3 #include "lattice_point.h"
9 static int lex_cmp(vec_ZZ
& a
, vec_ZZ
& b
)
11 assert(a
.length() == b
.length());
13 for (int j
= 0; j
< a
.length(); ++j
)
15 return a
[j
] < b
[j
] ? -1 : 1;
19 void bf_base::add_term(bfc_term_base
*t
, vec_ZZ
& num_orig
, vec_ZZ
& extra_num
)
22 int d
= num_orig
.length();
24 for (int l
= 0; l
< d
-1; ++l
)
25 num
[l
] = num_orig
[l
+1] + extra_num
[l
];
30 void bf_base::add_term(bfc_term_base
*t
, vec_ZZ
& num
)
32 int len
= t
->terms
.NumRows();
34 for (i
= 0; i
< len
; ++i
) {
35 r
= lex_cmp(t
->terms
[i
], num
);
39 if (i
== len
|| r
> 0) {
40 t
->terms
.SetDims(len
+1, num
.length());
49 bfc_term_base
* bf_base::find_bfc_term(bfc_vec
& v
, int *powers
, int len
)
52 for (i
= v
.begin(); i
!= v
.end(); ++i
) {
54 for (j
= 0; j
< len
; ++j
)
55 if ((*i
)->powers
[j
] != powers
[j
])
59 if ((*i
)->powers
[j
] > powers
[j
])
63 bfc_term_base
* t
= new_bf_term(len
);
65 memcpy(t
->powers
, powers
, len
* sizeof(int));
70 void bf_base::reduce(mat_ZZ
& factors
, bfc_vec
& v
, barvinok_options
*options
)
73 unsigned nf
= factors
.NumRows();
74 unsigned d
= factors
.NumCols();
77 return base(factors
, v
);
79 bf_reducer
bfr(factors
, v
, this);
83 if (bfr
.vn
.size() > 0)
84 reduce(bfr
.nfactors
, bfr
.vn
, options
);
87 int bf_base::setup_factors(const mat_ZZ
& rays
, mat_ZZ
& factors
,
88 bfc_term_base
* t
, int s
)
90 factors
.SetDims(dim
, dim
);
94 for (r
= 0; r
< dim
; ++r
)
97 for (r
= 0; r
< dim
; ++r
) {
100 for (k
= 0; k
< dim
; ++k
)
101 if (factors
[r
][k
] != 0)
103 if (factors
[r
][k
] < 0) {
104 factors
[r
] = -factors
[r
];
105 for (int i
= 0; i
< t
->terms
.NumRows(); ++i
)
106 t
->terms
[i
] += factors
[r
];
114 void bf_base::handle(const mat_ZZ
& rays
, Value
*vertex
, const QQ
& c
,
115 unsigned long det
, int *closed
, barvinok_options
*options
)
117 bfc_term
* t
= new bfc_term(dim
);
118 vector
< bfc_term_base
* > v
;
121 lattice_point(vertex
, rays
, t
->terms
, det
, closed
);
123 // the elements of factors are always lexpositive
125 int s
= setup_factors(rays
, factors
, t
, 1);
127 t
->c
.SetLength(t
->terms
.NumRows());
129 for (int i
= 0; i
< t
->c
.length(); ++i
) {
134 reduce(factors
, v
, options
);
137 bfc_term_base
* bfcounter_base::new_bf_term(int len
)
139 bfc_term
* t
= new bfc_term(len
);
144 void bfcounter_base::set_factor(bfc_term_base
*t
, int k
, int change
)
146 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
152 void bfcounter_base::set_factor(bfc_term_base
*t
, int k
, mpq_t
&f
, int change
)
154 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
155 value2zz(mpq_numref(f
), c
.n
);
156 value2zz(mpq_denref(f
), c
.d
);
162 void bfcounter_base::set_factor(bfc_term_base
*t
, int k
, const QQ
& c_factor
,
165 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
172 void bfcounter_base::insert_term(bfc_term_base
*t
, int i
)
174 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
175 int len
= t
->terms
.NumRows()-1; // already increased by one
177 bfct
->c
.SetLength(len
+1);
178 for (int j
= len
; j
> i
; --j
) {
179 bfct
->c
[j
] = bfct
->c
[j
-1];
180 t
->terms
[j
] = t
->terms
[j
-1];
185 void bfcounter_base::update_term(bfc_term_base
*t
, int i
)
187 bfc_term
* bfct
= static_cast<bfc_term
*>(t
);
192 void bf_reducer::compute_extra_num(int i
)
196 no_param
= 0; // r from text
197 only_param
= 0; // k-r-s from text
198 total_power
= 0; // k from text
200 for (int j
= 0; j
< nf
; ++j
) {
201 if (v
[i
]->powers
[j
] == 0)
204 total_power
+= v
[i
]->powers
[j
];
205 if (factors
[j
][0] == 0) {
206 only_param
+= v
[i
]->powers
[j
];
210 if (old2new
[j
] == -1)
211 no_param
+= v
[i
]->powers
[j
];
213 extra_num
+= -sign
[j
] * v
[i
]->powers
[j
] * nfactors
[old2new
[j
]];
214 changes
+= v
[i
]->powers
[j
];
218 void bf_reducer::update_powers(const std::vector
<int>& powers
)
220 for (int l
= 0; l
< nnf
; ++l
)
221 npowers
[l
] = bpowers
[l
];
223 l_extra_num
= extra_num
;
226 for (int l
= 0; l
< powers
.size(); ++l
) {
230 assert(old2new
[l
] != -1);
232 npowers
[old2new
[l
]] += n
;
233 // interpretation of sign has been inverted
234 // since we inverted the power for specialization
236 l_extra_num
+= n
* nfactors
[old2new
[l
]];
243 void bf_reducer::compute_reduced_factors()
245 unsigned nf
= factors
.NumRows();
246 unsigned d
= factors
.NumCols();
248 nfactors
.SetDims(nnf
, d
-1);
250 for (int i
= 0; i
< nf
; ++i
) {
253 for (j
= 0; j
< nnf
; ++j
) {
255 for (k
= 1; k
< d
; ++k
)
256 if (factors
[i
][k
] != 0 || nfactors
[j
][k
-1] != 0)
258 if (k
< d
&& factors
[i
][k
] == -nfactors
[j
][k
-1])
261 if (factors
[i
][k
] != s
* nfactors
[j
][k
-1])
269 for (k
= 1; k
< d
; ++k
)
270 if (factors
[i
][k
] != 0)
273 if (factors
[i
][k
] < 0)
275 nfactors
.SetDims(++nnf
, d
-1);
276 for (int k
= 1; k
< d
; ++k
)
277 nfactors
[j
][k
-1] = s
* factors
[i
][k
];
283 npowers
= new int[nnf
];
284 bpowers
= new int[nnf
];
287 void bf_reducer::reduce(barvinok_options
*options
)
289 compute_reduced_factors();
291 for (int i
= 0; i
< v
.size(); ++i
) {
292 compute_extra_num(i
);
296 extra_num
.SetLength(d
-1);
299 for (int k
= 0; k
< nnf
; ++k
)
301 for (int k
= 0; k
< nf
; ++k
) {
302 assert(old2new
[k
] != -1);
303 npowers
[old2new
[k
]] += v
[i
]->powers
[k
];
305 extra_num
+= v
[i
]->powers
[k
] * nfactors
[old2new
[k
]];
306 changes
+= v
[i
]->powers
[k
];
310 bfc_term_base
* t
= bf
->find_bfc_term(vn
, npowers
, nnf
);
311 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
312 bf
->set_factor(v
[i
], k
, changes
% 2);
313 bf
->add_term(t
, v
[i
]->terms
[k
], extra_num
);
316 // powers of "constant" part
317 for (int k
= 0; k
< nnf
; ++k
)
319 for (int k
= 0; k
< nf
; ++k
) {
320 if (factors
[k
][0] != 0)
322 assert(old2new
[k
] != -1);
323 bpowers
[old2new
[k
]] += v
[i
]->powers
[k
];
325 extra_num
+= v
[i
]->powers
[k
] * nfactors
[old2new
[k
]];
326 changes
+= v
[i
]->powers
[k
];
331 for (j
= 0; j
< nf
; ++j
)
332 if (old2new
[j
] == -1 && v
[i
]->powers
[j
] > 0)
335 dpoly
D(no_param
, factors
[j
][0], 1);
336 for (int k
= 1; k
< v
[i
]->powers
[j
]; ++k
) {
337 dpoly
fact(no_param
, factors
[j
][0], 1);
341 if (old2new
[j
] == -1)
342 for (int k
= 0; k
< v
[i
]->powers
[j
]; ++k
) {
343 dpoly
fact(no_param
, factors
[j
][0], 1);
347 if (no_param
+ only_param
== total_power
&&
348 bf
->constant_vertex(d
)) {
349 bfc_term_base
* t
= NULL
;
354 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
355 dpoly
n(no_param
, v
[i
]->terms
[k
][0]);
356 mpq_set_si(bf
->tcount
, 0, 1);
357 n
.div(D
, bf
->tcount
, bf
->one
);
359 if (value_zero_p(mpq_numref(bf
->tcount
)))
363 t
= bf
->find_bfc_term(vn
, bpowers
, nnf
);
364 bf
->set_factor(v
[i
], k
, bf
->tcount
, changes
% 2);
365 bf
->add_term(t
, v
[i
]->terms
[k
], extra_num
);
368 for (int j
= 0; j
< v
[i
]->terms
.NumRows(); ++j
) {
369 dpoly
n(no_param
, v
[i
]->terms
[j
][0]);
372 if (no_param
+ only_param
== total_power
)
373 r
= new dpoly_r(n
, nf
);
375 for (int k
= 0; k
< nf
; ++k
) {
376 if (v
[i
]->powers
[k
] == 0)
378 if (factors
[k
][0] == 0 || old2new
[k
] == -1)
381 dpoly
pd(no_param
-1, factors
[k
][0], 1);
383 for (int l
= 0; l
< v
[i
]->powers
[k
]; ++l
) {
385 for (q
= 0; q
< k
; ++q
)
386 if (old2new
[q
] == old2new
[k
] &&
391 r
= new dpoly_r(n
, pd
, q
, nf
);
393 dpoly_r
*nr
= new dpoly_r(r
, pd
, q
, nf
);
400 dpoly_r
*rc
= r
->div(D
);
403 factor
.d
= rc
->denom
;
405 if (bf
->constant_vertex(d
)) {
406 dpoly_r_term_list
& final
= rc
->c
[rc
->len
-1];
408 dpoly_r_term_list::iterator k
;
409 for (k
= final
.begin(); k
!= final
.end(); ++k
) {
410 if ((*k
)->coeff
== 0)
413 update_powers((*k
)->powers
);
415 bfc_term_base
* t
= bf
->find_bfc_term(vn
, npowers
, nnf
);
416 factor
.n
= (*k
)->coeff
;
417 bf
->set_factor(v
[i
], j
, factor
, l_changes
% 2);
418 bf
->add_term(t
, v
[i
]->terms
[j
], l_extra_num
);
421 bf
->cum(this, v
[i
], j
, rc
, options
);