifts
->p
+1, c
, &shifts
->p
[1+c
]);
184 value_subtract(shifts
->p
[1+c
], M
->p
[r
][1+dim
], shifts
->p
[1+c
]);
185 if (value_pos_p(shifts
->p
[1+c
]))
186 mpz_cdiv_q(shifts
->p
[1+c
], shifts
->p
[1+c
], M
->p
[r
][1+c
]);
188 value_set_si(shifts
->p
[1+c
], 0);
193 * Move the existential variables before the unquantified variables.
195 static Polyhedron
*move_exists_in_front(Polyhedron
*D
, unsigned nvar
,
199 Polyhedron
*DE
= NULL
;
200 Polyhedron
**next
= &DE
;
202 for (P
= D
; P
; P
= P
->next
) {
204 unsigned exist
= P
->Dimension
- nvar
;
205 Matrix
*M
= Matrix_Alloc(P
->NbConstraints
, 2+P
->Dimension
);
207 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
208 value_assign(M
->p
[i
][0], P
->Constraint
[i
][0]);
209 Vector_Copy(P
->Constraint
[i
]+1, M
->p
[i
]+1+exist
, nvar
);
210 Vector_Copy(P
->Constraint
[i
]+1+nvar
, M
->p
[i
]+1, exist
);
211 value_assign(M
->p
[i
][1+P
->Dimension
],
212 P
->Constraint
[i
][1+P
->Dimension
]);
215 *next
= Constraints2Polyhedron(M
, MaxRays
);
218 next
= &(*next
)->next
;
225 * Compute the shifts s for the variables x, such that x + s >= 0.
226 * DE is a union of polyhedra with the existential variables first.
228 * We simply project out the existential variables, compute
229 * the convex hull and then compute the minimal coordinate
230 * in each direction of all the vertices.
231 * The shift is the opposite of this minimal coordinate or zero.
233 static Vector
*compute_var_shifts(Polyhedron
*DE
, unsigned nvar
,
237 Polyhedron
*D
= NULL
;
238 Polyhedron
**next
= &D
;
244 for (PE
= DE
; PE
; PE
= PE
->next
) {
245 *next
= Polyhedron_Project(PE
, nvar
);
246 next
= &(*next
)->next
;
248 C
= DomainConvex(D
, MaxRays
);
250 POL_ENSURE_VERTICES(C
);
252 shifts
= Vector_Alloc(C
->Dimension
);
254 for (i
= 0; i
< C
->Dimension
; ++i
) {
255 for (j
= 0; j
< C
->NbRays
; ++j
) {
256 assert(value_notzero_p(C
->Ray
[j
][1+C
->Dimension
]));
257 if (value_posz_p(C
->Ray
[j
][1+i
]))
259 mpz_fdiv_q(tmp
, C
->Ray
[j
][1+i
], C
->Ray
[j
][1+C
->Dimension
]);
260 if (value_lt(tmp
, shifts
->p
[i
]))
261 value_assign(shifts
->p
[i
], tmp
);
263 value_oppose(shifts
->p
[i
], shifts
->p
[i
]);
272 * Given a union of polyhedra, with possibly existentially
273 * quantified variables, but no parameters, apply a unimodular
274 * transformation with constant translation to the variables,
275 * and a unimodular transformation with a translation possibly
276 * depending on the variables to the existentially quantified variables,
277 * such that all variables and all existentially quantified variables
278 * attain only non-negative values.
280 * The projection onto the variables is assumed to be a polytope.
282 Polyhedron
*skew_to_positive_orthant(Polyhedron
*D
, unsigned nvar
,
286 Polyhedron
*R
= NULL
;
287 Polyhedron
**next
= &R
;
291 DE
= move_exists_in_front(D
, nvar
, MaxRays
);
292 var_shifts
= compute_var_shifts(DE
, nvar
, MaxRays
);
294 for (PE
= DE
; PE
; PE
= PE
->next
) {
296 Vector
*shifts
, *offsets
;
299 M
= exist_standard_constraints(PE
, nvar
);
300 shifts
= Vector_Alloc(M
->NbColumns
);
301 Vector_Copy(var_shifts
->p
, shifts
->p
+1, nvar
);
302 compute_shifts(M
, nvar
, shifts
);
304 offsets
= Vector_Alloc(M
->NbRows
);
305 Matrix_Vector_Product(M
, shifts
->p
, offsets
->p
);
308 C
= Matrix_Alloc(M
->NbRows
, M
->NbColumns
);
309 for (i
= 0; i
< M
->NbRows
; ++i
) {
310 value_assign(C
->p
[i
][0], M
->p
[i
][0]);
311 Vector_Copy(M
->p
[i
]+1, C
->p
[i
]+1, M
->NbColumns
-2);
312 value_subtract(C
->p
[i
][M
->NbColumns
-1],
313 M
->p
[i
][M
->NbColumns
-1], offsets
->p
[i
]);
315 Vector_Free(offsets
);
318 *next
= Constraints2Polyhedron(C
, MaxRays
);
321 next
= &(*next
)->next
;
323 Vector_Free(var_shifts
);