3 #include <barvinok/util.h>
4 #include <barvinok/options.h>
7 #ifndef HAVE_ENUMERATE4
8 #define Polyhedron_Enumerate(a,b,c,d) Polyhedron_Enumerate(a,b,c)
11 #define ALLOC(type) (type*)malloc(sizeof(type))
12 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
15 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
17 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
20 #ifndef HAVE_ENUMERATION_FREE
21 #define Enumeration_Free(en) /* just leak some memory */
24 void manual_count(Polyhedron
*P
, Value
* result
)
26 Polyhedron
*U
= Universe_Polyhedron(0);
27 Enumeration
*en
= Polyhedron_Enumerate(P
,U
,1024,NULL
);
28 Value
*v
= compute_poly(en
,NULL
);
29 value_assign(*result
, *v
);
36 #ifndef HAVE_ENUMERATION_FREE
37 #undef Enumeration_Free
40 #include <barvinok/evalue.h>
41 #include <barvinok/util.h>
42 #include <barvinok/barvinok.h>
44 /* Return random value between 0 and max-1 inclusive
46 int random_int(int max
) {
47 return (int) (((double)(max
))*rand()/(RAND_MAX
+1.0));
50 Polyhedron
*Polyhedron_Read(unsigned MaxRays
)
53 unsigned NbRows
, NbColumns
;
58 while (fgets(s
, sizeof(s
), stdin
)) {
61 if (strncasecmp(s
, "vertices", sizeof("vertices")-1) == 0)
63 if (sscanf(s
, "%u %u", &NbRows
, &NbColumns
) == 2)
68 M
= Matrix_Alloc(NbRows
,NbColumns
);
71 P
= Rays2Polyhedron(M
, MaxRays
);
73 P
= Constraints2Polyhedron(M
, MaxRays
);
78 /* Inplace polarization
80 void Polyhedron_Polarize(Polyhedron
*P
)
82 unsigned NbRows
= P
->NbConstraints
+ P
->NbRays
;
86 q
= (Value
**)malloc(NbRows
* sizeof(Value
*));
88 for (i
= 0; i
< P
->NbRays
; ++i
)
90 for (; i
< NbRows
; ++i
)
91 q
[i
] = P
->Constraint
[i
-P
->NbRays
];
92 P
->NbConstraints
= NbRows
- P
->NbConstraints
;
93 P
->NbRays
= NbRows
- P
->NbRays
;
96 P
->Ray
= q
+ P
->NbConstraints
;
100 * Rather general polar
101 * We can optimize it significantly if we assume that
104 * Also, we calculate the polar as defined in Schrijver
105 * The opposite should probably work as well and would
106 * eliminate the need for multiplying by -1
108 Polyhedron
* Polyhedron_Polar(Polyhedron
*P
, unsigned NbMaxRays
)
112 unsigned dim
= P
->Dimension
+ 2;
113 Matrix
*M
= Matrix_Alloc(P
->NbRays
, dim
);
117 value_set_si(mone
, -1);
118 for (i
= 0; i
< P
->NbRays
; ++i
) {
119 Vector_Scale(P
->Ray
[i
], M
->p
[i
], mone
, dim
);
120 value_multiply(M
->p
[i
][0], M
->p
[i
][0], mone
);
121 value_multiply(M
->p
[i
][dim
-1], M
->p
[i
][dim
-1], mone
);
123 P
= Constraints2Polyhedron(M
, NbMaxRays
);
131 * Returns the supporting cone of P at the vertex with index v
133 Polyhedron
* supporting_cone(Polyhedron
*P
, int v
)
138 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
139 unsigned dim
= P
->Dimension
+ 2;
141 assert(v
>=0 && v
< P
->NbRays
);
142 assert(value_pos_p(P
->Ray
[v
][dim
-1]));
146 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
147 Inner_Product(P
->Constraint
[i
] + 1, P
->Ray
[v
] + 1, dim
- 1, &tmp
);
148 if ((supporting
[i
] = value_zero_p(tmp
)))
151 assert(n
>= dim
- 2);
153 M
= Matrix_Alloc(n
, dim
);
155 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
157 value_set_si(M
->p
[j
][dim
-1], 0);
158 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], dim
-1);
161 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
167 void value_lcm(const Value i
, const Value j
, Value
* lcm
)
171 value_multiply(aux
,i
,j
);
173 value_division(*lcm
,aux
,*lcm
);
177 unsigned char *supporting_constraints(Polyhedron
*P
, Param_Vertices
*v
, int *n
)
179 Value lcm
, tmp
, tmp2
;
180 unsigned dim
= P
->Dimension
+ 2;
181 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
182 unsigned nvar
= dim
- nparam
- 2;
183 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
188 row
= Vector_Alloc(nparam
+1);
193 value_set_si(lcm
, 1);
194 for (i
= 0, *n
= 0; i
< P
->NbConstraints
; ++i
) {
195 Vector_Set(row
->p
, 0, nparam
+1);
196 for (j
= 0 ; j
< nvar
; ++j
) {
197 value_set_si(tmp
, 1);
198 value_assign(tmp2
, P
->Constraint
[i
][j
+1]);
199 if (value_ne(lcm
, v
->Vertex
->p
[j
][nparam
+1])) {
200 value_assign(tmp
, lcm
);
201 value_lcm(lcm
, v
->Vertex
->p
[j
][nparam
+1], &lcm
);
202 value_division(tmp
, lcm
, tmp
);
203 value_multiply(tmp2
, tmp2
, lcm
);
204 value_division(tmp2
, tmp2
, v
->Vertex
->p
[j
][nparam
+1]);
206 Vector_Combine(row
->p
, v
->Vertex
->p
[j
], row
->p
,
207 tmp
, tmp2
, nparam
+1);
209 value_set_si(tmp
, 1);
210 Vector_Combine(row
->p
, P
->Constraint
[i
]+1+nvar
, row
->p
, tmp
, lcm
, nparam
+1);
211 for (j
= 0; j
< nparam
+1; ++j
)
212 if (value_notzero_p(row
->p
[j
]))
214 if ((supporting
[i
] = (j
== nparam
+ 1)))
226 Polyhedron
* supporting_cone_p(Polyhedron
*P
, Param_Vertices
*v
)
229 unsigned dim
= P
->Dimension
+ 2;
230 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
231 unsigned nvar
= dim
- nparam
- 2;
233 unsigned char *supporting
;
235 supporting
= supporting_constraints(P
, v
, &n
);
236 M
= Matrix_Alloc(n
, nvar
+2);
238 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
240 value_set_si(M
->p
[j
][nvar
+1], 0);
241 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], nvar
+1);
244 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
250 Polyhedron
* triangulate_cone(Polyhedron
*P
, unsigned NbMaxCons
)
252 const static int MAX_TRY
=10;
255 unsigned dim
= P
->Dimension
;
256 Matrix
*M
= Matrix_Alloc(P
->NbRays
+1, dim
+3);
258 Polyhedron
*L
, *R
, *T
;
259 assert(P
->NbEq
== 0);
264 Vector_Set(M
->p
[0]+1, 0, dim
+1);
265 value_set_si(M
->p
[0][0], 1);
266 value_set_si(M
->p
[0][dim
+2], 1);
267 Vector_Set(M
->p
[P
->NbRays
]+1, 0, dim
+2);
268 value_set_si(M
->p
[P
->NbRays
][0], 1);
269 value_set_si(M
->p
[P
->NbRays
][dim
+1], 1);
271 /* Delaunay triangulation */
272 for (i
= 0, r
= 1; i
< P
->NbRays
; ++i
) {
273 if (value_notzero_p(P
->Ray
[i
][dim
+1]))
275 Vector_Copy(P
->Ray
[i
], M
->p
[r
], dim
+1);
276 Inner_Product(M
->p
[r
]+1, M
->p
[r
]+1, dim
, &tmp
);
277 value_assign(M
->p
[r
][dim
+1], tmp
);
278 value_set_si(M
->p
[r
][dim
+2], 0);
283 L
= Rays2Polyhedron(M3
, NbMaxCons
);
286 M2
= Matrix_Alloc(dim
+1, dim
+2);
291 /* Usually R should still be 0 */
294 for (r
= 1; r
< P
->NbRays
; ++r
) {
295 value_set_si(M
->p
[r
][dim
+1], random_int((t
+1)*dim
*P
->NbRays
)+1);
298 L
= Rays2Polyhedron(M3
, NbMaxCons
);
302 assert(t
<= MAX_TRY
);
307 for (i
= 0; i
< L
->NbConstraints
; ++i
) {
308 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
309 if (value_negz_p(L
->Constraint
[i
][dim
+1]))
311 if (value_notzero_p(L
->Constraint
[i
][dim
+2]))
313 for (j
= 1, r
= 1; j
< M
->NbRows
; ++j
) {
314 Inner_Product(M
->p
[j
]+1, L
->Constraint
[i
]+1, dim
+1, &tmp
);
315 if (value_notzero_p(tmp
))
319 Vector_Copy(M
->p
[j
]+1, M2
->p
[r
]+1, dim
);
320 value_set_si(M2
->p
[r
][0], 1);
321 value_set_si(M2
->p
[r
][dim
+1], 0);
325 Vector_Set(M2
->p
[0]+1, 0, dim
);
326 value_set_si(M2
->p
[0][0], 1);
327 value_set_si(M2
->p
[0][dim
+1], 1);
328 T
= Rays2Polyhedron(M2
, P
->NbConstraints
+1);
342 void check_triangulization(Polyhedron
*P
, Polyhedron
*T
)
344 Polyhedron
*C
, *D
, *E
, *F
, *G
, *U
;
345 for (C
= T
; C
; C
= C
->next
) {
349 U
= DomainConvex(DomainUnion(U
, C
, 100), 100);
350 for (D
= C
->next
; D
; D
= D
->next
) {
355 E
= DomainIntersection(C
, D
, 600);
356 assert(E
->NbRays
== 0 || E
->NbEq
>= 1);
362 assert(PolyhedronIncludes(U
, P
));
363 assert(PolyhedronIncludes(P
, U
));
366 /* Computes x, y and g such that g = gcd(a,b) and a*x+b*y = g */
367 void Extended_Euclid(Value a
, Value b
, Value
*x
, Value
*y
, Value
*g
)
369 Value c
, d
, e
, f
, tmp
;
376 value_absolute(c
, a
);
377 value_absolute(d
, b
);
380 while(value_pos_p(d
)) {
381 value_division(tmp
, c
, d
);
382 value_multiply(tmp
, tmp
, f
);
383 value_subtract(e
, e
, tmp
);
384 value_division(tmp
, c
, d
);
385 value_multiply(tmp
, tmp
, d
);
386 value_subtract(c
, c
, tmp
);
393 else if (value_pos_p(a
))
395 else value_oppose(*x
, e
);
399 value_multiply(tmp
, a
, *x
);
400 value_subtract(tmp
, c
, tmp
);
401 value_division(*y
, tmp
, b
);
410 Matrix
* unimodular_complete(Vector
*row
)
412 Value g
, b
, c
, old
, tmp
;
421 m
= Matrix_Alloc(row
->Size
, row
->Size
);
422 for (j
= 0; j
< row
->Size
; ++j
) {
423 value_assign(m
->p
[0][j
], row
->p
[j
]);
425 value_assign(g
, row
->p
[0]);
426 for (i
= 1; value_zero_p(g
) && i
< row
->Size
; ++i
) {
427 for (j
= 0; j
< row
->Size
; ++j
) {
429 value_set_si(m
->p
[i
][j
], 1);
431 value_set_si(m
->p
[i
][j
], 0);
433 value_assign(g
, row
->p
[i
]);
435 for (; i
< row
->Size
; ++i
) {
436 value_assign(old
, g
);
437 Extended_Euclid(old
, row
->p
[i
], &c
, &b
, &g
);
439 for (j
= 0; j
< row
->Size
; ++j
) {
441 value_multiply(tmp
, row
->p
[j
], b
);
442 value_division(m
->p
[i
][j
], tmp
, old
);
444 value_assign(m
->p
[i
][j
], c
);
446 value_set_si(m
->p
[i
][j
], 0);
458 * Returns a full-dimensional polyhedron with the same number
459 * of integer points as P
461 Polyhedron
*remove_equalities(Polyhedron
*P
)
465 Polyhedron
*p
= Polyhedron_Copy(P
), *q
;
466 unsigned dim
= p
->Dimension
;
471 while (!emptyQ2(p
) && p
->NbEq
> 0) {
473 Vector_Gcd(p
->Constraint
[0]+1, dim
+1, &g
);
474 Vector_AntiScale(p
->Constraint
[0]+1, p
->Constraint
[0]+1, g
, dim
+1);
475 Vector_Gcd(p
->Constraint
[0]+1, dim
, &g
);
476 if (value_notone_p(g
) && value_notmone_p(g
)) {
478 p
= Empty_Polyhedron(0);
481 v
= Vector_Alloc(dim
);
482 Vector_Copy(p
->Constraint
[0]+1, v
->p
, dim
);
483 m1
= unimodular_complete(v
);
484 m2
= Matrix_Alloc(dim
, dim
+1);
485 for (i
= 0; i
< dim
-1 ; ++i
) {
486 Vector_Copy(m1
->p
[i
+1], m2
->p
[i
], dim
);
487 value_set_si(m2
->p
[i
][dim
], 0);
489 Vector_Set(m2
->p
[dim
-1], 0, dim
);
490 value_set_si(m2
->p
[dim
-1][dim
], 1);
491 q
= Polyhedron_Image(p
, m2
, p
->NbConstraints
+1+p
->NbRays
);
504 * Returns a full-dimensional polyhedron with the same number
505 * of integer points as P
506 * nvar specifies the number of variables
507 * The remaining dimensions are assumed to be parameters
509 * factor is NbEq x (nparam+2) matrix, containing stride constraints
510 * on the parameters; column nparam is the constant;
511 * column nparam+1 is the stride
513 * if factor is NULL, only remove equalities that don't affect
514 * the number of points
516 Polyhedron
*remove_equalities_p(Polyhedron
*P
, unsigned nvar
, Matrix
**factor
)
520 Polyhedron
*p
= P
, *q
;
521 unsigned dim
= p
->Dimension
;
527 f
= Matrix_Alloc(p
->NbEq
, dim
-nvar
+2);
532 while (nvar
> 0 && p
->NbEq
- skip
> 0) {
535 while (skip
< p
->NbEq
&&
536 First_Non_Zero(p
->Constraint
[skip
]+1, nvar
) == -1)
541 Vector_Gcd(p
->Constraint
[skip
]+1, dim
+1, &g
);
542 Vector_AntiScale(p
->Constraint
[skip
]+1, p
->Constraint
[skip
]+1, g
, dim
+1);
543 Vector_Gcd(p
->Constraint
[skip
]+1, nvar
, &g
);
544 if (!factor
&& value_notone_p(g
) && value_notmone_p(g
)) {
549 Vector_Copy(p
->Constraint
[skip
]+1+nvar
, f
->p
[j
], dim
-nvar
+1);
550 value_assign(f
->p
[j
][dim
-nvar
+1], g
);
552 v
= Vector_Alloc(dim
);
553 Vector_AntiScale(p
->Constraint
[skip
]+1, v
->p
, g
, nvar
);
554 Vector_Set(v
->p
+nvar
, 0, dim
-nvar
);
555 m1
= unimodular_complete(v
);
556 m2
= Matrix_Alloc(dim
, dim
+1);
557 for (i
= 0; i
< dim
-1 ; ++i
) {
558 Vector_Copy(m1
->p
[i
+1], m2
->p
[i
], dim
);
559 value_set_si(m2
->p
[i
][dim
], 0);
561 Vector_Set(m2
->p
[dim
-1], 0, dim
);
562 value_set_si(m2
->p
[dim
-1][dim
], 1);
563 q
= Polyhedron_Image(p
, m2
, p
->NbConstraints
+1+p
->NbRays
);
577 void Line_Length(Polyhedron
*P
, Value
*len
)
583 assert(P
->Dimension
== 1);
589 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
590 value_oppose(tmp
, P
->Constraint
[i
][2]);
591 if (value_pos_p(P
->Constraint
[i
][1])) {
592 mpz_cdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
593 if (!p
|| value_gt(tmp
, pos
))
594 value_assign(pos
, tmp
);
597 mpz_fdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
598 if (!n
|| value_lt(tmp
, neg
))
599 value_assign(neg
, tmp
);
603 value_subtract(tmp
, neg
, pos
);
604 value_increment(*len
, tmp
);
606 value_set_si(*len
, -1);
615 * Factors the polyhedron P into polyhedra Q_i such that
616 * the number of integer points in P is equal to the product
617 * of the number of integer points in the individual Q_i
619 * If no factors can be found, NULL is returned.
620 * Otherwise, a linked list of the factors is returned.
622 * If there are factors and if T is not NULL, then a matrix will be
623 * returned through T expressing the old variables in terms of the
624 * new variables as they appear in the sequence of factors.
626 * The algorithm works by first computing the Hermite normal form
627 * and then grouping columns linked by one or more constraints together,
628 * where a constraints "links" two or more columns if the constraint
629 * has nonzero coefficients in the columns.
631 Polyhedron
* Polyhedron_Factor(Polyhedron
*P
, unsigned nparam
, Matrix
**T
,
635 Matrix
*M
, *H
, *Q
, *U
;
636 int *pos
; /* for each column: row position of pivot */
637 int *group
; /* group to which a column belongs */
638 int *cnt
; /* number of columns in the group */
639 int *rowgroup
; /* group to which a constraint belongs */
640 int nvar
= P
->Dimension
- nparam
;
641 Polyhedron
*F
= NULL
;
649 NALLOC(rowgroup
, P
->NbConstraints
);
651 M
= Matrix_Alloc(P
->NbConstraints
, nvar
);
652 for (i
= 0; i
< P
->NbConstraints
; ++i
)
653 Vector_Copy(P
->Constraint
[i
]+1, M
->p
[i
], nvar
);
654 left_hermite(M
, &H
, &Q
, &U
);
658 for (i
= 0; i
< P
->NbConstraints
; ++i
)
660 for (i
= 0, j
= 0; i
< H
->NbColumns
; ++i
) {
661 for ( ; j
< H
->NbRows
; ++j
)
662 if (value_notzero_p(H
->p
[j
][i
]))
664 assert (j
< H
->NbRows
);
667 for (i
= 0; i
< nvar
; ++i
) {
671 for (i
= 0; i
< H
->NbColumns
&& cnt
[0] < nvar
; ++i
) {
672 if (rowgroup
[pos
[i
]] == -1)
673 rowgroup
[pos
[i
]] = i
;
674 for (j
= pos
[i
]+1; j
< H
->NbRows
; ++j
) {
675 if (value_zero_p(H
->p
[j
][i
]))
677 if (rowgroup
[j
] != -1)
679 rowgroup
[j
] = group
[i
];
680 for (k
= i
+1; k
< H
->NbColumns
&& j
>= pos
[k
]; ++k
) {
685 if (group
[k
] != group
[i
] && value_notzero_p(H
->p
[j
][k
])) {
686 assert(cnt
[group
[k
]] != 0);
687 assert(cnt
[group
[i
]] != 0);
688 if (group
[i
] < group
[k
]) {
689 cnt
[group
[i
]] += cnt
[group
[k
]];
693 cnt
[group
[k
]] += cnt
[group
[i
]];
702 if (cnt
[0] != nvar
) {
703 /* Extract out pure context constraints separately */
704 Polyhedron
**next
= &F
;
707 *T
= Matrix_Alloc(nvar
, nvar
);
708 for (i
= nparam
? -1 : 0; i
< nvar
; ++i
) {
712 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
713 if (rowgroup
[j
] == -1) {
714 if (First_Non_Zero(P
->Constraint
[j
]+1+nvar
,
727 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
728 if (rowgroup
[j
] >= 0 && group
[rowgroup
[j
]] == i
) {
735 for (j
= 0; j
< nvar
; ++j
) {
737 for (l
= 0, m
= 0; m
< d
; ++l
) {
740 value_assign((*T
)->p
[j
][tot_d
+m
++], U
->p
[j
][l
]);
744 M
= Matrix_Alloc(k
, d
+nparam
+2);
745 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
) {
747 if (rowgroup
[j
] != i
)
749 value_assign(M
->p
[k
][0], P
->Constraint
[j
][0]);
750 for (l
= 0, m
= 0; m
< d
; ++l
) {
753 value_assign(M
->p
[k
][1+m
++], H
->p
[j
][l
]);
755 Vector_Copy(P
->Constraint
[j
]+1+nvar
, M
->p
[k
]+1+m
, nparam
+1);
758 *next
= Constraints2Polyhedron(M
, NbMaxRays
);
759 next
= &(*next
)->next
;
774 * Project on final dim dimensions
776 Polyhedron
* Polyhedron_Project(Polyhedron
*P
, int dim
)
779 int remove
= P
->Dimension
- dim
;
783 if (P
->Dimension
== dim
)
784 return Polyhedron_Copy(P
);
786 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
787 for (i
= 0; i
< dim
+1; ++i
)
788 value_set_si(T
->p
[i
][i
+remove
], 1);
789 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
794 /* Constructs a new constraint that ensures that
795 * the first constraint is (strictly) smaller than
798 static void smaller_constraint(Value
*a
, Value
*b
, Value
*c
, int pos
, int shift
,
799 int len
, int strict
, Value
*tmp
)
801 value_oppose(*tmp
, b
[pos
+1]);
802 value_set_si(c
[0], 1);
803 Vector_Combine(a
+1+shift
, b
+1+shift
, c
+1, *tmp
, a
[pos
+1], len
-shift
-1);
805 value_decrement(c
[len
-shift
-1], c
[len
-shift
-1]);
806 ConstraintSimplify(c
, c
, len
-shift
, tmp
);
809 struct section
{ Polyhedron
* D
; evalue E
; };
811 evalue
* ParamLine_Length_mod(Polyhedron
*P
, Polyhedron
*C
, int MaxRays
)
813 unsigned dim
= P
->Dimension
;
814 unsigned nvar
= dim
- C
->Dimension
;
829 NALLOC(pos
, P
->NbConstraints
);
832 evalue_set_si(&mone
, -1, 1);
834 for (i
= 0, z
= 0; i
< P
->NbConstraints
; ++i
)
835 if (value_zero_p(P
->Constraint
[i
][1]))
837 /* put those with positive coefficients first; number: p */
838 for (i
= 0, p
= 0, n
= P
->NbConstraints
-z
-1; i
< P
->NbConstraints
; ++i
)
839 if (value_pos_p(P
->Constraint
[i
][1]))
841 else if (value_neg_p(P
->Constraint
[i
][1]))
843 n
= P
->NbConstraints
-z
-p
;
844 assert (p
>= 1 && n
>= 1);
845 s
= (struct section
*) malloc(p
* n
* sizeof(struct section
));
846 M
= Matrix_Alloc((p
-1) + (n
-1), dim
-nvar
+2);
847 for (k
= 0; k
< p
; ++k
) {
848 for (k2
= 0; k2
< p
; ++k2
) {
853 P
->Constraint
[pos
[k
]],
854 P
->Constraint
[pos
[k2
]],
855 M
->p
[q
], 0, nvar
, dim
+2, k2
> k
, &g
);
857 for (l
= p
; l
< p
+n
; ++l
) {
858 for (l2
= p
; l2
< p
+n
; ++l2
) {
863 P
->Constraint
[pos
[l2
]],
864 P
->Constraint
[pos
[l
]],
865 M
->p
[q
], 0, nvar
, dim
+2, l2
> l
, &g
);
868 T
= Constraints2Polyhedron(M2
, P
->NbRays
);
870 s
[nd
].D
= DomainIntersection(T
, C
, MaxRays
);
872 POL_ENSURE_VERTICES(s
[nd
].D
);
873 if (emptyQ(s
[nd
].D
)) {
874 Polyhedron_Free(s
[nd
].D
);
877 L
= bv_ceil3(P
->Constraint
[pos
[k
]]+1+nvar
,
879 P
->Constraint
[pos
[k
]][0+1], s
[nd
].D
);
880 U
= bv_ceil3(P
->Constraint
[pos
[l
]]+1+nvar
,
882 P
->Constraint
[pos
[l
]][0+1], s
[nd
].D
);
898 value_set_si(F
->d
, 0);
899 F
->x
.p
= new_enode(partition
, 2*nd
, dim
-nvar
);
900 for (k
= 0; k
< nd
; ++k
) {
901 EVALUE_SET_DOMAIN(F
->x
.p
->arr
[2*k
], s
[k
].D
);
902 value_clear(F
->x
.p
->arr
[2*k
+1].d
);
903 F
->x
.p
->arr
[2*k
+1] = s
[k
].E
;
907 free_evalue_refs(&mone
);
914 evalue
* ParamLine_Length(Polyhedron
*P
, Polyhedron
*C
,
915 struct barvinok_options
*options
)
918 tmp
= ParamLine_Length_mod(P
, C
, options
->MaxRays
);
919 if (options
->lookup_table
) {
920 evalue_mod2table(tmp
, C
->Dimension
);
926 Bool
isIdentity(Matrix
*M
)
929 if (M
->NbRows
!= M
->NbColumns
)
932 for (i
= 0;i
< M
->NbRows
; i
++)
933 for (j
= 0; j
< M
->NbColumns
; j
++)
935 if(value_notone_p(M
->p
[i
][j
]))
938 if(value_notzero_p(M
->p
[i
][j
]))
944 void Param_Polyhedron_Print(FILE* DST
, Param_Polyhedron
*PP
, char **param_names
)
949 for(P
=PP
->D
;P
;P
=P
->next
) {
951 /* prints current val. dom. */
952 fprintf(DST
, "---------------------------------------\n");
953 fprintf(DST
, "Domain :\n");
954 Print_Domain(DST
, P
->Domain
, param_names
);
956 /* scan the vertices */
957 fprintf(DST
, "Vertices :\n");
958 FORALL_PVertex_in_ParamPolyhedron(V
,P
,PP
) {
960 /* prints each vertex */
961 Print_Vertex(DST
, V
->Vertex
, param_names
);
964 END_FORALL_PVertex_in_ParamPolyhedron
;
968 void Enumeration_Print(FILE *Dst
, Enumeration
*en
, char **params
)
970 for (; en
; en
= en
->next
) {
971 Print_Domain(Dst
, en
->ValidityDomain
, params
);
972 print_evalue(Dst
, &en
->EP
, params
);
976 void Enumeration_Free(Enumeration
*en
)
982 free_evalue_refs( &(en
->EP
) );
983 Domain_Free( en
->ValidityDomain
);
990 void Enumeration_mod2table(Enumeration
*en
, unsigned nparam
)
992 for (; en
; en
= en
->next
) {
993 evalue_mod2table(&en
->EP
, nparam
);
994 reduce_evalue(&en
->EP
);
998 size_t Enumeration_size(Enumeration
*en
)
1002 for (; en
; en
= en
->next
) {
1003 s
+= domain_size(en
->ValidityDomain
);
1004 s
+= evalue_size(&en
->EP
);
1009 void Free_ParamNames(char **params
, int m
)
1016 /* Check whether every set in D2 is included in some set of D1 */
1017 int DomainIncludes(Polyhedron
*D1
, Polyhedron
*D2
)
1019 for ( ; D2
; D2
= D2
->next
) {
1021 for (P1
= D1
; P1
; P1
= P1
->next
)
1022 if (PolyhedronIncludes(P1
, D2
))
1030 int line_minmax(Polyhedron
*I
, Value
*min
, Value
*max
)
1035 value_oppose(I
->Constraint
[0][2], I
->Constraint
[0][2]);
1036 /* There should never be a remainder here */
1037 if (value_pos_p(I
->Constraint
[0][1]))
1038 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1040 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1041 value_assign(*max
, *min
);
1042 } else for (i
= 0; i
< I
->NbConstraints
; ++i
) {
1043 if (value_zero_p(I
->Constraint
[i
][1])) {
1048 value_oppose(I
->Constraint
[i
][2], I
->Constraint
[i
][2]);
1049 if (value_pos_p(I
->Constraint
[i
][1]))
1050 mpz_cdiv_q(*min
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1052 mpz_fdiv_q(*max
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1060 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1063 @param pos index position of current loop index (1..hdim-1)
1064 @param P loop domain
1065 @param context context values for fixed indices
1066 @param exist number of existential variables
1067 @return the number of integer points in this
1071 void count_points_e (int pos
, Polyhedron
*P
, int exist
, int nparam
,
1072 Value
*context
, Value
*res
)
1077 value_set_si(*res
, 0);
1081 value_init(LB
); value_init(UB
); value_init(k
);
1085 if (lower_upper_bounds(pos
,P
,context
,&LB
,&UB
) !=0) {
1086 /* Problem if UB or LB is INFINITY */
1087 value_clear(LB
); value_clear(UB
); value_clear(k
);
1088 if (pos
> P
->Dimension
- nparam
- exist
)
1089 value_set_si(*res
, 1);
1091 value_set_si(*res
, -1);
1098 for (value_assign(k
,LB
); value_le(k
,UB
); value_increment(k
,k
)) {
1099 fprintf(stderr
, "(");
1100 for (i
=1; i
<pos
; i
++) {
1101 value_print(stderr
,P_VALUE_FMT
,context
[i
]);
1102 fprintf(stderr
,",");
1104 value_print(stderr
,P_VALUE_FMT
,k
);
1105 fprintf(stderr
,")\n");
1110 value_set_si(context
[pos
],0);
1111 if (value_lt(UB
,LB
)) {
1112 value_clear(LB
); value_clear(UB
); value_clear(k
);
1113 value_set_si(*res
, 0);
1118 value_set_si(*res
, 1);
1120 value_subtract(k
,UB
,LB
);
1121 value_add_int(k
,k
,1);
1122 value_assign(*res
, k
);
1124 value_clear(LB
); value_clear(UB
); value_clear(k
);
1128 /*-----------------------------------------------------------------*/
1129 /* Optimization idea */
1130 /* If inner loops are not a function of k (the current index) */
1131 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1133 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1134 /* (skip the for loop) */
1135 /*-----------------------------------------------------------------*/
1138 value_set_si(*res
, 0);
1139 for (value_assign(k
,LB
);value_le(k
,UB
);value_increment(k
,k
)) {
1140 /* Insert k in context */
1141 value_assign(context
[pos
],k
);
1142 count_points_e(pos
+1, P
->next
, exist
, nparam
, context
, &c
);
1143 if(value_notmone_p(c
))
1144 value_addto(*res
, *res
, c
);
1146 value_set_si(*res
, -1);
1149 if (pos
> P
->Dimension
- nparam
- exist
&&
1156 fprintf(stderr
,"%d\n",CNT
);
1160 value_set_si(context
[pos
],0);
1161 value_clear(LB
); value_clear(UB
); value_clear(k
);
1163 } /* count_points_e */
1165 int DomainContains(Polyhedron
*P
, Value
*list_args
, int len
,
1166 unsigned MaxRays
, int set
)
1171 if (P
->Dimension
== len
)
1172 return in_domain(P
, list_args
);
1174 assert(set
); // assume list_args is large enough
1175 assert((P
->Dimension
- len
) % 2 == 0);
1177 for (i
= 0; i
< P
->Dimension
- len
; i
+= 2) {
1179 for (j
= 0 ; j
< P
->NbEq
; ++j
)
1180 if (value_notzero_p(P
->Constraint
[j
][1+len
+i
]))
1182 assert(j
< P
->NbEq
);
1183 value_absolute(m
, P
->Constraint
[j
][1+len
+i
]);
1184 k
= First_Non_Zero(P
->Constraint
[j
]+1, len
);
1186 assert(First_Non_Zero(P
->Constraint
[j
]+1+k
+1, len
- k
- 1) == -1);
1187 mpz_fdiv_q(list_args
[len
+i
], list_args
[k
], m
);
1188 mpz_fdiv_r(list_args
[len
+i
+1], list_args
[k
], m
);
1192 return in_domain(P
, list_args
);
1195 Polyhedron
*DomainConcat(Polyhedron
*head
, Polyhedron
*tail
)
1200 for (S
= head
; S
->next
; S
= S
->next
)
1206 #ifndef HAVE_LEXSMALLER
1208 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1209 Polyhedron
*C
, unsigned MaxRays
)
1215 #include <polylib/ranking.h>
1217 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1218 Polyhedron
*C
, unsigned MaxRays
)
1221 Polyhedron
*RC
, *RD
, *Q
;
1222 unsigned nparam
= dim
+ C
->Dimension
;
1226 RC
= LexSmaller(P
, D
, dim
, C
, MaxRays
);
1230 exist
= RD
->Dimension
- nparam
- dim
;
1231 CA
= align_context(RC
, RD
->Dimension
, MaxRays
);
1232 Q
= DomainIntersection(RD
, CA
, MaxRays
);
1233 Polyhedron_Free(CA
);
1235 Polyhedron_Free(RC
);
1238 for (Q
= RD
; Q
; Q
= Q
->next
) {
1240 Polyhedron
*next
= Q
->next
;
1243 t
= barvinok_enumerate_e(Q
, exist
, nparam
, MaxRays
);
1249 free_evalue_refs(t
);
1261 Enumeration
*barvinok_lexsmaller(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1262 Polyhedron
*C
, unsigned MaxRays
)
1264 evalue
*EP
= barvinok_lexsmaller_ev(P
, D
, dim
, C
, MaxRays
);
1266 return partition2enumeration(EP
);
1270 /* "align" matrix to have nrows by inserting
1271 * the necessary number of rows and an equal number of columns in front
1273 Matrix
*align_matrix(Matrix
*M
, int nrows
)
1276 int newrows
= nrows
- M
->NbRows
;
1277 Matrix
*M2
= Matrix_Alloc(nrows
, newrows
+ M
->NbColumns
);
1278 for (i
= 0; i
< newrows
; ++i
)
1279 value_set_si(M2
->p
[i
][i
], 1);
1280 for (i
= 0; i
< M
->NbRows
; ++i
)
1281 Vector_Copy(M
->p
[i
], M2
->p
[newrows
+i
]+newrows
, M
->NbColumns
);
1285 static void print_varlist(FILE *out
, int n
, char **names
)
1289 for (i
= 0; i
< n
; ++i
) {
1292 fprintf(out
, "%s", names
[i
]);
1297 static void print_term(FILE *out
, Value v
, int pos
, int dim
, int nparam
,
1298 char **iter_names
, char **param_names
, int *first
)
1300 if (value_zero_p(v
)) {
1301 if (first
&& *first
&& pos
>= dim
+ nparam
)
1307 if (!*first
&& value_pos_p(v
))
1311 if (pos
< dim
+ nparam
) {
1312 if (value_mone_p(v
))
1314 else if (!value_one_p(v
))
1315 value_print(out
, VALUE_FMT
, v
);
1317 fprintf(out
, "%s", iter_names
[pos
]);
1319 fprintf(out
, "%s", param_names
[pos
-dim
]);
1321 value_print(out
, VALUE_FMT
, v
);
1324 char **util_generate_names(int n
, char *prefix
)
1327 int len
= (prefix
? strlen(prefix
) : 0) + 10;
1328 char **names
= ALLOCN(char*, n
);
1330 fprintf(stderr
, "ERROR: memory overflow.\n");
1333 for (i
= 0; i
< n
; ++i
) {
1334 names
[i
] = ALLOCN(char, len
);
1336 fprintf(stderr
, "ERROR: memory overflow.\n");
1340 snprintf(names
[i
], len
, "%d", i
);
1342 snprintf(names
[i
], len
, "%s%d", prefix
, i
);
1348 void util_free_names(int n
, char **names
)
1351 for (i
= 0; i
< n
; ++i
)
1356 void Polyhedron_pprint(FILE *out
, Polyhedron
*P
, int dim
, int nparam
,
1357 char **iter_names
, char **param_names
)
1362 assert(dim
+ nparam
== P
->Dimension
);
1368 print_varlist(out
, nparam
, param_names
);
1369 fprintf(out
, " -> ");
1371 print_varlist(out
, dim
, iter_names
);
1372 fprintf(out
, " : ");
1375 fprintf(out
, "FALSE");
1376 else for (i
= 0; i
< P
->NbConstraints
; ++i
) {
1378 int v
= First_Non_Zero(P
->Constraint
[i
]+1, P
->Dimension
);
1379 if (v
== -1 && value_pos_p(P
->Constraint
[i
][0]))
1382 fprintf(out
, " && ");
1383 if (v
== -1 && value_notzero_p(P
->Constraint
[i
][1+P
->Dimension
]))
1384 fprintf(out
, "FALSE");
1385 else if (value_pos_p(P
->Constraint
[i
][v
+1])) {
1386 print_term(out
, P
->Constraint
[i
][v
+1], v
, dim
, nparam
,
1387 iter_names
, param_names
, NULL
);
1388 if (value_zero_p(P
->Constraint
[i
][0]))
1389 fprintf(out
, " = ");
1391 fprintf(out
, " >= ");
1392 for (j
= v
+1; j
<= dim
+nparam
; ++j
) {
1393 value_oppose(tmp
, P
->Constraint
[i
][1+j
]);
1394 print_term(out
, tmp
, j
, dim
, nparam
,
1395 iter_names
, param_names
, &first
);
1398 value_oppose(tmp
, P
->Constraint
[i
][1+v
]);
1399 print_term(out
, tmp
, v
, dim
, nparam
,
1400 iter_names
, param_names
, NULL
);
1401 fprintf(out
, " <= ");
1402 for (j
= v
+1; j
<= dim
+nparam
; ++j
)
1403 print_term(out
, P
->Constraint
[i
][1+j
], j
, dim
, nparam
,
1404 iter_names
, param_names
, &first
);
1408 fprintf(out
, " }\n");
1413 /* Construct a cone over P with P placed at x_d = 1, with
1414 * x_d the coordinate of an extra dimension
1416 * It's probably a mistake to depend so much on the internal
1417 * representation. We should probably simply compute the
1418 * vertices/facets first.
1420 Polyhedron
*Cone_over_Polyhedron(Polyhedron
*P
)
1422 unsigned NbConstraints
= 0;
1423 unsigned NbRays
= 0;
1427 if (POL_HAS(P
, POL_INEQUALITIES
))
1428 NbConstraints
= P
->NbConstraints
+ 1;
1429 if (POL_HAS(P
, POL_POINTS
))
1430 NbRays
= P
->NbRays
+ 1;
1432 C
= Polyhedron_Alloc(P
->Dimension
+1, NbConstraints
, NbRays
);
1433 if (POL_HAS(P
, POL_INEQUALITIES
)) {
1435 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1436 Vector_Copy(P
->Constraint
[i
], C
->Constraint
[i
], P
->Dimension
+2);
1438 value_set_si(C
->Constraint
[P
->NbConstraints
][0], 1);
1439 value_set_si(C
->Constraint
[P
->NbConstraints
][1+P
->Dimension
], 1);
1441 if (POL_HAS(P
, POL_POINTS
)) {
1442 C
->NbBid
= P
->NbBid
;
1443 for (i
= 0; i
< P
->NbRays
; ++i
)
1444 Vector_Copy(P
->Ray
[i
], C
->Ray
[i
], P
->Dimension
+2);
1446 value_set_si(C
->Ray
[P
->NbRays
][0], 1);
1447 value_set_si(C
->Ray
[P
->NbRays
][1+C
->Dimension
], 1);
1449 POL_SET(C
, POL_VALID
);
1450 if (POL_HAS(P
, POL_INEQUALITIES
))
1451 POL_SET(C
, POL_INEQUALITIES
);
1452 if (POL_HAS(P
, POL_POINTS
))
1453 POL_SET(C
, POL_POINTS
);
1454 if (POL_HAS(P
, POL_VERTICES
))
1455 POL_SET(C
, POL_VERTICES
);
1459 /* Returns a (dim+nparam+1)x((dim-n)+nparam+1) matrix
1460 * mapping the transformed subspace back to the original space.
1461 * n is the number of equalities involving the variables
1462 * (i.e., not purely the parameters).
1463 * The remaining n coordinates in the transformed space would
1464 * have constant (parametric) values and are therefore not
1465 * included in the variables of the new space.
1467 Matrix
*compress_variables(Matrix
*Equalities
, unsigned nparam
)
1469 unsigned dim
= (Equalities
->NbColumns
-2) - nparam
;
1470 Matrix
*M
, *H
, *Q
, *U
, *C
, *ratH
, *invH
, *Ul
, *T1
, *T2
, *T
;
1475 for (n
= 0; n
< Equalities
->NbRows
; ++n
)
1476 if (First_Non_Zero(Equalities
->p
[n
]+1, dim
) == -1)
1479 return Identity(dim
+nparam
+1);
1481 value_set_si(mone
, -1);
1482 M
= Matrix_Alloc(n
, dim
);
1483 C
= Matrix_Alloc(n
+1, nparam
+1);
1484 for (i
= 0; i
< n
; ++i
) {
1485 Vector_Copy(Equalities
->p
[i
]+1, M
->p
[i
], dim
);
1486 Vector_Scale(Equalities
->p
[i
]+1+dim
, C
->p
[i
], mone
, nparam
+1);
1488 value_set_si(C
->p
[n
][nparam
], 1);
1489 left_hermite(M
, &H
, &Q
, &U
);
1494 ratH
= Matrix_Alloc(n
+1, n
+1);
1495 invH
= Matrix_Alloc(n
+1, n
+1);
1496 for (i
= 0; i
< n
; ++i
)
1497 Vector_Copy(H
->p
[i
], ratH
->p
[i
], n
);
1498 value_set_si(ratH
->p
[n
][n
], 1);
1499 ok
= Matrix_Inverse(ratH
, invH
);
1503 T1
= Matrix_Alloc(n
+1, nparam
+1);
1504 Matrix_Product(invH
, C
, T1
);
1507 if (value_notone_p(T1
->p
[n
][nparam
])) {
1508 for (i
= 0; i
< n
; ++i
) {
1509 if (!mpz_divisible_p(T1
->p
[i
][nparam
], T1
->p
[n
][nparam
])) {
1514 /* compress_params should have taken care of this */
1515 for (j
= 0; j
< nparam
; ++j
)
1516 assert(mpz_divisible_p(T1
->p
[i
][j
], T1
->p
[n
][nparam
]));
1517 Vector_AntiScale(T1
->p
[i
], T1
->p
[i
], T1
->p
[n
][nparam
], nparam
+1);
1519 value_set_si(T1
->p
[n
][nparam
], 1);
1521 Ul
= Matrix_Alloc(dim
+1, n
+1);
1522 for (i
= 0; i
< dim
; ++i
)
1523 Vector_Copy(U
->p
[i
], Ul
->p
[i
], n
);
1524 value_set_si(Ul
->p
[dim
][n
], 1);
1525 T2
= Matrix_Alloc(dim
+1, nparam
+1);
1526 Matrix_Product(Ul
, T1
, T2
);
1530 T
= Matrix_Alloc(dim
+nparam
+1, (dim
-n
)+nparam
+1);
1531 for (i
= 0; i
< dim
; ++i
) {
1532 Vector_Copy(U
->p
[i
]+n
, T
->p
[i
], dim
-n
);
1533 Vector_Copy(T2
->p
[i
], T
->p
[i
]+dim
-n
, nparam
+1);
1535 for (i
= 0; i
< nparam
+1; ++i
)
1536 value_set_si(T
->p
[dim
+i
][(dim
-n
)+i
], 1);
1537 assert(value_one_p(T2
->p
[dim
][nparam
]));
1544 Matrix
*left_inverse(Matrix
*M
, Matrix
**Eq
)
1547 Matrix
*L
, *H
, *Q
, *U
, *ratH
, *invH
, *Ut
, *inv
;
1552 L
= Matrix_Alloc(M
->NbRows
-1, M
->NbColumns
-1);
1553 for (i
= 0; i
< L
->NbRows
; ++i
)
1554 Vector_Copy(M
->p
[i
], L
->p
[i
], L
->NbColumns
);
1555 right_hermite(L
, &H
, &U
, &Q
);
1558 t
= Vector_Alloc(U
->NbColumns
);
1559 for (i
= 0; i
< U
->NbColumns
; ++i
)
1560 value_oppose(t
->p
[i
], M
->p
[i
][M
->NbColumns
-1]);
1562 *Eq
= Matrix_Alloc(H
->NbRows
- H
->NbColumns
, 2 + U
->NbColumns
);
1563 for (i
= 0; i
< H
->NbRows
- H
->NbColumns
; ++i
) {
1564 Vector_Copy(U
->p
[H
->NbColumns
+i
], (*Eq
)->p
[i
]+1, U
->NbColumns
);
1565 Inner_Product(U
->p
[H
->NbColumns
+i
], t
->p
, U
->NbColumns
,
1566 (*Eq
)->p
[i
]+1+U
->NbColumns
);
1569 ratH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1570 invH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1571 for (i
= 0; i
< H
->NbColumns
; ++i
)
1572 Vector_Copy(H
->p
[i
], ratH
->p
[i
], H
->NbColumns
);
1573 value_set_si(ratH
->p
[ratH
->NbRows
-1][ratH
->NbColumns
-1], 1);
1575 ok
= Matrix_Inverse(ratH
, invH
);
1578 Ut
= Matrix_Alloc(invH
->NbRows
, U
->NbColumns
+1);
1579 for (i
= 0; i
< Ut
->NbRows
-1; ++i
) {
1580 Vector_Copy(U
->p
[i
], Ut
->p
[i
], U
->NbColumns
);
1581 Inner_Product(U
->p
[i
], t
->p
, U
->NbColumns
, &Ut
->p
[i
][Ut
->NbColumns
-1]);
1585 value_set_si(Ut
->p
[Ut
->NbRows
-1][Ut
->NbColumns
-1], 1);
1586 inv
= Matrix_Alloc(invH
->NbRows
, Ut
->NbColumns
);
1587 Matrix_Product(invH
, Ut
, inv
);
1593 /* Check whether all rays are revlex positive in the parameters
1595 int Polyhedron_has_revlex_positive_rays(Polyhedron
*P
, unsigned nparam
)
1598 for (r
= 0; r
< P
->NbRays
; ++r
) {
1599 if (value_notzero_p(P
->Ray
[r
][P
->Dimension
+1]))
1602 for (i
= P
->Dimension
-1; i
>= P
->Dimension
-nparam
; --i
) {
1603 if (value_neg_p(P
->Ray
[r
][i
+1]))
1605 if (value_pos_p(P
->Ray
[r
][i
+1]))
1608 /* A ray independent of the parameters */
1609 if (i
< P
->Dimension
-nparam
)
1615 static Polyhedron
*Recession_Cone(Polyhedron
*P
, unsigned nparam
, unsigned MaxRays
)
1618 unsigned nvar
= P
->Dimension
- nparam
;
1619 Matrix
*M
= Matrix_Alloc(P
->NbConstraints
, 1 + nvar
+ 1);
1620 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1621 Vector_Copy(P
->Constraint
[i
], M
->p
[i
], 1+nvar
);
1622 Polyhedron
*R
= Constraints2Polyhedron(M
, MaxRays
);
1627 int Polyhedron_is_unbounded(Polyhedron
*P
, unsigned nparam
, unsigned MaxRays
)
1631 Polyhedron
*R
= Recession_Cone(P
, nparam
, MaxRays
);
1632 POL_ENSURE_VERTICES(R
);
1634 for (i
= 0; i
< R
->NbRays
; ++i
)
1635 if (value_zero_p(R
->Ray
[i
][1+R
->Dimension
]))
1637 is_unbounded
= R
->NbBid
> 0 || i
< R
->NbRays
;
1639 return is_unbounded
;