1 /***********************************************************************/
2 /* copyright 1997, Doran Wilde */
3 /* copyright 1997-2000, Vincent Loechner */
4 /* copyright 2003-2006, Sven Verdoolaege */
5 /* Permission is granted to copy, use, and distribute */
6 /* for any commercial or noncommercial purpose under the terms */
7 /* of the GNU General Public license, version 2, June 1991 */
8 /* (see file : LICENSE). */
9 /***********************************************************************/
15 #include <barvinok/evalue.h>
16 #include <barvinok/barvinok.h>
17 #include <barvinok/util.h>
19 #ifndef value_pmodulus
20 #define value_pmodulus(ref,val1,val2) (mpz_fdiv_r((ref),(val1),(val2)))
23 #define ALLOC(type) (type*)malloc(sizeof(type))
24 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
27 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
29 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
32 void evalue_set_si(evalue
*ev
, int n
, int d
) {
33 value_set_si(ev
->d
, d
);
35 value_set_si(ev
->x
.n
, n
);
38 void evalue_set(evalue
*ev
, Value n
, Value d
) {
39 value_assign(ev
->d
, d
);
41 value_assign(ev
->x
.n
, n
);
46 evalue
*EP
= ALLOC(evalue
);
48 evalue_set_si(EP
, 0, 1);
52 void aep_evalue(evalue
*e
, int *ref
) {
57 if (value_notzero_p(e
->d
))
58 return; /* a rational number, its already reduced */
60 return; /* hum... an overflow probably occured */
62 /* First check the components of p */
63 for (i
=0;i
<p
->size
;i
++)
64 aep_evalue(&p
->arr
[i
],ref
);
71 p
->pos
= ref
[p
->pos
-1]+1;
77 void addeliminatedparams_evalue(evalue
*e
,Matrix
*CT
) {
83 if (value_notzero_p(e
->d
))
84 return; /* a rational number, its already reduced */
86 return; /* hum... an overflow probably occured */
89 ref
= (int *)malloc(sizeof(int)*(CT
->NbRows
-1));
90 for(i
=0;i
<CT
->NbRows
-1;i
++)
91 for(j
=0;j
<CT
->NbColumns
;j
++)
92 if(value_notzero_p(CT
->p
[i
][j
])) {
97 /* Transform the references in e, using ref */
101 } /* addeliminatedparams_evalue */
103 static void addeliminatedparams_partition(enode
*p
, Matrix
*CT
, Polyhedron
*CEq
,
104 unsigned nparam
, unsigned MaxRays
)
107 assert(p
->type
== partition
);
110 for (i
= 0; i
< p
->size
/2; i
++) {
111 Polyhedron
*D
= EVALUE_DOMAIN(p
->arr
[2*i
]);
112 Polyhedron
*T
= DomainPreimage(D
, CT
, MaxRays
);
116 T
= DomainIntersection(D
, CEq
, MaxRays
);
119 EVALUE_SET_DOMAIN(p
->arr
[2*i
], T
);
123 void addeliminatedparams_enum(evalue
*e
, Matrix
*CT
, Polyhedron
*CEq
,
124 unsigned MaxRays
, unsigned nparam
)
129 if (CT
->NbRows
== CT
->NbColumns
)
132 if (EVALUE_IS_ZERO(*e
))
135 if (value_notzero_p(e
->d
)) {
138 value_set_si(res
.d
, 0);
139 res
.x
.p
= new_enode(partition
, 2, nparam
);
140 EVALUE_SET_DOMAIN(res
.x
.p
->arr
[0],
141 DomainConstraintSimplify(Polyhedron_Copy(CEq
), MaxRays
));
142 value_clear(res
.x
.p
->arr
[1].d
);
143 res
.x
.p
->arr
[1] = *e
;
151 addeliminatedparams_partition(p
, CT
, CEq
, nparam
, MaxRays
);
152 for (i
= 0; i
< p
->size
/2; i
++)
153 addeliminatedparams_evalue(&p
->arr
[2*i
+1], CT
);
156 static int mod_rational_smaller(evalue
*e1
, evalue
*e2
)
164 assert(value_notzero_p(e1
->d
));
165 assert(value_notzero_p(e2
->d
));
166 value_multiply(m
, e1
->x
.n
, e2
->d
);
167 value_multiply(m2
, e2
->x
.n
, e1
->d
);
170 else if (value_gt(m
, m2
))
180 static int mod_term_smaller_r(evalue
*e1
, evalue
*e2
)
182 if (value_notzero_p(e1
->d
)) {
184 if (value_zero_p(e2
->d
))
186 r
= mod_rational_smaller(e1
, e2
);
187 return r
== -1 ? 0 : r
;
189 if (value_notzero_p(e2
->d
))
191 if (e1
->x
.p
->pos
< e2
->x
.p
->pos
)
193 else if (e1
->x
.p
->pos
> e2
->x
.p
->pos
)
196 int r
= mod_rational_smaller(&e1
->x
.p
->arr
[1], &e2
->x
.p
->arr
[1]);
198 ? mod_term_smaller_r(&e1
->x
.p
->arr
[0], &e2
->x
.p
->arr
[0])
203 static int mod_term_smaller(const evalue
*e1
, const evalue
*e2
)
205 assert(value_zero_p(e1
->d
));
206 assert(value_zero_p(e2
->d
));
207 assert(e1
->x
.p
->type
== fractional
|| e1
->x
.p
->type
== flooring
);
208 assert(e2
->x
.p
->type
== fractional
|| e2
->x
.p
->type
== flooring
);
209 return mod_term_smaller_r(&e1
->x
.p
->arr
[0], &e2
->x
.p
->arr
[0]);
212 static void check_order(const evalue
*e
)
217 if (value_notzero_p(e
->d
))
220 switch (e
->x
.p
->type
) {
222 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
)
223 check_order(&e
->x
.p
->arr
[2*i
+1]);
226 for (i
= 1; i
< e
->x
.p
->size
; ++i
) {
228 if (value_notzero_p(a
->d
))
230 switch (a
->x
.p
->type
) {
232 assert(mod_term_smaller(&e
->x
.p
->arr
[0], &a
->x
.p
->arr
[0]));
241 for (i
= 0; i
< e
->x
.p
->size
; ++i
) {
243 if (value_notzero_p(a
->d
))
245 switch (a
->x
.p
->type
) {
247 assert(e
->x
.p
->pos
< a
->x
.p
->pos
);
258 for (i
= 1; i
< e
->x
.p
->size
; ++i
) {
260 if (value_notzero_p(a
->d
))
262 switch (a
->x
.p
->type
) {
273 /* Negative pos means inequality */
274 /* s is negative of substitution if m is not zero */
283 struct fixed_param
*fixed
;
288 static int relations_depth(evalue
*e
)
293 value_zero_p(e
->d
) && e
->x
.p
->type
== relation
;
294 e
= &e
->x
.p
->arr
[1], ++d
);
298 static void poly_denom_not_constant(evalue
**pp
, Value
*d
)
303 while (value_zero_p(p
->d
)) {
304 assert(p
->x
.p
->type
== polynomial
);
305 assert(p
->x
.p
->size
== 2);
306 assert(value_notzero_p(p
->x
.p
->arr
[1].d
));
307 value_lcm(*d
, p
->x
.p
->arr
[1].d
, d
);
313 static void poly_denom(evalue
*p
, Value
*d
)
315 poly_denom_not_constant(&p
, d
);
316 value_lcm(*d
, p
->d
, d
);
319 static void realloc_substitution(struct subst
*s
, int d
)
321 struct fixed_param
*n
;
324 for (i
= 0; i
< s
->n
; ++i
)
331 static int add_modulo_substitution(struct subst
*s
, evalue
*r
)
337 assert(value_zero_p(r
->d
) && r
->x
.p
->type
== relation
);
340 /* May have been reduced already */
341 if (value_notzero_p(m
->d
))
344 assert(value_zero_p(m
->d
) && m
->x
.p
->type
== fractional
);
345 assert(m
->x
.p
->size
== 3);
347 /* fractional was inverted during reduction
348 * invert it back and move constant in
350 if (!EVALUE_IS_ONE(m
->x
.p
->arr
[2])) {
351 assert(value_pos_p(m
->x
.p
->arr
[2].d
));
352 assert(value_mone_p(m
->x
.p
->arr
[2].x
.n
));
353 value_set_si(m
->x
.p
->arr
[2].x
.n
, 1);
354 value_increment(m
->x
.p
->arr
[1].x
.n
, m
->x
.p
->arr
[1].x
.n
);
355 assert(value_eq(m
->x
.p
->arr
[1].x
.n
, m
->x
.p
->arr
[1].d
));
356 value_set_si(m
->x
.p
->arr
[1].x
.n
, 1);
357 eadd(&m
->x
.p
->arr
[1], &m
->x
.p
->arr
[0]);
358 value_set_si(m
->x
.p
->arr
[1].x
.n
, 0);
359 value_set_si(m
->x
.p
->arr
[1].d
, 1);
362 /* Oops. Nested identical relations. */
363 if (!EVALUE_IS_ZERO(m
->x
.p
->arr
[1]))
366 if (s
->n
>= s
->max
) {
367 int d
= relations_depth(r
);
368 realloc_substitution(s
, d
);
372 assert(value_zero_p(p
->d
) && p
->x
.p
->type
== polynomial
);
373 assert(p
->x
.p
->size
== 2);
376 assert(value_pos_p(f
->x
.n
));
378 value_init(s
->fixed
[s
->n
].m
);
379 value_assign(s
->fixed
[s
->n
].m
, f
->d
);
380 s
->fixed
[s
->n
].pos
= p
->x
.p
->pos
;
381 value_init(s
->fixed
[s
->n
].d
);
382 value_assign(s
->fixed
[s
->n
].d
, f
->x
.n
);
383 value_init(s
->fixed
[s
->n
].s
.d
);
384 evalue_copy(&s
->fixed
[s
->n
].s
, &p
->x
.p
->arr
[0]);
390 static int type_offset(enode
*p
)
392 return p
->type
== fractional
? 1 :
393 p
->type
== flooring
? 1 : 0;
396 static void reorder_terms_about(enode
*p
, evalue
*v
)
399 int offset
= type_offset(p
);
401 for (i
= p
->size
-1; i
>= offset
+1; i
--) {
403 eadd(&p
->arr
[i
], &p
->arr
[i
-1]);
404 free_evalue_refs(&(p
->arr
[i
]));
410 static void reorder_terms(evalue
*e
)
415 assert(value_zero_p(e
->d
));
417 assert(p
->type
= fractional
); /* for now */
420 value_set_si(f
.d
, 0);
421 f
.x
.p
= new_enode(fractional
, 3, -1);
422 value_clear(f
.x
.p
->arr
[0].d
);
423 f
.x
.p
->arr
[0] = p
->arr
[0];
424 evalue_set_si(&f
.x
.p
->arr
[1], 0, 1);
425 evalue_set_si(&f
.x
.p
->arr
[2], 1, 1);
426 reorder_terms_about(p
, &f
);
432 void _reduce_evalue (evalue
*e
, struct subst
*s
, int fract
) {
438 if (value_notzero_p(e
->d
)) {
440 mpz_fdiv_r(e
->x
.n
, e
->x
.n
, e
->d
);
441 return; /* a rational number, its already reduced */
445 return; /* hum... an overflow probably occured */
447 /* First reduce the components of p */
448 add
= p
->type
== relation
;
449 for (i
=0; i
<p
->size
; i
++) {
451 add
= add_modulo_substitution(s
, e
);
453 if (i
== 0 && p
->type
==fractional
)
454 _reduce_evalue(&p
->arr
[i
], s
, 1);
456 _reduce_evalue(&p
->arr
[i
], s
, fract
);
458 if (add
&& i
== p
->size
-1) {
460 value_clear(s
->fixed
[s
->n
].m
);
461 value_clear(s
->fixed
[s
->n
].d
);
462 free_evalue_refs(&s
->fixed
[s
->n
].s
);
463 } else if (add
&& i
== 1)
464 s
->fixed
[s
->n
-1].pos
*= -1;
467 if (p
->type
==periodic
) {
469 /* Try to reduce the period */
470 for (i
=1; i
<=(p
->size
)/2; i
++) {
471 if ((p
->size
% i
)==0) {
473 /* Can we reduce the size to i ? */
475 for (k
=j
+i
; k
<e
->x
.p
->size
; k
+=i
)
476 if (!eequal(&p
->arr
[j
], &p
->arr
[k
])) goto you_lose
;
479 for (j
=i
; j
<p
->size
; j
++) free_evalue_refs(&p
->arr
[j
]);
483 you_lose
: /* OK, lets not do it */
488 /* Try to reduce its strength */
491 memcpy(e
,&p
->arr
[0],sizeof(evalue
));
495 else if (p
->type
==polynomial
) {
496 for (k
= 0; s
&& k
< s
->n
; ++k
) {
497 if (s
->fixed
[k
].pos
== p
->pos
) {
498 int divide
= value_notone_p(s
->fixed
[k
].d
);
501 if (value_notzero_p(s
->fixed
[k
].m
)) {
504 assert(p
->size
== 2);
505 if (divide
&& value_ne(s
->fixed
[k
].d
, p
->arr
[1].x
.n
))
507 if (!mpz_divisible_p(s
->fixed
[k
].m
, p
->arr
[1].d
))
514 value_assign(d
.d
, s
->fixed
[k
].d
);
516 if (value_notzero_p(s
->fixed
[k
].m
))
517 value_oppose(d
.x
.n
, s
->fixed
[k
].m
);
519 value_set_si(d
.x
.n
, 1);
522 for (i
=p
->size
-1;i
>=1;i
--) {
523 emul(&s
->fixed
[k
].s
, &p
->arr
[i
]);
525 emul(&d
, &p
->arr
[i
]);
526 eadd(&p
->arr
[i
], &p
->arr
[i
-1]);
527 free_evalue_refs(&(p
->arr
[i
]));
530 _reduce_evalue(&p
->arr
[0], s
, fract
);
533 free_evalue_refs(&d
);
539 /* Try to reduce the degree */
540 for (i
=p
->size
-1;i
>=1;i
--) {
541 if (!(value_one_p(p
->arr
[i
].d
) && value_zero_p(p
->arr
[i
].x
.n
)))
543 /* Zero coefficient */
544 free_evalue_refs(&(p
->arr
[i
]));
549 /* Try to reduce its strength */
552 memcpy(e
,&p
->arr
[0],sizeof(evalue
));
556 else if (p
->type
==fractional
) {
560 if (value_notzero_p(p
->arr
[0].d
)) {
562 value_assign(v
.d
, p
->arr
[0].d
);
564 mpz_fdiv_r(v
.x
.n
, p
->arr
[0].x
.n
, p
->arr
[0].d
);
569 evalue
*pp
= &p
->arr
[0];
570 assert(value_zero_p(pp
->d
) && pp
->x
.p
->type
== polynomial
);
571 assert(pp
->x
.p
->size
== 2);
573 /* search for exact duplicate among the modulo inequalities */
575 f
= &pp
->x
.p
->arr
[1];
576 for (k
= 0; s
&& k
< s
->n
; ++k
) {
577 if (-s
->fixed
[k
].pos
== pp
->x
.p
->pos
&&
578 value_eq(s
->fixed
[k
].d
, f
->x
.n
) &&
579 value_eq(s
->fixed
[k
].m
, f
->d
) &&
580 eequal(&s
->fixed
[k
].s
, &pp
->x
.p
->arr
[0]))
587 /* replace { E/m } by { (E-1)/m } + 1/m */
592 evalue_set_si(&extra
, 1, 1);
593 value_assign(extra
.d
, g
);
594 eadd(&extra
, &v
.x
.p
->arr
[1]);
595 free_evalue_refs(&extra
);
597 /* We've been going in circles; stop now */
598 if (value_ge(v
.x
.p
->arr
[1].x
.n
, v
.x
.p
->arr
[1].d
)) {
599 free_evalue_refs(&v
);
601 evalue_set_si(&v
, 0, 1);
606 value_set_si(v
.d
, 0);
607 v
.x
.p
= new_enode(fractional
, 3, -1);
608 evalue_set_si(&v
.x
.p
->arr
[1], 1, 1);
609 value_assign(v
.x
.p
->arr
[1].d
, g
);
610 evalue_set_si(&v
.x
.p
->arr
[2], 1, 1);
611 evalue_copy(&v
.x
.p
->arr
[0], &p
->arr
[0]);
614 for (f
= &v
.x
.p
->arr
[0]; value_zero_p(f
->d
);
617 value_division(f
->d
, g
, f
->d
);
618 value_multiply(f
->x
.n
, f
->x
.n
, f
->d
);
619 value_assign(f
->d
, g
);
620 value_decrement(f
->x
.n
, f
->x
.n
);
621 mpz_fdiv_r(f
->x
.n
, f
->x
.n
, f
->d
);
623 Gcd(f
->d
, f
->x
.n
, &g
);
624 value_division(f
->d
, f
->d
, g
);
625 value_division(f
->x
.n
, f
->x
.n
, g
);
634 /* reduction may have made this fractional arg smaller */
635 i
= reorder
? p
->size
: 1;
636 for ( ; i
< p
->size
; ++i
)
637 if (value_zero_p(p
->arr
[i
].d
) &&
638 p
->arr
[i
].x
.p
->type
== fractional
&&
639 !mod_term_smaller(e
, &p
->arr
[i
]))
643 value_set_si(v
.d
, 0);
644 v
.x
.p
= new_enode(fractional
, 3, -1);
645 evalue_set_si(&v
.x
.p
->arr
[1], 0, 1);
646 evalue_set_si(&v
.x
.p
->arr
[2], 1, 1);
647 evalue_copy(&v
.x
.p
->arr
[0], &p
->arr
[0]);
655 evalue
*pp
= &p
->arr
[0];
658 poly_denom_not_constant(&pp
, &m
);
659 mpz_fdiv_r(r
, m
, pp
->d
);
660 if (value_notzero_p(r
)) {
662 value_set_si(v
.d
, 0);
663 v
.x
.p
= new_enode(fractional
, 3, -1);
665 value_multiply(r
, m
, pp
->x
.n
);
666 value_multiply(v
.x
.p
->arr
[1].d
, m
, pp
->d
);
667 value_init(v
.x
.p
->arr
[1].x
.n
);
668 mpz_fdiv_r(v
.x
.p
->arr
[1].x
.n
, r
, pp
->d
);
669 mpz_fdiv_q(r
, r
, pp
->d
);
671 evalue_set_si(&v
.x
.p
->arr
[2], 1, 1);
672 evalue_copy(&v
.x
.p
->arr
[0], &p
->arr
[0]);
674 while (value_zero_p(pp
->d
))
675 pp
= &pp
->x
.p
->arr
[0];
677 value_assign(pp
->d
, m
);
678 value_assign(pp
->x
.n
, r
);
680 Gcd(pp
->d
, pp
->x
.n
, &r
);
681 value_division(pp
->d
, pp
->d
, r
);
682 value_division(pp
->x
.n
, pp
->x
.n
, r
);
695 for (pp
= &p
->arr
[0]; value_zero_p(pp
->d
);
696 pp
= &pp
->x
.p
->arr
[0]) {
697 f
= &pp
->x
.p
->arr
[1];
698 assert(value_pos_p(f
->d
));
699 mpz_mul_ui(twice
, f
->x
.n
, 2);
700 if (value_lt(twice
, f
->d
))
702 if (value_eq(twice
, f
->d
))
710 value_set_si(v
.d
, 0);
711 v
.x
.p
= new_enode(fractional
, 3, -1);
712 evalue_set_si(&v
.x
.p
->arr
[1], 0, 1);
713 poly_denom(&p
->arr
[0], &twice
);
714 value_assign(v
.x
.p
->arr
[1].d
, twice
);
715 value_decrement(v
.x
.p
->arr
[1].x
.n
, twice
);
716 evalue_set_si(&v
.x
.p
->arr
[2], -1, 1);
717 evalue_copy(&v
.x
.p
->arr
[0], &p
->arr
[0]);
719 for (pp
= &v
.x
.p
->arr
[0]; value_zero_p(pp
->d
);
720 pp
= &pp
->x
.p
->arr
[0]) {
721 f
= &pp
->x
.p
->arr
[1];
722 value_oppose(f
->x
.n
, f
->x
.n
);
723 mpz_fdiv_r(f
->x
.n
, f
->x
.n
, f
->d
);
725 value_division(pp
->d
, twice
, pp
->d
);
726 value_multiply(pp
->x
.n
, pp
->x
.n
, pp
->d
);
727 value_assign(pp
->d
, twice
);
728 value_oppose(pp
->x
.n
, pp
->x
.n
);
729 value_decrement(pp
->x
.n
, pp
->x
.n
);
730 mpz_fdiv_r(pp
->x
.n
, pp
->x
.n
, pp
->d
);
732 /* Maybe we should do this during reduction of
735 Gcd(pp
->d
, pp
->x
.n
, &twice
);
736 value_division(pp
->d
, pp
->d
, twice
);
737 value_division(pp
->x
.n
, pp
->x
.n
, twice
);
747 reorder_terms_about(p
, &v
);
748 _reduce_evalue(&p
->arr
[1], s
, fract
);
751 /* Try to reduce the degree */
752 for (i
=p
->size
-1;i
>=2;i
--) {
753 if (!(value_one_p(p
->arr
[i
].d
) && value_zero_p(p
->arr
[i
].x
.n
)))
755 /* Zero coefficient */
756 free_evalue_refs(&(p
->arr
[i
]));
761 /* Try to reduce its strength */
764 memcpy(e
,&p
->arr
[1],sizeof(evalue
));
765 free_evalue_refs(&(p
->arr
[0]));
769 else if (p
->type
== flooring
) {
770 /* Try to reduce the degree */
771 for (i
=p
->size
-1;i
>=2;i
--) {
772 if (!EVALUE_IS_ZERO(p
->arr
[i
]))
774 /* Zero coefficient */
775 free_evalue_refs(&(p
->arr
[i
]));
780 /* Try to reduce its strength */
783 memcpy(e
,&p
->arr
[1],sizeof(evalue
));
784 free_evalue_refs(&(p
->arr
[0]));
788 else if (p
->type
== relation
) {
789 if (p
->size
== 3 && eequal(&p
->arr
[1], &p
->arr
[2])) {
790 free_evalue_refs(&(p
->arr
[2]));
791 free_evalue_refs(&(p
->arr
[0]));
798 if (p
->size
== 3 && EVALUE_IS_ZERO(p
->arr
[2])) {
799 free_evalue_refs(&(p
->arr
[2]));
802 if (p
->size
== 2 && EVALUE_IS_ZERO(p
->arr
[1])) {
803 free_evalue_refs(&(p
->arr
[1]));
804 free_evalue_refs(&(p
->arr
[0]));
805 evalue_set_si(e
, 0, 1);
812 /* Relation was reduced by means of an identical
813 * inequality => remove
815 if (value_zero_p(m
->d
) && !EVALUE_IS_ZERO(m
->x
.p
->arr
[1]))
818 if (reduced
|| value_notzero_p(p
->arr
[0].d
)) {
819 if (!reduced
&& value_zero_p(p
->arr
[0].x
.n
)) {
821 memcpy(e
,&p
->arr
[1],sizeof(evalue
));
823 free_evalue_refs(&(p
->arr
[2]));
827 memcpy(e
,&p
->arr
[2],sizeof(evalue
));
829 evalue_set_si(e
, 0, 1);
830 free_evalue_refs(&(p
->arr
[1]));
832 free_evalue_refs(&(p
->arr
[0]));
838 } /* reduce_evalue */
840 static void add_substitution(struct subst
*s
, Value
*row
, unsigned dim
)
845 for (k
= 0; k
< dim
; ++k
)
846 if (value_notzero_p(row
[k
+1]))
849 Vector_Normalize_Positive(row
+1, dim
+1, k
);
850 assert(s
->n
< s
->max
);
851 value_init(s
->fixed
[s
->n
].d
);
852 value_init(s
->fixed
[s
->n
].m
);
853 value_assign(s
->fixed
[s
->n
].d
, row
[k
+1]);
854 s
->fixed
[s
->n
].pos
= k
+1;
855 value_set_si(s
->fixed
[s
->n
].m
, 0);
856 r
= &s
->fixed
[s
->n
].s
;
858 for (l
= k
+1; l
< dim
; ++l
)
859 if (value_notzero_p(row
[l
+1])) {
860 value_set_si(r
->d
, 0);
861 r
->x
.p
= new_enode(polynomial
, 2, l
+ 1);
862 value_init(r
->x
.p
->arr
[1].x
.n
);
863 value_oppose(r
->x
.p
->arr
[1].x
.n
, row
[l
+1]);
864 value_set_si(r
->x
.p
->arr
[1].d
, 1);
868 value_oppose(r
->x
.n
, row
[dim
+1]);
869 value_set_si(r
->d
, 1);
873 static void _reduce_evalue_in_domain(evalue
*e
, Polyhedron
*D
, struct subst
*s
)
876 Polyhedron
*orig
= D
;
881 D
= DomainConvex(D
, 0);
882 if (!D
->next
&& D
->NbEq
) {
886 realloc_substitution(s
, dim
);
888 int d
= relations_depth(e
);
890 NALLOC(s
->fixed
, s
->max
);
893 for (j
= 0; j
< D
->NbEq
; ++j
)
894 add_substitution(s
, D
->Constraint
[j
], dim
);
898 _reduce_evalue(e
, s
, 0);
901 for (j
= 0; j
< s
->n
; ++j
) {
902 value_clear(s
->fixed
[j
].d
);
903 value_clear(s
->fixed
[j
].m
);
904 free_evalue_refs(&s
->fixed
[j
].s
);
909 void reduce_evalue_in_domain(evalue
*e
, Polyhedron
*D
)
911 struct subst s
= { NULL
, 0, 0 };
913 if (EVALUE_IS_ZERO(*e
))
917 evalue_set_si(e
, 0, 1);
920 _reduce_evalue_in_domain(e
, D
, &s
);
925 void reduce_evalue (evalue
*e
) {
926 struct subst s
= { NULL
, 0, 0 };
928 if (value_notzero_p(e
->d
))
929 return; /* a rational number, its already reduced */
931 if (e
->x
.p
->type
== partition
) {
934 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
935 Polyhedron
*D
= EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]);
937 /* This shouldn't really happen;
938 * Empty domains should not be added.
940 POL_ENSURE_VERTICES(D
);
942 _reduce_evalue_in_domain(&e
->x
.p
->arr
[2*i
+1], D
, &s
);
944 if (emptyQ(D
) || EVALUE_IS_ZERO(e
->x
.p
->arr
[2*i
+1])) {
945 free_evalue_refs(&e
->x
.p
->arr
[2*i
+1]);
946 Domain_Free(EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]));
947 value_clear(e
->x
.p
->arr
[2*i
].d
);
949 e
->x
.p
->arr
[2*i
] = e
->x
.p
->arr
[e
->x
.p
->size
];
950 e
->x
.p
->arr
[2*i
+1] = e
->x
.p
->arr
[e
->x
.p
->size
+1];
954 if (e
->x
.p
->size
== 0) {
956 evalue_set_si(e
, 0, 1);
959 _reduce_evalue(e
, &s
, 0);
964 void print_evalue(FILE *DST
, const evalue
*e
, char **pname
)
966 if(value_notzero_p(e
->d
)) {
967 if(value_notone_p(e
->d
)) {
968 value_print(DST
,VALUE_FMT
,e
->x
.n
);
970 value_print(DST
,VALUE_FMT
,e
->d
);
973 value_print(DST
,VALUE_FMT
,e
->x
.n
);
977 print_enode(DST
,e
->x
.p
,pname
);
981 void print_enode(FILE *DST
,enode
*p
,char **pname
) {
986 fprintf(DST
, "NULL");
992 for (i
=0; i
<p
->size
; i
++) {
993 print_evalue(DST
, &p
->arr
[i
], pname
);
997 fprintf(DST
, " }\n");
1001 for (i
=p
->size
-1; i
>=0; i
--) {
1002 print_evalue(DST
, &p
->arr
[i
], pname
);
1003 if (i
==1) fprintf(DST
, " * %s + ", pname
[p
->pos
-1]);
1005 fprintf(DST
, " * %s^%d + ", pname
[p
->pos
-1], i
);
1007 fprintf(DST
, " )\n");
1011 for (i
=0; i
<p
->size
; i
++) {
1012 print_evalue(DST
, &p
->arr
[i
], pname
);
1013 if (i
!=(p
->size
-1)) fprintf(DST
, ", ");
1015 fprintf(DST
," ]_%s", pname
[p
->pos
-1]);
1020 for (i
=p
->size
-1; i
>=1; i
--) {
1021 print_evalue(DST
, &p
->arr
[i
], pname
);
1023 fprintf(DST
, " * ");
1024 fprintf(DST
, p
->type
== flooring
? "[" : "{");
1025 print_evalue(DST
, &p
->arr
[0], pname
);
1026 fprintf(DST
, p
->type
== flooring
? "]" : "}");
1028 fprintf(DST
, "^%d + ", i
-1);
1030 fprintf(DST
, " + ");
1033 fprintf(DST
, " )\n");
1037 print_evalue(DST
, &p
->arr
[0], pname
);
1038 fprintf(DST
, "= 0 ] * \n");
1039 print_evalue(DST
, &p
->arr
[1], pname
);
1041 fprintf(DST
, " +\n [ ");
1042 print_evalue(DST
, &p
->arr
[0], pname
);
1043 fprintf(DST
, "!= 0 ] * \n");
1044 print_evalue(DST
, &p
->arr
[2], pname
);
1048 char **names
= pname
;
1049 int maxdim
= EVALUE_DOMAIN(p
->arr
[0])->Dimension
;
1050 if (!pname
|| p
->pos
< maxdim
) {
1051 NALLOC(names
, maxdim
);
1052 for (i
= 0; i
< p
->pos
; ++i
) {
1054 names
[i
] = pname
[i
];
1056 NALLOC(names
[i
], 10);
1057 snprintf(names
[i
], 10, "%c", 'P'+i
);
1060 for ( ; i
< maxdim
; ++i
) {
1061 NALLOC(names
[i
], 10);
1062 snprintf(names
[i
], 10, "_p%d", i
);
1066 for (i
=0; i
<p
->size
/2; i
++) {
1067 Print_Domain(DST
, EVALUE_DOMAIN(p
->arr
[2*i
]), names
);
1068 print_evalue(DST
, &p
->arr
[2*i
+1], names
);
1071 if (!pname
|| p
->pos
< maxdim
) {
1072 for (i
= pname
? p
->pos
: 0; i
< maxdim
; ++i
)
1085 static void eadd_rev(const evalue
*e1
, evalue
*res
)
1089 evalue_copy(&ev
, e1
);
1091 free_evalue_refs(res
);
1095 static void eadd_rev_cst(const evalue
*e1
, evalue
*res
)
1099 evalue_copy(&ev
, e1
);
1100 eadd(res
, &ev
.x
.p
->arr
[type_offset(ev
.x
.p
)]);
1101 free_evalue_refs(res
);
1105 static int is_zero_on(evalue
*e
, Polyhedron
*D
)
1110 tmp
.x
.p
= new_enode(partition
, 2, D
->Dimension
);
1111 EVALUE_SET_DOMAIN(tmp
.x
.p
->arr
[0], Domain_Copy(D
));
1112 evalue_copy(&tmp
.x
.p
->arr
[1], e
);
1113 reduce_evalue(&tmp
);
1114 is_zero
= EVALUE_IS_ZERO(tmp
);
1115 free_evalue_refs(&tmp
);
1119 struct section
{ Polyhedron
* D
; evalue E
; };
1121 void eadd_partitions(const evalue
*e1
, evalue
*res
)
1126 s
= (struct section
*)
1127 malloc((e1
->x
.p
->size
/2+1) * (res
->x
.p
->size
/2+1) *
1128 sizeof(struct section
));
1130 assert(e1
->x
.p
->pos
== res
->x
.p
->pos
);
1131 assert(e1
->x
.p
->pos
== EVALUE_DOMAIN(e1
->x
.p
->arr
[0])->Dimension
);
1132 assert(res
->x
.p
->pos
== EVALUE_DOMAIN(res
->x
.p
->arr
[0])->Dimension
);
1135 for (j
= 0; j
< e1
->x
.p
->size
/2; ++j
) {
1136 assert(res
->x
.p
->size
>= 2);
1137 fd
= DomainDifference(EVALUE_DOMAIN(e1
->x
.p
->arr
[2*j
]),
1138 EVALUE_DOMAIN(res
->x
.p
->arr
[0]), 0);
1140 for (i
= 1; i
< res
->x
.p
->size
/2; ++i
) {
1142 fd
= DomainDifference(fd
, EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]), 0);
1151 /* See if we can extend one of the domains in res to cover fd */
1152 for (i
= 0; i
< res
->x
.p
->size
/2; ++i
)
1153 if (is_zero_on(&res
->x
.p
->arr
[2*i
+1], fd
))
1155 if (i
< res
->x
.p
->size
/2) {
1156 EVALUE_SET_DOMAIN(res
->x
.p
->arr
[2*i
],
1157 DomainConcat(fd
, EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
])));
1160 value_init(s
[n
].E
.d
);
1161 evalue_copy(&s
[n
].E
, &e1
->x
.p
->arr
[2*j
+1]);
1165 for (i
= 0; i
< res
->x
.p
->size
/2; ++i
) {
1166 fd
= EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]);
1167 for (j
= 0; j
< e1
->x
.p
->size
/2; ++j
) {
1169 d
= DomainIntersection(EVALUE_DOMAIN(e1
->x
.p
->arr
[2*j
]),
1170 EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]), 0);
1176 fd
= DomainDifference(fd
, EVALUE_DOMAIN(e1
->x
.p
->arr
[2*j
]), 0);
1177 if (t
!= EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]))
1179 value_init(s
[n
].E
.d
);
1180 evalue_copy(&s
[n
].E
, &res
->x
.p
->arr
[2*i
+1]);
1181 eadd(&e1
->x
.p
->arr
[2*j
+1], &s
[n
].E
);
1182 if (!emptyQ(fd
) && is_zero_on(&e1
->x
.p
->arr
[2*j
+1], fd
)) {
1183 d
= DomainConcat(fd
, d
);
1184 fd
= Empty_Polyhedron(fd
->Dimension
);
1190 s
[n
].E
= res
->x
.p
->arr
[2*i
+1];
1194 free_evalue_refs(&res
->x
.p
->arr
[2*i
+1]);
1197 if (fd
!= EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]))
1198 Domain_Free(EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]));
1199 value_clear(res
->x
.p
->arr
[2*i
].d
);
1204 res
->x
.p
= new_enode(partition
, 2*n
, e1
->x
.p
->pos
);
1205 for (j
= 0; j
< n
; ++j
) {
1206 s
[j
].D
= DomainConstraintSimplify(s
[j
].D
, 0);
1207 EVALUE_SET_DOMAIN(res
->x
.p
->arr
[2*j
], s
[j
].D
);
1208 value_clear(res
->x
.p
->arr
[2*j
+1].d
);
1209 res
->x
.p
->arr
[2*j
+1] = s
[j
].E
;
1215 static void explicit_complement(evalue
*res
)
1217 enode
*rel
= new_enode(relation
, 3, 0);
1219 value_clear(rel
->arr
[0].d
);
1220 rel
->arr
[0] = res
->x
.p
->arr
[0];
1221 value_clear(rel
->arr
[1].d
);
1222 rel
->arr
[1] = res
->x
.p
->arr
[1];
1223 value_set_si(rel
->arr
[2].d
, 1);
1224 value_init(rel
->arr
[2].x
.n
);
1225 value_set_si(rel
->arr
[2].x
.n
, 0);
1230 void eadd(const evalue
*e1
, evalue
*res
)
1233 if (value_notzero_p(e1
->d
) && value_notzero_p(res
->d
)) {
1234 /* Add two rational numbers */
1240 value_multiply(m1
,e1
->x
.n
,res
->d
);
1241 value_multiply(m2
,res
->x
.n
,e1
->d
);
1242 value_addto(res
->x
.n
,m1
,m2
);
1243 value_multiply(res
->d
,e1
->d
,res
->d
);
1244 Gcd(res
->x
.n
,res
->d
,&g
);
1245 if (value_notone_p(g
)) {
1246 value_division(res
->d
,res
->d
,g
);
1247 value_division(res
->x
.n
,res
->x
.n
,g
);
1249 value_clear(g
); value_clear(m1
); value_clear(m2
);
1252 else if (value_notzero_p(e1
->d
) && value_zero_p(res
->d
)) {
1253 switch (res
->x
.p
->type
) {
1255 /* Add the constant to the constant term of a polynomial*/
1256 eadd(e1
, &res
->x
.p
->arr
[0]);
1259 /* Add the constant to all elements of a periodic number */
1260 for (i
=0; i
<res
->x
.p
->size
; i
++) {
1261 eadd(e1
, &res
->x
.p
->arr
[i
]);
1265 fprintf(stderr
, "eadd: cannot add const with vector\n");
1269 eadd(e1
, &res
->x
.p
->arr
[1]);
1272 assert(EVALUE_IS_ZERO(*e1
));
1273 break; /* Do nothing */
1275 /* Create (zero) complement if needed */
1276 if (res
->x
.p
->size
< 3 && !EVALUE_IS_ZERO(*e1
))
1277 explicit_complement(res
);
1278 for (i
= 1; i
< res
->x
.p
->size
; ++i
)
1279 eadd(e1
, &res
->x
.p
->arr
[i
]);
1285 /* add polynomial or periodic to constant
1286 * you have to exchange e1 and res, before doing addition */
1288 else if (value_zero_p(e1
->d
) && value_notzero_p(res
->d
)) {
1292 else { // ((e1->d==0) && (res->d==0))
1293 assert(!((e1
->x
.p
->type
== partition
) ^
1294 (res
->x
.p
->type
== partition
)));
1295 if (e1
->x
.p
->type
== partition
) {
1296 eadd_partitions(e1
, res
);
1299 if (e1
->x
.p
->type
== relation
&&
1300 (res
->x
.p
->type
!= relation
||
1301 mod_term_smaller(&e1
->x
.p
->arr
[0], &res
->x
.p
->arr
[0]))) {
1305 if (res
->x
.p
->type
== relation
) {
1306 if (e1
->x
.p
->type
== relation
&&
1307 eequal(&e1
->x
.p
->arr
[0], &res
->x
.p
->arr
[0])) {
1308 if (res
->x
.p
->size
< 3 && e1
->x
.p
->size
== 3)
1309 explicit_complement(res
);
1310 for (i
= 1; i
< e1
->x
.p
->size
; ++i
)
1311 eadd(&e1
->x
.p
->arr
[i
], &res
->x
.p
->arr
[i
]);
1314 if (res
->x
.p
->size
< 3)
1315 explicit_complement(res
);
1316 for (i
= 1; i
< res
->x
.p
->size
; ++i
)
1317 eadd(e1
, &res
->x
.p
->arr
[i
]);
1320 if ((e1
->x
.p
->type
!= res
->x
.p
->type
) ) {
1321 /* adding to evalues of different type. two cases are possible
1322 * res is periodic and e1 is polynomial, you have to exchange
1323 * e1 and res then to add e1 to the constant term of res */
1324 if (e1
->x
.p
->type
== polynomial
) {
1325 eadd_rev_cst(e1
, res
);
1327 else if (res
->x
.p
->type
== polynomial
) {
1328 /* res is polynomial and e1 is periodic,
1329 add e1 to the constant term of res */
1331 eadd(e1
,&res
->x
.p
->arr
[0]);
1337 else if (e1
->x
.p
->pos
!= res
->x
.p
->pos
||
1338 ((res
->x
.p
->type
== fractional
||
1339 res
->x
.p
->type
== flooring
) &&
1340 !eequal(&e1
->x
.p
->arr
[0], &res
->x
.p
->arr
[0]))) {
1341 /* adding evalues of different position (i.e function of different unknowns
1342 * to case are possible */
1344 switch (res
->x
.p
->type
) {
1347 if (mod_term_smaller(res
, e1
))
1348 eadd(e1
,&res
->x
.p
->arr
[1]);
1350 eadd_rev_cst(e1
, res
);
1352 case polynomial
: // res and e1 are polynomials
1353 // add e1 to the constant term of res
1355 if(res
->x
.p
->pos
< e1
->x
.p
->pos
)
1356 eadd(e1
,&res
->x
.p
->arr
[0]);
1358 eadd_rev_cst(e1
, res
);
1359 // value_clear(g); value_clear(m1); value_clear(m2);
1361 case periodic
: // res and e1 are pointers to periodic numbers
1362 //add e1 to all elements of res
1364 if(res
->x
.p
->pos
< e1
->x
.p
->pos
)
1365 for (i
=0;i
<res
->x
.p
->size
;i
++) {
1366 eadd(e1
,&res
->x
.p
->arr
[i
]);
1377 //same type , same pos and same size
1378 if (e1
->x
.p
->size
== res
->x
.p
->size
) {
1379 // add any element in e1 to the corresponding element in res
1380 i
= type_offset(res
->x
.p
);
1382 assert(eequal(&e1
->x
.p
->arr
[0], &res
->x
.p
->arr
[0]));
1383 for (; i
<res
->x
.p
->size
; i
++) {
1384 eadd(&e1
->x
.p
->arr
[i
], &res
->x
.p
->arr
[i
]);
1389 /* Sizes are different */
1390 switch(res
->x
.p
->type
) {
1394 /* VIN100: if e1-size > res-size you have to copy e1 in a */
1395 /* new enode and add res to that new node. If you do not do */
1396 /* that, you lose the the upper weight part of e1 ! */
1398 if(e1
->x
.p
->size
> res
->x
.p
->size
)
1401 i
= type_offset(res
->x
.p
);
1403 assert(eequal(&e1
->x
.p
->arr
[0],
1404 &res
->x
.p
->arr
[0]));
1405 for (; i
<e1
->x
.p
->size
; i
++) {
1406 eadd(&e1
->x
.p
->arr
[i
], &res
->x
.p
->arr
[i
]);
1413 /* add two periodics of the same pos (unknown) but whith different sizes (periods) */
1416 /* you have to create a new evalue 'ne' in whitch size equals to the lcm
1417 of the sizes of e1 and res, then to copy res periodicaly in ne, after
1418 to add periodicaly elements of e1 to elements of ne, and finaly to
1423 value_init(ex
); value_init(ey
);value_init(ep
);
1426 value_set_si(ex
,e1
->x
.p
->size
);
1427 value_set_si(ey
,res
->x
.p
->size
);
1428 value_assign (ep
,*Lcm(ex
,ey
));
1429 p
=(int)mpz_get_si(ep
);
1430 ne
= (evalue
*) malloc (sizeof(evalue
));
1432 value_set_si( ne
->d
,0);
1434 ne
->x
.p
=new_enode(res
->x
.p
->type
,p
, res
->x
.p
->pos
);
1436 evalue_copy(&ne
->x
.p
->arr
[i
], &res
->x
.p
->arr
[i
%y
]);
1439 eadd(&e1
->x
.p
->arr
[i
%x
], &ne
->x
.p
->arr
[i
]);
1442 value_assign(res
->d
, ne
->d
);
1448 fprintf(stderr
, "eadd: ?cannot add vectors of different length\n");
1457 static void emul_rev (evalue
*e1
, evalue
*res
)
1461 evalue_copy(&ev
, e1
);
1463 free_evalue_refs(res
);
1467 static void emul_poly (evalue
*e1
, evalue
*res
)
1469 int i
, j
, o
= type_offset(res
->x
.p
);
1471 int size
=(e1
->x
.p
->size
+ res
->x
.p
->size
- o
- 1);
1473 value_set_si(tmp
.d
,0);
1474 tmp
.x
.p
=new_enode(res
->x
.p
->type
, size
, res
->x
.p
->pos
);
1476 evalue_copy(&tmp
.x
.p
->arr
[0], &e1
->x
.p
->arr
[0]);
1477 for (i
=o
; i
< e1
->x
.p
->size
; i
++) {
1478 evalue_copy(&tmp
.x
.p
->arr
[i
], &e1
->x
.p
->arr
[i
]);
1479 emul(&res
->x
.p
->arr
[o
], &tmp
.x
.p
->arr
[i
]);
1482 evalue_set_si(&tmp
.x
.p
->arr
[i
], 0, 1);
1483 for (i
=o
+1; i
<res
->x
.p
->size
; i
++)
1484 for (j
=o
; j
<e1
->x
.p
->size
; j
++) {
1487 evalue_copy(&ev
, &e1
->x
.p
->arr
[j
]);
1488 emul(&res
->x
.p
->arr
[i
], &ev
);
1489 eadd(&ev
, &tmp
.x
.p
->arr
[i
+j
-o
]);
1490 free_evalue_refs(&ev
);
1492 free_evalue_refs(res
);
1496 void emul_partitions (evalue
*e1
,evalue
*res
)
1501 s
= (struct section
*)
1502 malloc((e1
->x
.p
->size
/2) * (res
->x
.p
->size
/2) *
1503 sizeof(struct section
));
1505 assert(e1
->x
.p
->pos
== res
->x
.p
->pos
);
1506 assert(e1
->x
.p
->pos
== EVALUE_DOMAIN(e1
->x
.p
->arr
[0])->Dimension
);
1507 assert(res
->x
.p
->pos
== EVALUE_DOMAIN(res
->x
.p
->arr
[0])->Dimension
);
1510 for (i
= 0; i
< res
->x
.p
->size
/2; ++i
) {
1511 for (j
= 0; j
< e1
->x
.p
->size
/2; ++j
) {
1512 d
= DomainIntersection(EVALUE_DOMAIN(e1
->x
.p
->arr
[2*j
]),
1513 EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]), 0);
1519 /* This code is only needed because the partitions
1520 are not true partitions.
1522 for (k
= 0; k
< n
; ++k
) {
1523 if (DomainIncludes(s
[k
].D
, d
))
1525 if (DomainIncludes(d
, s
[k
].D
)) {
1526 Domain_Free(s
[k
].D
);
1527 free_evalue_refs(&s
[k
].E
);
1538 value_init(s
[n
].E
.d
);
1539 evalue_copy(&s
[n
].E
, &res
->x
.p
->arr
[2*i
+1]);
1540 emul(&e1
->x
.p
->arr
[2*j
+1], &s
[n
].E
);
1544 Domain_Free(EVALUE_DOMAIN(res
->x
.p
->arr
[2*i
]));
1545 value_clear(res
->x
.p
->arr
[2*i
].d
);
1546 free_evalue_refs(&res
->x
.p
->arr
[2*i
+1]);
1551 evalue_set_si(res
, 0, 1);
1553 res
->x
.p
= new_enode(partition
, 2*n
, e1
->x
.p
->pos
);
1554 for (j
= 0; j
< n
; ++j
) {
1555 s
[j
].D
= DomainConstraintSimplify(s
[j
].D
, 0);
1556 EVALUE_SET_DOMAIN(res
->x
.p
->arr
[2*j
], s
[j
].D
);
1557 value_clear(res
->x
.p
->arr
[2*j
+1].d
);
1558 res
->x
.p
->arr
[2*j
+1] = s
[j
].E
;
1565 #define value_two_p(val) (mpz_cmp_si(val,2) == 0)
1567 /* Computes the product of two evalues "e1" and "res" and puts the result in "res". you must
1568 * do a copy of "res" befor calling this function if you nead it after. The vector type of
1569 * evalues is not treated here */
1571 void emul (evalue
*e1
, evalue
*res
){
1574 if((value_zero_p(e1
->d
)&&e1
->x
.p
->type
==evector
)||(value_zero_p(res
->d
)&&(res
->x
.p
->type
==evector
))) {
1575 fprintf(stderr
, "emul: do not proced on evector type !\n");
1579 if (EVALUE_IS_ZERO(*res
))
1582 if (value_zero_p(e1
->d
) && e1
->x
.p
->type
== partition
) {
1583 if (value_zero_p(res
->d
) && res
->x
.p
->type
== partition
)
1584 emul_partitions(e1
, res
);
1587 } else if (value_zero_p(res
->d
) && res
->x
.p
->type
== partition
) {
1588 for (i
= 0; i
< res
->x
.p
->size
/2; ++i
)
1589 emul(e1
, &res
->x
.p
->arr
[2*i
+1]);
1591 if (value_zero_p(res
->d
) && res
->x
.p
->type
== relation
) {
1592 if (value_zero_p(e1
->d
) && e1
->x
.p
->type
== relation
&&
1593 eequal(&e1
->x
.p
->arr
[0], &res
->x
.p
->arr
[0])) {
1594 if (res
->x
.p
->size
< 3 && e1
->x
.p
->size
== 3)
1595 explicit_complement(res
);
1596 if (e1
->x
.p
->size
< 3 && res
->x
.p
->size
== 3)
1597 explicit_complement(e1
);
1598 for (i
= 1; i
< res
->x
.p
->size
; ++i
)
1599 emul(&e1
->x
.p
->arr
[i
], &res
->x
.p
->arr
[i
]);
1602 for (i
= 1; i
< res
->x
.p
->size
; ++i
)
1603 emul(e1
, &res
->x
.p
->arr
[i
]);
1605 if(value_zero_p(e1
->d
)&& value_zero_p(res
->d
)) {
1606 switch(e1
->x
.p
->type
) {
1608 switch(res
->x
.p
->type
) {
1610 if(e1
->x
.p
->pos
== res
->x
.p
->pos
) {
1611 /* Product of two polynomials of the same variable */
1616 /* Product of two polynomials of different variables */
1618 if(res
->x
.p
->pos
< e1
->x
.p
->pos
)
1619 for( i
=0; i
<res
->x
.p
->size
; i
++)
1620 emul(e1
, &res
->x
.p
->arr
[i
]);
1629 /* Product of a polynomial and a periodic or fractional */
1636 switch(res
->x
.p
->type
) {
1638 if(e1
->x
.p
->pos
==res
->x
.p
->pos
&& e1
->x
.p
->size
==res
->x
.p
->size
) {
1639 /* Product of two periodics of the same parameter and period */
1641 for(i
=0; i
<res
->x
.p
->size
;i
++)
1642 emul(&(e1
->x
.p
->arr
[i
]), &(res
->x
.p
->arr
[i
]));
1647 if(e1
->x
.p
->pos
==res
->x
.p
->pos
&& e1
->x
.p
->size
!=res
->x
.p
->size
) {
1648 /* Product of two periodics of the same parameter and different periods */
1652 value_init(x
); value_init(y
);value_init(z
);
1655 value_set_si(x
,e1
->x
.p
->size
);
1656 value_set_si(y
,res
->x
.p
->size
);
1657 value_assign (z
,*Lcm(x
,y
));
1658 lcm
=(int)mpz_get_si(z
);
1659 newp
= (evalue
*) malloc (sizeof(evalue
));
1660 value_init(newp
->d
);
1661 value_set_si( newp
->d
,0);
1662 newp
->x
.p
=new_enode(periodic
,lcm
, e1
->x
.p
->pos
);
1663 for(i
=0;i
<lcm
;i
++) {
1664 evalue_copy(&newp
->x
.p
->arr
[i
],
1665 &res
->x
.p
->arr
[i
%iy
]);
1668 emul(&e1
->x
.p
->arr
[i
%ix
], &newp
->x
.p
->arr
[i
]);
1670 value_assign(res
->d
,newp
->d
);
1673 value_clear(x
); value_clear(y
);value_clear(z
);
1677 /* Product of two periodics of different parameters */
1679 if(res
->x
.p
->pos
< e1
->x
.p
->pos
)
1680 for(i
=0; i
<res
->x
.p
->size
; i
++)
1681 emul(e1
, &(res
->x
.p
->arr
[i
]));
1689 /* Product of a periodic and a polynomial */
1691 for(i
=0; i
<res
->x
.p
->size
; i
++)
1692 emul(e1
, &(res
->x
.p
->arr
[i
]));
1699 switch(res
->x
.p
->type
) {
1701 for(i
=0; i
<res
->x
.p
->size
; i
++)
1702 emul(e1
, &(res
->x
.p
->arr
[i
]));
1709 assert(e1
->x
.p
->type
== res
->x
.p
->type
);
1710 if (e1
->x
.p
->pos
== res
->x
.p
->pos
&&
1711 eequal(&e1
->x
.p
->arr
[0], &res
->x
.p
->arr
[0])) {
1714 poly_denom(&e1
->x
.p
->arr
[0], &d
.d
);
1715 if (e1
->x
.p
->type
!= fractional
|| !value_two_p(d
.d
))
1720 value_set_si(d
.x
.n
, 1);
1721 /* { x }^2 == { x }/2 */
1722 /* a0 b0 + (a0 b1 + a1 b0 + a1 b1/2) { x } */
1723 assert(e1
->x
.p
->size
== 3);
1724 assert(res
->x
.p
->size
== 3);
1726 evalue_copy(&tmp
, &res
->x
.p
->arr
[2]);
1728 eadd(&res
->x
.p
->arr
[1], &tmp
);
1729 emul(&e1
->x
.p
->arr
[2], &tmp
);
1730 emul(&e1
->x
.p
->arr
[1], res
);
1731 eadd(&tmp
, &res
->x
.p
->arr
[2]);
1732 free_evalue_refs(&tmp
);
1737 if(mod_term_smaller(res
, e1
))
1738 for(i
=1; i
<res
->x
.p
->size
; i
++)
1739 emul(e1
, &(res
->x
.p
->arr
[i
]));
1754 if (value_notzero_p(e1
->d
)&& value_notzero_p(res
->d
)) {
1755 /* Product of two rational numbers */
1759 value_multiply(res
->d
,e1
->d
,res
->d
);
1760 value_multiply(res
->x
.n
,e1
->x
.n
,res
->x
.n
);
1761 Gcd(res
->x
.n
, res
->d
,&g
);
1762 if (value_notone_p(g
)) {
1763 value_division(res
->d
,res
->d
,g
);
1764 value_division(res
->x
.n
,res
->x
.n
,g
);
1770 if(value_zero_p(e1
->d
)&& value_notzero_p(res
->d
)) {
1771 /* Product of an expression (polynomial or peririodic) and a rational number */
1777 /* Product of a rationel number and an expression (polynomial or peririodic) */
1779 i
= type_offset(res
->x
.p
);
1780 for (; i
<res
->x
.p
->size
; i
++)
1781 emul(e1
, &res
->x
.p
->arr
[i
]);
1791 /* Frees mask content ! */
1792 void emask(evalue
*mask
, evalue
*res
) {
1799 if (EVALUE_IS_ZERO(*res
)) {
1800 free_evalue_refs(mask
);
1804 assert(value_zero_p(mask
->d
));
1805 assert(mask
->x
.p
->type
== partition
);
1806 assert(value_zero_p(res
->d
));
1807 assert(res
->x
.p
->type
== partition
);
1808 assert(mask
->x
.p
->pos
== res
->x
.p
->pos
);
1809 assert(res
->x
.p
->pos
== EVALUE_DOMAIN(res
->x
.p
->arr
[0])->Dimension
);
1810 assert(mask
->x
.p
->pos
== EVALUE_DOMAIN(mask
->x
.p
->arr
[0])->Dimension
);
1811 pos
= res
->x
.p
->pos
;
1813 s
= (struct section
*)
1814 malloc((mask
->x
.p
->size
/2+1) * (res
->x
.p
->size
/2) *
1815 sizeof(struct section
));
1819 evalue_set_si(&mone
, -1, 1);
1822 for (j
= 0; j
< res
->x
.p
->size
/2; ++j
) {
1823 assert(mask
->x
.p
->size
>= 2);
1824 fd
= DomainDifference(EVALUE_DOMAIN(res
->x
.p
->arr
[2*j
]),
1825 EVALUE_DOMAIN(mask
->x
.p
->arr
[0]), 0);
1827 for (i
= 1; i
< mask
->x
.p
->size
/2; ++i
) {
1829 fd
= DomainDifference(fd
, EVALUE_DOMAIN(mask
->x
.p
->arr
[2*i
]), 0);
1838 value_init(s
[n
].E
.d
);
1839 evalue_copy(&s
[n
].E
, &res
->x
.p
->arr
[2*j
+1]);
1843 for (i
= 0; i
< mask
->x
.p
->size
/2; ++i
) {
1844 if (EVALUE_IS_ONE(mask
->x
.p
->arr
[2*i
+1]))
1847 fd
= EVALUE_DOMAIN(mask
->x
.p
->arr
[2*i
]);
1848 eadd(&mone
, &mask
->x
.p
->arr
[2*i
+1]);
1849 emul(&mone
, &mask
->x
.p
->arr
[2*i
+1]);
1850 for (j
= 0; j
< res
->x
.p
->size
/2; ++j
) {
1852 d
= DomainIntersection(EVALUE_DOMAIN(res
->x
.p
->arr
[2*j
]),
1853 EVALUE_DOMAIN(mask
->x
.p
->arr
[2*i
]), 0);
1859 fd
= DomainDifference(fd
, EVALUE_DOMAIN(res
->x
.p
->arr
[2*j
]), 0);
1860 if (t
!= EVALUE_DOMAIN(mask
->x
.p
->arr
[2*i
]))
1862 value_init(s
[n
].E
.d
);
1863 evalue_copy(&s
[n
].E
, &res
->x
.p
->arr
[2*j
+1]);
1864 emul(&mask
->x
.p
->arr
[2*i
+1], &s
[n
].E
);
1870 /* Just ignore; this may have been previously masked off */
1872 if (fd
!= EVALUE_DOMAIN(mask
->x
.p
->arr
[2*i
]))
1876 free_evalue_refs(&mone
);
1877 free_evalue_refs(mask
);
1878 free_evalue_refs(res
);
1881 evalue_set_si(res
, 0, 1);
1883 res
->x
.p
= new_enode(partition
, 2*n
, pos
);
1884 for (j
= 0; j
< n
; ++j
) {
1885 EVALUE_SET_DOMAIN(res
->x
.p
->arr
[2*j
], s
[j
].D
);
1886 value_clear(res
->x
.p
->arr
[2*j
+1].d
);
1887 res
->x
.p
->arr
[2*j
+1] = s
[j
].E
;
1894 void evalue_copy(evalue
*dst
, const evalue
*src
)
1896 value_assign(dst
->d
, src
->d
);
1897 if(value_notzero_p(src
->d
)) {
1898 value_init(dst
->x
.n
);
1899 value_assign(dst
->x
.n
, src
->x
.n
);
1901 dst
->x
.p
= ecopy(src
->x
.p
);
1904 enode
*new_enode(enode_type type
,int size
,int pos
) {
1910 fprintf(stderr
, "Allocating enode of size 0 !\n" );
1913 res
= (enode
*) malloc(sizeof(enode
) + (size
-1)*sizeof(evalue
));
1917 for(i
=0; i
<size
; i
++) {
1918 value_init(res
->arr
[i
].d
);
1919 value_set_si(res
->arr
[i
].d
,0);
1920 res
->arr
[i
].x
.p
= 0;
1925 enode
*ecopy(enode
*e
) {
1930 res
= new_enode(e
->type
,e
->size
,e
->pos
);
1931 for(i
=0;i
<e
->size
;++i
) {
1932 value_assign(res
->arr
[i
].d
,e
->arr
[i
].d
);
1933 if(value_zero_p(res
->arr
[i
].d
))
1934 res
->arr
[i
].x
.p
= ecopy(e
->arr
[i
].x
.p
);
1935 else if (EVALUE_IS_DOMAIN(res
->arr
[i
]))
1936 EVALUE_SET_DOMAIN(res
->arr
[i
], Domain_Copy(EVALUE_DOMAIN(e
->arr
[i
])));
1938 value_init(res
->arr
[i
].x
.n
);
1939 value_assign(res
->arr
[i
].x
.n
,e
->arr
[i
].x
.n
);
1945 int ecmp(const evalue
*e1
, const evalue
*e2
)
1951 if (value_notzero_p(e1
->d
) && value_notzero_p(e2
->d
)) {
1955 value_multiply(m
, e1
->x
.n
, e2
->d
);
1956 value_multiply(m2
, e2
->x
.n
, e1
->d
);
1958 if (value_lt(m
, m2
))
1960 else if (value_gt(m
, m2
))
1970 if (value_notzero_p(e1
->d
))
1972 if (value_notzero_p(e2
->d
))
1978 if (p1
->type
!= p2
->type
)
1979 return p1
->type
- p2
->type
;
1980 if (p1
->pos
!= p2
->pos
)
1981 return p1
->pos
- p2
->pos
;
1982 if (p1
->size
!= p2
->size
)
1983 return p1
->size
- p2
->size
;
1985 for (i
= p1
->size
-1; i
>= 0; --i
)
1986 if ((r
= ecmp(&p1
->arr
[i
], &p2
->arr
[i
])) != 0)
1992 int eequal(const evalue
*e1
, const evalue
*e2
)
1997 if (value_ne(e1
->d
,e2
->d
))
2000 /* e1->d == e2->d */
2001 if (value_notzero_p(e1
->d
)) {
2002 if (value_ne(e1
->x
.n
,e2
->x
.n
))
2005 /* e1->d == e2->d != 0 AND e1->n == e2->n */
2009 /* e1->d == e2->d == 0 */
2012 if (p1
->type
!= p2
->type
) return 0;
2013 if (p1
->size
!= p2
->size
) return 0;
2014 if (p1
->pos
!= p2
->pos
) return 0;
2015 for (i
=0; i
<p1
->size
; i
++)
2016 if (!eequal(&p1
->arr
[i
], &p2
->arr
[i
]) )
2021 void free_evalue_refs(evalue
*e
) {
2026 if (EVALUE_IS_DOMAIN(*e
)) {
2027 Domain_Free(EVALUE_DOMAIN(*e
));
2030 } else if (value_pos_p(e
->d
)) {
2032 /* 'e' stores a constant */
2034 value_clear(e
->x
.n
);
2037 assert(value_zero_p(e
->d
));
2040 if (!p
) return; /* null pointer */
2041 for (i
=0; i
<p
->size
; i
++) {
2042 free_evalue_refs(&(p
->arr
[i
]));
2046 } /* free_evalue_refs */
2048 static void mod2table_r(evalue
*e
, Vector
*periods
, Value m
, int p
,
2049 Vector
* val
, evalue
*res
)
2051 unsigned nparam
= periods
->Size
;
2054 double d
= compute_evalue(e
, val
->p
);
2055 d
*= VALUE_TO_DOUBLE(m
);
2060 value_assign(res
->d
, m
);
2061 value_init(res
->x
.n
);
2062 value_set_double(res
->x
.n
, d
);
2063 mpz_fdiv_r(res
->x
.n
, res
->x
.n
, m
);
2066 if (value_one_p(periods
->p
[p
]))
2067 mod2table_r(e
, periods
, m
, p
+1, val
, res
);
2072 value_assign(tmp
, periods
->p
[p
]);
2073 value_set_si(res
->d
, 0);
2074 res
->x
.p
= new_enode(periodic
, VALUE_TO_INT(tmp
), p
+1);
2076 value_decrement(tmp
, tmp
);
2077 value_assign(val
->p
[p
], tmp
);
2078 mod2table_r(e
, periods
, m
, p
+1, val
,
2079 &res
->x
.p
->arr
[VALUE_TO_INT(tmp
)]);
2080 } while (value_pos_p(tmp
));
2086 static void rel2table(evalue
*e
, int zero
)
2088 if (value_pos_p(e
->d
)) {
2089 if (value_zero_p(e
->x
.n
) == zero
)
2090 value_set_si(e
->x
.n
, 1);
2092 value_set_si(e
->x
.n
, 0);
2093 value_set_si(e
->d
, 1);
2096 for (i
= 0; i
< e
->x
.p
->size
; ++i
)
2097 rel2table(&e
->x
.p
->arr
[i
], zero
);
2101 void evalue_mod2table(evalue
*e
, int nparam
)
2106 if (EVALUE_IS_DOMAIN(*e
) || value_pos_p(e
->d
))
2109 for (i
=0; i
<p
->size
; i
++) {
2110 evalue_mod2table(&(p
->arr
[i
]), nparam
);
2112 if (p
->type
== relation
) {
2117 evalue_copy(©
, &p
->arr
[0]);
2119 rel2table(&p
->arr
[0], 1);
2120 emul(&p
->arr
[0], &p
->arr
[1]);
2122 rel2table(©
, 0);
2123 emul(©
, &p
->arr
[2]);
2124 eadd(&p
->arr
[2], &p
->arr
[1]);
2125 free_evalue_refs(&p
->arr
[2]);
2126 free_evalue_refs(©
);
2128 free_evalue_refs(&p
->arr
[0]);
2132 } else if (p
->type
== fractional
) {
2133 Vector
*periods
= Vector_Alloc(nparam
);
2134 Vector
*val
= Vector_Alloc(nparam
);
2140 value_set_si(tmp
, 1);
2141 Vector_Set(periods
->p
, 1, nparam
);
2142 Vector_Set(val
->p
, 0, nparam
);
2143 for (ev
= &p
->arr
[0]; value_zero_p(ev
->d
); ev
= &ev
->x
.p
->arr
[0]) {
2146 assert(p
->type
== polynomial
);
2147 assert(p
->size
== 2);
2148 value_assign(periods
->p
[p
->pos
-1], p
->arr
[1].d
);
2149 value_lcm(tmp
, p
->arr
[1].d
, &tmp
);
2151 value_lcm(tmp
, ev
->d
, &tmp
);
2153 mod2table_r(&p
->arr
[0], periods
, tmp
, 0, val
, &EP
);
2156 evalue_set_si(&res
, 0, 1);
2157 /* Compute the polynomial using Horner's rule */
2158 for (i
=p
->size
-1;i
>1;i
--) {
2159 eadd(&p
->arr
[i
], &res
);
2162 eadd(&p
->arr
[1], &res
);
2164 free_evalue_refs(e
);
2165 free_evalue_refs(&EP
);
2170 Vector_Free(periods
);
2172 } /* evalue_mod2table */
2174 /********************************************************/
2175 /* function in domain */
2176 /* check if the parameters in list_args */
2177 /* verifies the constraints of Domain P */
2178 /********************************************************/
2179 int in_domain(Polyhedron
*P
, Value
*list_args
)
2182 Value v
; /* value of the constraint of a row when
2183 parameters are instantiated*/
2187 for (row
= 0; row
< P
->NbConstraints
; row
++) {
2188 Inner_Product(P
->Constraint
[row
]+1, list_args
, P
->Dimension
, &v
);
2189 value_addto(v
, v
, P
->Constraint
[row
][P
->Dimension
+1]); /*constant part*/
2190 if (value_neg_p(v
) ||
2191 value_zero_p(P
->Constraint
[row
][0]) && value_notzero_p(v
)) {
2198 return in
|| (P
->next
&& in_domain(P
->next
, list_args
));
2201 /****************************************************/
2202 /* function compute enode */
2203 /* compute the value of enode p with parameters */
2204 /* list "list_args */
2205 /* compute the polynomial or the periodic */
2206 /****************************************************/
2208 static double compute_enode(enode
*p
, Value
*list_args
) {
2220 if (p
->type
== polynomial
) {
2222 value_assign(param
,list_args
[p
->pos
-1]);
2224 /* Compute the polynomial using Horner's rule */
2225 for (i
=p
->size
-1;i
>0;i
--) {
2226 res
+=compute_evalue(&p
->arr
[i
],list_args
);
2227 res
*=VALUE_TO_DOUBLE(param
);
2229 res
+=compute_evalue(&p
->arr
[0],list_args
);
2231 else if (p
->type
== fractional
) {
2232 double d
= compute_evalue(&p
->arr
[0], list_args
);
2233 d
-= floor(d
+1e-10);
2235 /* Compute the polynomial using Horner's rule */
2236 for (i
=p
->size
-1;i
>1;i
--) {
2237 res
+=compute_evalue(&p
->arr
[i
],list_args
);
2240 res
+=compute_evalue(&p
->arr
[1],list_args
);
2242 else if (p
->type
== flooring
) {
2243 double d
= compute_evalue(&p
->arr
[0], list_args
);
2246 /* Compute the polynomial using Horner's rule */
2247 for (i
=p
->size
-1;i
>1;i
--) {
2248 res
+=compute_evalue(&p
->arr
[i
],list_args
);
2251 res
+=compute_evalue(&p
->arr
[1],list_args
);
2253 else if (p
->type
== periodic
) {
2254 value_assign(m
,list_args
[p
->pos
-1]);
2256 /* Choose the right element of the periodic */
2257 value_set_si(param
,p
->size
);
2258 value_pmodulus(m
,m
,param
);
2259 res
= compute_evalue(&p
->arr
[VALUE_TO_INT(m
)],list_args
);
2261 else if (p
->type
== relation
) {
2262 if (fabs(compute_evalue(&p
->arr
[0], list_args
)) < 1e-10)
2263 res
= compute_evalue(&p
->arr
[1], list_args
);
2264 else if (p
->size
> 2)
2265 res
= compute_evalue(&p
->arr
[2], list_args
);
2267 else if (p
->type
== partition
) {
2268 int dim
= EVALUE_DOMAIN(p
->arr
[0])->Dimension
;
2269 Value
*vals
= list_args
;
2272 for (i
= 0; i
< dim
; ++i
) {
2273 value_init(vals
[i
]);
2275 value_assign(vals
[i
], list_args
[i
]);
2278 for (i
= 0; i
< p
->size
/2; ++i
)
2279 if (DomainContains(EVALUE_DOMAIN(p
->arr
[2*i
]), vals
, p
->pos
, 0, 1)) {
2280 res
= compute_evalue(&p
->arr
[2*i
+1], vals
);
2284 for (i
= 0; i
< dim
; ++i
)
2285 value_clear(vals
[i
]);
2294 } /* compute_enode */
2296 /*************************************************/
2297 /* return the value of Ehrhart Polynomial */
2298 /* It returns a double, because since it is */
2299 /* a recursive function, some intermediate value */
2300 /* might not be integral */
2301 /*************************************************/
2303 double compute_evalue(const evalue
*e
, Value
*list_args
)
2307 if (value_notzero_p(e
->d
)) {
2308 if (value_notone_p(e
->d
))
2309 res
= VALUE_TO_DOUBLE(e
->x
.n
) / VALUE_TO_DOUBLE(e
->d
);
2311 res
= VALUE_TO_DOUBLE(e
->x
.n
);
2314 res
= compute_enode(e
->x
.p
,list_args
);
2316 } /* compute_evalue */
2319 /****************************************************/
2320 /* function compute_poly : */
2321 /* Check for the good validity domain */
2322 /* return the number of point in the Polyhedron */
2323 /* in allocated memory */
2324 /* Using the Ehrhart pseudo-polynomial */
2325 /****************************************************/
2326 Value
*compute_poly(Enumeration
*en
,Value
*list_args
) {
2329 /* double d; int i; */
2331 tmp
= (Value
*) malloc (sizeof(Value
));
2332 assert(tmp
!= NULL
);
2334 value_set_si(*tmp
,0);
2337 return(tmp
); /* no ehrhart polynomial */
2338 if(en
->ValidityDomain
) {
2339 if(!en
->ValidityDomain
->Dimension
) { /* no parameters */
2340 value_set_double(*tmp
,compute_evalue(&en
->EP
,list_args
)+.25);
2345 return(tmp
); /* no Validity Domain */
2347 if(in_domain(en
->ValidityDomain
,list_args
)) {
2349 #ifdef EVAL_EHRHART_DEBUG
2350 Print_Domain(stdout
,en
->ValidityDomain
);
2351 print_evalue(stdout
,&en
->EP
);
2354 /* d = compute_evalue(&en->EP,list_args);
2356 printf("(double)%lf = %d\n", d, i ); */
2357 value_set_double(*tmp
,compute_evalue(&en
->EP
,list_args
)+.25);
2363 value_set_si(*tmp
,0);
2364 return(tmp
); /* no compatible domain with the arguments */
2365 } /* compute_poly */
2367 static evalue
*eval_polynomial(const enode
*p
, int offset
,
2368 evalue
*base
, Value
*values
)
2373 res
= evalue_zero();
2374 for (i
= p
->size
-1; i
> offset
; --i
) {
2375 c
= evalue_eval(&p
->arr
[i
], values
);
2377 free_evalue_refs(c
);
2381 c
= evalue_eval(&p
->arr
[offset
], values
);
2383 free_evalue_refs(c
);
2389 evalue
*evalue_eval(const evalue
*e
, Value
*values
)
2396 if (value_notzero_p(e
->d
)) {
2397 res
= ALLOC(evalue
);
2399 evalue_copy(res
, e
);
2402 switch (e
->x
.p
->type
) {
2404 value_init(param
.x
.n
);
2405 value_assign(param
.x
.n
, values
[e
->x
.p
->pos
-1]);
2406 value_init(param
.d
);
2407 value_set_si(param
.d
, 1);
2409 res
= eval_polynomial(e
->x
.p
, 0, ¶m
, values
);
2410 free_evalue_refs(¶m
);
2413 param2
= evalue_eval(&e
->x
.p
->arr
[0], values
);
2414 mpz_fdiv_r(param2
->x
.n
, param2
->x
.n
, param2
->d
);
2416 res
= eval_polynomial(e
->x
.p
, 1, param2
, values
);
2417 free_evalue_refs(param2
);
2421 param2
= evalue_eval(&e
->x
.p
->arr
[0], values
);
2422 mpz_fdiv_q(param2
->x
.n
, param2
->x
.n
, param2
->d
);
2423 value_set_si(param2
->d
, 1);
2425 res
= eval_polynomial(e
->x
.p
, 1, param2
, values
);
2426 free_evalue_refs(param2
);
2430 param2
= evalue_eval(&e
->x
.p
->arr
[0], values
);
2431 if (value_zero_p(param2
->x
.n
))
2432 res
= evalue_eval(&e
->x
.p
->arr
[1], values
);
2433 else if (e
->x
.p
->size
> 2)
2434 res
= evalue_eval(&e
->x
.p
->arr
[2], values
);
2436 res
= evalue_zero();
2437 free_evalue_refs(param2
);
2441 assert(e
->x
.p
->pos
== EVALUE_DOMAIN(e
->x
.p
->arr
[0])->Dimension
);
2442 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
)
2443 if (in_domain(EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]), values
)) {
2444 res
= evalue_eval(&e
->x
.p
->arr
[2*i
+1], values
);
2448 res
= evalue_zero();
2456 size_t value_size(Value v
) {
2457 return (v
[0]._mp_size
> 0 ? v
[0]._mp_size
: -v
[0]._mp_size
)
2458 * sizeof(v
[0]._mp_d
[0]);
2461 size_t domain_size(Polyhedron
*D
)
2464 size_t s
= sizeof(*D
);
2466 for (i
= 0; i
< D
->NbConstraints
; ++i
)
2467 for (j
= 0; j
< D
->Dimension
+2; ++j
)
2468 s
+= value_size(D
->Constraint
[i
][j
]);
2471 for (i = 0; i < D->NbRays; ++i)
2472 for (j = 0; j < D->Dimension+2; ++j)
2473 s += value_size(D->Ray[i][j]);
2476 return D
->next
? s
+domain_size(D
->next
) : s
;
2479 size_t enode_size(enode
*p
) {
2480 size_t s
= sizeof(*p
) - sizeof(p
->arr
[0]);
2483 if (p
->type
== partition
)
2484 for (i
= 0; i
< p
->size
/2; ++i
) {
2485 s
+= domain_size(EVALUE_DOMAIN(p
->arr
[2*i
]));
2486 s
+= evalue_size(&p
->arr
[2*i
+1]);
2489 for (i
= 0; i
< p
->size
; ++i
) {
2490 s
+= evalue_size(&p
->arr
[i
]);
2495 size_t evalue_size(evalue
*e
)
2497 size_t s
= sizeof(*e
);
2498 s
+= value_size(e
->d
);
2499 if (value_notzero_p(e
->d
))
2500 s
+= value_size(e
->x
.n
);
2502 s
+= enode_size(e
->x
.p
);
2506 static evalue
*find_second(evalue
*base
, evalue
*cst
, evalue
*e
, Value m
)
2508 evalue
*found
= NULL
;
2513 if (value_pos_p(e
->d
) || e
->x
.p
->type
!= fractional
)
2516 value_init(offset
.d
);
2517 value_init(offset
.x
.n
);
2518 poly_denom(&e
->x
.p
->arr
[0], &offset
.d
);
2519 value_lcm(m
, offset
.d
, &offset
.d
);
2520 value_set_si(offset
.x
.n
, 1);
2523 evalue_copy(©
, cst
);
2526 mpz_fdiv_r(cst
->x
.n
, cst
->x
.n
, cst
->d
);
2528 if (eequal(base
, &e
->x
.p
->arr
[0]))
2529 found
= &e
->x
.p
->arr
[0];
2531 value_set_si(offset
.x
.n
, -2);
2534 mpz_fdiv_r(cst
->x
.n
, cst
->x
.n
, cst
->d
);
2536 if (eequal(base
, &e
->x
.p
->arr
[0]))
2539 free_evalue_refs(cst
);
2540 free_evalue_refs(&offset
);
2543 for (i
= 1; !found
&& i
< e
->x
.p
->size
; ++i
)
2544 found
= find_second(base
, cst
, &e
->x
.p
->arr
[i
], m
);
2549 static evalue
*find_relation_pair(evalue
*e
)
2552 evalue
*found
= NULL
;
2554 if (EVALUE_IS_DOMAIN(*e
) || value_pos_p(e
->d
))
2557 if (e
->x
.p
->type
== fractional
) {
2562 poly_denom(&e
->x
.p
->arr
[0], &m
);
2564 for (cst
= &e
->x
.p
->arr
[0]; value_zero_p(cst
->d
);
2565 cst
= &cst
->x
.p
->arr
[0])
2568 for (i
= 1; !found
&& i
< e
->x
.p
->size
; ++i
)
2569 found
= find_second(&e
->x
.p
->arr
[0], cst
, &e
->x
.p
->arr
[i
], m
);
2574 i
= e
->x
.p
->type
== relation
;
2575 for (; !found
&& i
< e
->x
.p
->size
; ++i
)
2576 found
= find_relation_pair(&e
->x
.p
->arr
[i
]);
2581 void evalue_mod2relation(evalue
*e
) {
2584 if (value_zero_p(e
->d
) && e
->x
.p
->type
== partition
) {
2587 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
2588 evalue_mod2relation(&e
->x
.p
->arr
[2*i
+1]);
2589 if (EVALUE_IS_ZERO(e
->x
.p
->arr
[2*i
+1])) {
2590 value_clear(e
->x
.p
->arr
[2*i
].d
);
2591 free_evalue_refs(&e
->x
.p
->arr
[2*i
+1]);
2593 if (2*i
< e
->x
.p
->size
) {
2594 e
->x
.p
->arr
[2*i
] = e
->x
.p
->arr
[e
->x
.p
->size
];
2595 e
->x
.p
->arr
[2*i
+1] = e
->x
.p
->arr
[e
->x
.p
->size
+1];
2600 if (e
->x
.p
->size
== 0) {
2602 evalue_set_si(e
, 0, 1);
2608 while ((d
= find_relation_pair(e
)) != NULL
) {
2612 value_init(split
.d
);
2613 value_set_si(split
.d
, 0);
2614 split
.x
.p
= new_enode(relation
, 3, 0);
2615 evalue_set_si(&split
.x
.p
->arr
[1], 1, 1);
2616 evalue_set_si(&split
.x
.p
->arr
[2], 1, 1);
2618 ev
= &split
.x
.p
->arr
[0];
2619 value_set_si(ev
->d
, 0);
2620 ev
->x
.p
= new_enode(fractional
, 3, -1);
2621 evalue_set_si(&ev
->x
.p
->arr
[1], 0, 1);
2622 evalue_set_si(&ev
->x
.p
->arr
[2], 1, 1);
2623 evalue_copy(&ev
->x
.p
->arr
[0], d
);
2629 free_evalue_refs(&split
);
2633 static int evalue_comp(const void * a
, const void * b
)
2635 const evalue
*e1
= *(const evalue
**)a
;
2636 const evalue
*e2
= *(const evalue
**)b
;
2637 return ecmp(e1
, e2
);
2640 void evalue_combine(evalue
*e
)
2647 if (value_notzero_p(e
->d
) || e
->x
.p
->type
!= partition
)
2650 NALLOC(evs
, e
->x
.p
->size
/2);
2651 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
)
2652 evs
[i
] = &e
->x
.p
->arr
[2*i
+1];
2653 qsort(evs
, e
->x
.p
->size
/2, sizeof(evs
[0]), evalue_comp
);
2654 p
= new_enode(partition
, e
->x
.p
->size
, e
->x
.p
->pos
);
2655 for (i
= 0, k
= 0; i
< e
->x
.p
->size
/2; ++i
) {
2656 if (k
== 0 || ecmp(&p
->arr
[2*k
-1], evs
[i
]) != 0) {
2657 value_clear(p
->arr
[2*k
].d
);
2658 value_clear(p
->arr
[2*k
+1].d
);
2659 p
->arr
[2*k
] = *(evs
[i
]-1);
2660 p
->arr
[2*k
+1] = *(evs
[i
]);
2663 Polyhedron
*D
= EVALUE_DOMAIN(*(evs
[i
]-1));
2666 value_clear((evs
[i
]-1)->d
);
2670 L
->next
= EVALUE_DOMAIN(p
->arr
[2*k
-2]);
2671 EVALUE_SET_DOMAIN(p
->arr
[2*k
-2], D
);
2672 free_evalue_refs(evs
[i
]);
2676 for (i
= 2*k
; i
< p
->size
; ++i
)
2677 value_clear(p
->arr
[i
].d
);
2684 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
2686 if (value_notzero_p(e
->x
.p
->arr
[2*i
+1].d
))
2688 H
= DomainConvex(EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]), 0);
2691 for (k
= 0; k
< e
->x
.p
->size
/2; ++k
) {
2692 Polyhedron
*D
, *N
, **P
;
2695 P
= &EVALUE_DOMAIN(e
->x
.p
->arr
[2*k
]);
2702 if (D
->NbEq
<= H
->NbEq
) {
2708 tmp
.x
.p
= new_enode(partition
, 2, e
->x
.p
->pos
);
2709 EVALUE_SET_DOMAIN(tmp
.x
.p
->arr
[0], Polyhedron_Copy(D
));
2710 evalue_copy(&tmp
.x
.p
->arr
[1], &e
->x
.p
->arr
[2*i
+1]);
2711 reduce_evalue(&tmp
);
2712 if (value_notzero_p(tmp
.d
) ||
2713 ecmp(&tmp
.x
.p
->arr
[1], &e
->x
.p
->arr
[2*k
+1]) != 0)
2716 D
->next
= EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]);
2717 EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]) = D
;
2720 free_evalue_refs(&tmp
);
2726 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
2728 Polyhedron
*D
= EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]);
2730 value_clear(e
->x
.p
->arr
[2*i
].d
);
2731 free_evalue_refs(&e
->x
.p
->arr
[2*i
+1]);
2733 if (2*i
< e
->x
.p
->size
) {
2734 e
->x
.p
->arr
[2*i
] = e
->x
.p
->arr
[e
->x
.p
->size
];
2735 e
->x
.p
->arr
[2*i
+1] = e
->x
.p
->arr
[e
->x
.p
->size
+1];
2742 H
= DomainConvex(D
, 0);
2743 E
= DomainDifference(H
, D
, 0);
2745 D
= DomainDifference(H
, E
, 0);
2748 EVALUE_SET_DOMAIN(p
->arr
[2*i
], D
);
2752 /* Use smallest representative for coefficients in affine form in
2753 * argument of fractional.
2754 * Since any change will make the argument non-standard,
2755 * the containing evalue will have to be reduced again afterward.
2757 static void fractional_minimal_coefficients(enode
*p
)
2763 assert(p
->type
== fractional
);
2765 while (value_zero_p(pp
->d
)) {
2766 assert(pp
->x
.p
->type
== polynomial
);
2767 assert(pp
->x
.p
->size
== 2);
2768 assert(value_notzero_p(pp
->x
.p
->arr
[1].d
));
2769 mpz_mul_ui(twice
, pp
->x
.p
->arr
[1].x
.n
, 2);
2770 if (value_gt(twice
, pp
->x
.p
->arr
[1].d
))
2771 value_subtract(pp
->x
.p
->arr
[1].x
.n
,
2772 pp
->x
.p
->arr
[1].x
.n
, pp
->x
.p
->arr
[1].d
);
2773 pp
= &pp
->x
.p
->arr
[0];
2779 static Polyhedron
*polynomial_projection(enode
*p
, Polyhedron
*D
, Value
*d
,
2784 unsigned dim
= D
->Dimension
;
2785 Matrix
*T
= Matrix_Alloc(2, dim
+1);
2788 assert(p
->type
== fractional
);
2790 value_set_si(T
->p
[1][dim
], 1);
2792 while (value_zero_p(pp
->d
)) {
2793 assert(pp
->x
.p
->type
== polynomial
);
2794 assert(pp
->x
.p
->size
== 2);
2795 assert(value_notzero_p(pp
->x
.p
->arr
[1].d
));
2796 value_division(T
->p
[0][pp
->x
.p
->pos
-1], *d
, pp
->x
.p
->arr
[1].d
);
2797 value_multiply(T
->p
[0][pp
->x
.p
->pos
-1],
2798 T
->p
[0][pp
->x
.p
->pos
-1], pp
->x
.p
->arr
[1].x
.n
);
2799 pp
= &pp
->x
.p
->arr
[0];
2801 value_division(T
->p
[0][dim
], *d
, pp
->d
);
2802 value_multiply(T
->p
[0][dim
], T
->p
[0][dim
], pp
->x
.n
);
2803 I
= DomainImage(D
, T
, 0);
2804 H
= DomainConvex(I
, 0);
2814 int evalue_range_reduction_in_domain(evalue
*e
, Polyhedron
*D
)
2823 if (value_notzero_p(e
->d
))
2828 if (p
->type
== relation
) {
2835 fractional_minimal_coefficients(p
->arr
[0].x
.p
);
2836 I
= polynomial_projection(p
->arr
[0].x
.p
, D
, &d
, &T
);
2837 bounded
= line_minmax(I
, &min
, &max
); /* frees I */
2838 equal
= value_eq(min
, max
);
2839 mpz_cdiv_q(min
, min
, d
);
2840 mpz_fdiv_q(max
, max
, d
);
2842 if (bounded
&& value_gt(min
, max
)) {
2848 evalue_set_si(e
, 0, 1);
2851 free_evalue_refs(&(p
->arr
[1]));
2852 free_evalue_refs(&(p
->arr
[0]));
2858 return r
? r
: evalue_range_reduction_in_domain(e
, D
);
2859 } else if (bounded
&& equal
) {
2862 free_evalue_refs(&(p
->arr
[2]));
2865 free_evalue_refs(&(p
->arr
[0]));
2871 return evalue_range_reduction_in_domain(e
, D
);
2872 } else if (bounded
&& value_eq(min
, max
)) {
2873 /* zero for a single value */
2875 Matrix
*M
= Matrix_Alloc(1, D
->Dimension
+2);
2876 Vector_Copy(T
->p
[0], M
->p
[0]+1, D
->Dimension
+1);
2877 value_multiply(min
, min
, d
);
2878 value_subtract(M
->p
[0][D
->Dimension
+1],
2879 M
->p
[0][D
->Dimension
+1], min
);
2880 E
= DomainAddConstraints(D
, M
, 0);
2886 r
= evalue_range_reduction_in_domain(&p
->arr
[1], E
);
2888 r
|= evalue_range_reduction_in_domain(&p
->arr
[2], D
);
2890 _reduce_evalue(&p
->arr
[0].x
.p
->arr
[0], 0, 1);
2898 _reduce_evalue(&p
->arr
[0].x
.p
->arr
[0], 0, 1);
2901 i
= p
->type
== relation
? 1 :
2902 p
->type
== fractional
? 1 : 0;
2903 for (; i
<p
->size
; i
++)
2904 r
|= evalue_range_reduction_in_domain(&p
->arr
[i
], D
);
2906 if (p
->type
!= fractional
) {
2907 if (r
&& p
->type
== polynomial
) {
2910 value_set_si(f
.d
, 0);
2911 f
.x
.p
= new_enode(polynomial
, 2, p
->pos
);
2912 evalue_set_si(&f
.x
.p
->arr
[0], 0, 1);
2913 evalue_set_si(&f
.x
.p
->arr
[1], 1, 1);
2914 reorder_terms_about(p
, &f
);
2925 fractional_minimal_coefficients(p
);
2926 I
= polynomial_projection(p
, D
, &d
, NULL
);
2927 bounded
= line_minmax(I
, &min
, &max
); /* frees I */
2928 mpz_fdiv_q(min
, min
, d
);
2929 mpz_fdiv_q(max
, max
, d
);
2930 value_subtract(d
, max
, min
);
2932 if (bounded
&& value_eq(min
, max
)) {
2935 value_init(inc
.x
.n
);
2936 value_set_si(inc
.d
, 1);
2937 value_oppose(inc
.x
.n
, min
);
2938 eadd(&inc
, &p
->arr
[0]);
2939 reorder_terms_about(p
, &p
->arr
[0]); /* frees arr[0] */
2943 free_evalue_refs(&inc
);
2945 } else if (bounded
&& value_one_p(d
) && p
->size
> 3) {
2946 /* replace {g}^2 by -(g-min)^2 + (2{g}+1)*(g-min) - {g}
2947 * See pages 199-200 of PhD thesis.
2955 value_set_si(rem
.d
, 0);
2956 rem
.x
.p
= new_enode(fractional
, 3, -1);
2957 evalue_copy(&rem
.x
.p
->arr
[0], &p
->arr
[0]);
2958 value_clear(rem
.x
.p
->arr
[1].d
);
2959 value_clear(rem
.x
.p
->arr
[2].d
);
2960 rem
.x
.p
->arr
[1] = p
->arr
[1];
2961 rem
.x
.p
->arr
[2] = p
->arr
[2];
2962 for (i
= 3; i
< p
->size
; ++i
)
2963 p
->arr
[i
-2] = p
->arr
[i
];
2967 value_init(inc
.x
.n
);
2968 value_set_si(inc
.d
, 1);
2969 value_oppose(inc
.x
.n
, min
);
2972 evalue_copy(&t
, &p
->arr
[0]);
2976 value_set_si(f
.d
, 0);
2977 f
.x
.p
= new_enode(fractional
, 3, -1);
2978 evalue_copy(&f
.x
.p
->arr
[0], &p
->arr
[0]);
2979 evalue_set_si(&f
.x
.p
->arr
[1], 1, 1);
2980 evalue_set_si(&f
.x
.p
->arr
[2], 2, 1);
2982 value_init(factor
.d
);
2983 evalue_set_si(&factor
, -1, 1);
2989 value_clear(f
.x
.p
->arr
[1].x
.n
);
2990 value_clear(f
.x
.p
->arr
[2].x
.n
);
2991 evalue_set_si(&f
.x
.p
->arr
[1], 0, 1);
2992 evalue_set_si(&f
.x
.p
->arr
[2], -1, 1);
2996 reorder_terms(&rem
);
3003 free_evalue_refs(&inc
);
3004 free_evalue_refs(&t
);
3005 free_evalue_refs(&f
);
3006 free_evalue_refs(&factor
);
3007 free_evalue_refs(&rem
);
3009 evalue_range_reduction_in_domain(e
, D
);
3013 _reduce_evalue(&p
->arr
[0], 0, 1);
3025 void evalue_range_reduction(evalue
*e
)
3028 if (value_notzero_p(e
->d
) || e
->x
.p
->type
!= partition
)
3031 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
)
3032 if (evalue_range_reduction_in_domain(&e
->x
.p
->arr
[2*i
+1],
3033 EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]))) {
3034 reduce_evalue(&e
->x
.p
->arr
[2*i
+1]);
3036 if (EVALUE_IS_ZERO(e
->x
.p
->arr
[2*i
+1])) {
3037 free_evalue_refs(&e
->x
.p
->arr
[2*i
+1]);
3038 Domain_Free(EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]));
3039 value_clear(e
->x
.p
->arr
[2*i
].d
);
3041 e
->x
.p
->arr
[2*i
] = e
->x
.p
->arr
[e
->x
.p
->size
];
3042 e
->x
.p
->arr
[2*i
+1] = e
->x
.p
->arr
[e
->x
.p
->size
+1];
3050 Enumeration
* partition2enumeration(evalue
*EP
)
3053 Enumeration
*en
, *res
= NULL
;
3055 if (EVALUE_IS_ZERO(*EP
)) {
3060 for (i
= 0; i
< EP
->x
.p
->size
/2; ++i
) {
3061 assert(EP
->x
.p
->pos
== EVALUE_DOMAIN(EP
->x
.p
->arr
[2*i
])->Dimension
);
3062 en
= (Enumeration
*)malloc(sizeof(Enumeration
));
3065 res
->ValidityDomain
= EVALUE_DOMAIN(EP
->x
.p
->arr
[2*i
]);
3066 value_clear(EP
->x
.p
->arr
[2*i
].d
);
3067 res
->EP
= EP
->x
.p
->arr
[2*i
+1];
3075 int evalue_frac2floor_in_domain3(evalue
*e
, Polyhedron
*D
, int shift
)
3084 if (value_notzero_p(e
->d
))
3089 i
= p
->type
== relation
? 1 :
3090 p
->type
== fractional
? 1 : 0;
3091 for (; i
<p
->size
; i
++)
3092 r
|= evalue_frac2floor_in_domain3(&p
->arr
[i
], D
, shift
);
3094 if (p
->type
!= fractional
) {
3095 if (r
&& p
->type
== polynomial
) {
3098 value_set_si(f
.d
, 0);
3099 f
.x
.p
= new_enode(polynomial
, 2, p
->pos
);
3100 evalue_set_si(&f
.x
.p
->arr
[0], 0, 1);
3101 evalue_set_si(&f
.x
.p
->arr
[1], 1, 1);
3102 reorder_terms_about(p
, &f
);
3112 I
= polynomial_projection(p
, D
, &d
, NULL
);
3115 Polyhedron_Print(stderr, P_VALUE_FMT, I);
3118 assert(I
->NbEq
== 0); /* Should have been reduced */
3121 for (i
= 0; i
< I
->NbConstraints
; ++i
)
3122 if (value_pos_p(I
->Constraint
[i
][1]))
3125 if (i
< I
->NbConstraints
) {
3127 value_oppose(I
->Constraint
[i
][2], I
->Constraint
[i
][2]);
3128 mpz_cdiv_q(min
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
3129 if (value_neg_p(min
)) {
3131 mpz_fdiv_q(min
, min
, d
);
3132 value_init(offset
.d
);
3133 value_set_si(offset
.d
, 1);
3134 value_init(offset
.x
.n
);
3135 value_oppose(offset
.x
.n
, min
);
3136 eadd(&offset
, &p
->arr
[0]);
3137 free_evalue_refs(&offset
);
3147 value_set_si(fl
.d
, 0);
3148 fl
.x
.p
= new_enode(flooring
, 3, -1);
3149 evalue_set_si(&fl
.x
.p
->arr
[1], 0, 1);
3150 evalue_set_si(&fl
.x
.p
->arr
[2], -1, 1);
3151 evalue_copy(&fl
.x
.p
->arr
[0], &p
->arr
[0]);
3153 eadd(&fl
, &p
->arr
[0]);
3154 reorder_terms_about(p
, &p
->arr
[0]);
3158 free_evalue_refs(&fl
);
3163 int evalue_frac2floor_in_domain(evalue
*e
, Polyhedron
*D
)
3165 return evalue_frac2floor_in_domain3(e
, D
, 1);
3168 void evalue_frac2floor2(evalue
*e
, int shift
)
3171 if (value_notzero_p(e
->d
) || e
->x
.p
->type
!= partition
) {
3173 if (evalue_frac2floor_in_domain3(e
, NULL
, 0))
3179 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
)
3180 if (evalue_frac2floor_in_domain3(&e
->x
.p
->arr
[2*i
+1],
3181 EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]), shift
))
3182 reduce_evalue(&e
->x
.p
->arr
[2*i
+1]);
3185 void evalue_frac2floor(evalue
*e
)
3187 evalue_frac2floor2(e
, 1);
3190 static Matrix
*esum_add_constraint(int nvar
, Polyhedron
*D
, Matrix
*C
,
3195 int nparam
= D
->Dimension
- nvar
;
3198 nr
= D
->NbConstraints
+ 2;
3199 nc
= D
->Dimension
+ 2 + 1;
3200 C
= Matrix_Alloc(nr
, nc
);
3201 for (i
= 0; i
< D
->NbConstraints
; ++i
) {
3202 Vector_Copy(D
->Constraint
[i
], C
->p
[i
], 1 + nvar
);
3203 Vector_Copy(D
->Constraint
[i
] + 1 + nvar
, C
->p
[i
] + 1 + nvar
+ 1,
3204 D
->Dimension
+ 1 - nvar
);
3209 nc
= C
->NbColumns
+ 1;
3210 C
= Matrix_Alloc(nr
, nc
);
3211 for (i
= 0; i
< oldC
->NbRows
; ++i
) {
3212 Vector_Copy(oldC
->p
[i
], C
->p
[i
], 1 + nvar
);
3213 Vector_Copy(oldC
->p
[i
] + 1 + nvar
, C
->p
[i
] + 1 + nvar
+ 1,
3214 oldC
->NbColumns
- 1 - nvar
);
3217 value_set_si(C
->p
[nr
-2][0], 1);
3218 value_set_si(C
->p
[nr
-2][1 + nvar
], 1);
3219 value_set_si(C
->p
[nr
-2][nc
- 1], -1);
3221 Vector_Copy(row
->p
, C
->p
[nr
-1], 1 + nvar
+ 1);
3222 Vector_Copy(row
->p
+ 1 + nvar
+ 1, C
->p
[nr
-1] + C
->NbColumns
- 1 - nparam
,
3228 static void floor2frac_r(evalue
*e
, int nvar
)
3235 if (value_notzero_p(e
->d
))
3240 assert(p
->type
== flooring
);
3241 for (i
= 1; i
< p
->size
; i
++)
3242 floor2frac_r(&p
->arr
[i
], nvar
);
3244 for (pp
= &p
->arr
[0]; value_zero_p(pp
->d
); pp
= &pp
->x
.p
->arr
[0]) {
3245 assert(pp
->x
.p
->type
== polynomial
);
3246 pp
->x
.p
->pos
-= nvar
;
3250 value_set_si(f
.d
, 0);
3251 f
.x
.p
= new_enode(fractional
, 3, -1);
3252 evalue_set_si(&f
.x
.p
->arr
[1], 0, 1);
3253 evalue_set_si(&f
.x
.p
->arr
[2], -1, 1);
3254 evalue_copy(&f
.x
.p
->arr
[0], &p
->arr
[0]);
3256 eadd(&f
, &p
->arr
[0]);
3257 reorder_terms_about(p
, &p
->arr
[0]);
3261 free_evalue_refs(&f
);
3264 /* Convert flooring back to fractional and shift position
3265 * of the parameters by nvar
3267 static void floor2frac(evalue
*e
, int nvar
)
3269 floor2frac_r(e
, nvar
);
3273 evalue
*esum_over_domain_cst(int nvar
, Polyhedron
*D
, Matrix
*C
)
3276 int nparam
= D
->Dimension
- nvar
;
3280 D
= Constraints2Polyhedron(C
, 0);
3284 t
= barvinok_enumerate_e(D
, 0, nparam
, 0);
3286 /* Double check that D was not unbounded. */
3287 assert(!(value_pos_p(t
->d
) && value_neg_p(t
->x
.n
)));
3295 evalue
*esum_over_domain(evalue
*e
, int nvar
, Polyhedron
*D
,
3302 evalue
*factor
= NULL
;
3305 if (EVALUE_IS_ZERO(*e
))
3309 Polyhedron
*DD
= Disjoint_Domain(D
, 0, 0);
3316 res
= esum_over_domain(e
, nvar
, Q
, C
);
3319 for (Q
= DD
; Q
; Q
= DD
) {
3325 t
= esum_over_domain(e
, nvar
, Q
, C
);
3332 free_evalue_refs(t
);
3339 if (value_notzero_p(e
->d
)) {
3342 t
= esum_over_domain_cst(nvar
, D
, C
);
3344 if (!EVALUE_IS_ONE(*e
))
3350 switch (e
->x
.p
->type
) {
3352 evalue
*pp
= &e
->x
.p
->arr
[0];
3354 if (pp
->x
.p
->pos
> nvar
) {
3355 /* remainder is independent of the summated vars */
3361 floor2frac(&f
, nvar
);
3363 t
= esum_over_domain_cst(nvar
, D
, C
);
3367 free_evalue_refs(&f
);
3372 row
= Vector_Alloc(1 + D
->Dimension
+ 1 + 1);
3373 poly_denom(pp
, &row
->p
[1 + nvar
]);
3374 value_set_si(row
->p
[0], 1);
3375 for (pp
= &e
->x
.p
->arr
[0]; value_zero_p(pp
->d
);
3376 pp
= &pp
->x
.p
->arr
[0]) {
3378 assert(pp
->x
.p
->type
== polynomial
);
3380 if (pos
>= 1 + nvar
)
3382 value_assign(row
->p
[pos
], row
->p
[1+nvar
]);
3383 value_division(row
->p
[pos
], row
->p
[pos
], pp
->x
.p
->arr
[1].d
);
3384 value_multiply(row
->p
[pos
], row
->p
[pos
], pp
->x
.p
->arr
[1].x
.n
);
3386 value_assign(row
->p
[1 + D
->Dimension
+ 1], row
->p
[1+nvar
]);
3387 value_division(row
->p
[1 + D
->Dimension
+ 1],
3388 row
->p
[1 + D
->Dimension
+ 1],
3390 value_multiply(row
->p
[1 + D
->Dimension
+ 1],
3391 row
->p
[1 + D
->Dimension
+ 1],
3393 value_oppose(row
->p
[1 + nvar
], row
->p
[1 + nvar
]);
3397 int pos
= e
->x
.p
->pos
;
3400 factor
= ALLOC(evalue
);
3401 value_init(factor
->d
);
3402 value_set_si(factor
->d
, 0);
3403 factor
->x
.p
= new_enode(polynomial
, 2, pos
- nvar
);
3404 evalue_set_si(&factor
->x
.p
->arr
[0], 0, 1);
3405 evalue_set_si(&factor
->x
.p
->arr
[1], 1, 1);
3409 row
= Vector_Alloc(1 + D
->Dimension
+ 1 + 1);
3410 for (i
= 0; i
< D
->NbRays
; ++i
)
3411 if (value_notzero_p(D
->Ray
[i
][pos
]))
3413 assert(i
< D
->NbRays
);
3414 if (value_neg_p(D
->Ray
[i
][pos
])) {
3415 factor
= ALLOC(evalue
);
3416 value_init(factor
->d
);
3417 evalue_set_si(factor
, -1, 1);
3419 value_set_si(row
->p
[0], 1);
3420 value_set_si(row
->p
[pos
], 1);
3421 value_set_si(row
->p
[1 + nvar
], -1);
3428 i
= type_offset(e
->x
.p
);
3430 res
= esum_over_domain(&e
->x
.p
->arr
[i
], nvar
, D
, C
);
3435 evalue_copy(&cum
, factor
);
3439 for (; i
< e
->x
.p
->size
; ++i
) {
3443 C
= esum_add_constraint(nvar
, D
, C
, row
);
3449 Vector_Print(stderr, P_VALUE_FMT, row);
3451 Matrix_Print(stderr, P_VALUE_FMT, C);
3453 t
= esum_over_domain(&e
->x
.p
->arr
[i
], nvar
, D
, C
);
3462 free_evalue_refs(t
);
3465 if (factor
&& i
+1 < e
->x
.p
->size
)
3472 free_evalue_refs(factor
);
3473 free_evalue_refs(&cum
);
3485 evalue
*esum(evalue
*e
, int nvar
)
3488 evalue
*res
= ALLOC(evalue
);
3492 if (nvar
== 0 || EVALUE_IS_ZERO(*e
)) {
3493 evalue_copy(res
, e
);
3497 evalue_set_si(res
, 0, 1);
3499 assert(value_zero_p(e
->d
));
3500 assert(e
->x
.p
->type
== partition
);
3502 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
3504 t
= esum_over_domain(&e
->x
.p
->arr
[2*i
+1], nvar
,
3505 EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]), 0);
3507 free_evalue_refs(t
);
3516 /* Initial silly implementation */
3517 void eor(evalue
*e1
, evalue
*res
)
3523 evalue_set_si(&mone
, -1, 1);
3525 evalue_copy(&E
, res
);
3531 free_evalue_refs(&E
);
3532 free_evalue_refs(&mone
);
3535 /* computes denominator of polynomial evalue
3536 * d should point to a value initialized to 1
3538 void evalue_denom(const evalue
*e
, Value
*d
)
3542 if (value_notzero_p(e
->d
)) {
3543 value_lcm(*d
, e
->d
, d
);
3546 assert(e
->x
.p
->type
== polynomial
||
3547 e
->x
.p
->type
== fractional
||
3548 e
->x
.p
->type
== flooring
);
3549 offset
= type_offset(e
->x
.p
);
3550 for (i
= e
->x
.p
->size
-1; i
>= offset
; --i
)
3551 evalue_denom(&e
->x
.p
->arr
[i
], d
);
3554 /* Divides the evalue e by the integer n */
3555 void evalue_div(evalue
* e
, Value n
)
3559 if (value_notzero_p(e
->d
)) {
3562 value_multiply(e
->d
, e
->d
, n
);
3563 Gcd(e
->x
.n
, e
->d
, &gc
);
3564 if (value_notone_p(gc
)) {
3565 value_division(e
->d
, e
->d
, gc
);
3566 value_division(e
->x
.n
, e
->x
.n
, gc
);
3571 if (e
->x
.p
->type
== partition
) {
3572 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
)
3573 evalue_div(&e
->x
.p
->arr
[2*i
+1], n
);
3576 offset
= type_offset(e
->x
.p
);
3577 for (i
= e
->x
.p
->size
-1; i
>= offset
; --i
)
3578 evalue_div(&e
->x
.p
->arr
[i
], n
);
3581 static void evalue_frac2polynomial_r(evalue
*e
, int *signs
, int sign
, int in_frac
)
3586 int sign_odd
= sign
;
3588 if (value_notzero_p(e
->d
)) {
3589 if (in_frac
&& sign
* value_sign(e
->x
.n
) < 0) {
3590 value_set_si(e
->x
.n
, 0);
3591 value_set_si(e
->d
, 1);
3596 if (e
->x
.p
->type
== relation
) {
3597 for (i
= e
->x
.p
->size
-1; i
>= 1; --i
)
3598 evalue_frac2polynomial_r(&e
->x
.p
->arr
[i
], signs
, sign
, in_frac
);
3602 if (e
->x
.p
->type
== polynomial
)
3603 sign_odd
*= signs
[e
->x
.p
->pos
-1];
3604 offset
= type_offset(e
->x
.p
);
3605 evalue_frac2polynomial_r(&e
->x
.p
->arr
[offset
], signs
, sign
, in_frac
);
3606 in_frac
|= e
->x
.p
->type
== fractional
;
3607 for (i
= e
->x
.p
->size
-1; i
> offset
; --i
)
3608 evalue_frac2polynomial_r(&e
->x
.p
->arr
[i
], signs
,
3609 (i
- offset
) % 2 ? sign_odd
: sign
, in_frac
);
3611 if (e
->x
.p
->type
!= fractional
)
3614 /* replace { a/m } by (m-1)/m if sign != 0
3615 * and by (m-1)/(2m) if sign == 0
3619 evalue_denom(&e
->x
.p
->arr
[0], &d
);
3620 free_evalue_refs(&e
->x
.p
->arr
[0]);
3621 value_init(e
->x
.p
->arr
[0].d
);
3622 value_init(e
->x
.p
->arr
[0].x
.n
);
3624 value_addto(e
->x
.p
->arr
[0].d
, d
, d
);
3626 value_assign(e
->x
.p
->arr
[0].d
, d
);
3627 value_decrement(e
->x
.p
->arr
[0].x
.n
, d
);
3631 reorder_terms_about(p
, &p
->arr
[0]);
3637 /* Approximate the evalue in fractional representation by a polynomial.
3638 * If sign > 0, the result is an upper bound;
3639 * if sign < 0, the result is a lower bound;
3640 * if sign = 0, the result is an intermediate approximation.
3642 void evalue_frac2polynomial(evalue
*e
, int sign
, unsigned MaxRays
)
3647 if (value_notzero_p(e
->d
))
3649 assert(e
->x
.p
->type
== partition
);
3650 /* make sure all variables in the domains have a fixed sign */
3652 evalue_split_domains_into_orthants(e
, MaxRays
);
3654 assert(e
->x
.p
->size
>= 2);
3655 dim
= EVALUE_DOMAIN(e
->x
.p
->arr
[0])->Dimension
;
3657 signs
= alloca(sizeof(int) * dim
);
3659 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
3660 Polyhedron
*D
= EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]);
3661 POL_ENSURE_VERTICES(D
);
3662 for (j
= 0; j
< dim
; ++j
) {
3666 for (k
= 0; k
< D
->NbRays
; ++k
) {
3667 signs
[j
] = value_sign(D
->Ray
[k
][1+j
]);
3672 evalue_frac2polynomial_r(&e
->x
.p
->arr
[2*i
+1], signs
, sign
, 0);
3676 /* Split the domains of e (which is assumed to be a partition)
3677 * such that each resulting domain lies entirely in one orthant.
3679 void evalue_split_domains_into_orthants(evalue
*e
, unsigned MaxRays
)
3682 assert(value_zero_p(e
->d
));
3683 assert(e
->x
.p
->type
== partition
);
3684 assert(e
->x
.p
->size
>= 2);
3685 dim
= EVALUE_DOMAIN(e
->x
.p
->arr
[0])->Dimension
;
3687 for (i
= 0; i
< dim
; ++i
) {
3690 C
= Matrix_Alloc(1, 1 + dim
+ 1);
3691 value_set_si(C
->p
[0][0], 1);
3692 value_init(split
.d
);
3693 value_set_si(split
.d
, 0);
3694 split
.x
.p
= new_enode(partition
, 4, dim
);
3695 value_set_si(C
->p
[0][1+i
], 1);
3696 C2
= Matrix_Copy(C
);
3697 EVALUE_SET_DOMAIN(split
.x
.p
->arr
[0], Constraints2Polyhedron(C2
, MaxRays
));
3699 evalue_set_si(&split
.x
.p
->arr
[1], 1, 1);
3700 value_set_si(C
->p
[0][1+i
], -1);
3701 value_set_si(C
->p
[0][1+dim
], -1);
3702 EVALUE_SET_DOMAIN(split
.x
.p
->arr
[2], Constraints2Polyhedron(C
, MaxRays
));
3703 evalue_set_si(&split
.x
.p
->arr
[3], 1, 1);
3705 free_evalue_refs(&split
);
3710 static Matrix
*find_fractional_with_max_periods(evalue
*e
, Polyhedron
*D
,
3712 Value
*min
, Value
*max
)
3718 if (value_notzero_p(e
->d
))
3721 if (e
->x
.p
->type
== fractional
) {
3726 I
= polynomial_projection(e
->x
.p
, D
, &d
, &T
);
3727 bounded
= line_minmax(I
, min
, max
); /* frees I */
3731 value_set_si(mp
, max_periods
);
3732 mpz_fdiv_q(*min
, *min
, d
);
3733 mpz_fdiv_q(*max
, *max
, d
);
3734 value_assign(T
->p
[1][D
->Dimension
], d
);
3735 value_subtract(d
, *max
, *min
);
3736 if (value_ge(d
, mp
)) {
3750 for (i
= type_offset(e
->x
.p
); i
< e
->x
.p
->size
; ++i
)
3751 if ((T
= find_fractional_with_max_periods(&e
->x
.p
->arr
[i
], D
, max_periods
,
3758 /* Look for fractional parts that can be removed by splitting the corresponding
3759 * domain into at most max_periods parts.
3760 * We use a very simply strategy that looks for the first fractional part
3761 * that satisfies the condition, performs the split and then continues
3762 * looking for other fractional parts in the split domains until no
3763 * such fractional part can be found anymore.
3765 void evalue_split_periods(evalue
*e
, int max_periods
, unsigned int MaxRays
)
3772 if (EVALUE_IS_ZERO(*e
))
3774 if (value_notzero_p(e
->d
) || e
->x
.p
->type
!= partition
) {
3776 "WARNING: evalue_split_periods called on incorrect evalue type\n");
3784 for (i
= 0; i
< e
->x
.p
->size
/2; ++i
) {
3788 Polyhedron
*D
= EVALUE_DOMAIN(e
->x
.p
->arr
[2*i
]);
3790 T
= find_fractional_with_max_periods(&e
->x
.p
->arr
[2*i
+1], D
, max_periods
,
3795 M
= Matrix_Alloc(2, 2+D
->Dimension
);
3797 value_subtract(d
, max
, min
);
3798 n
= VALUE_TO_INT(d
)+1;
3800 value_set_si(M
->p
[0][0], 1);
3801 Vector_Copy(T
->p
[0], M
->p
[0]+1, D
->Dimension
+1);
3802 value_multiply(d
, max
, T
->p
[1][D
->Dimension
]);
3803 value_subtract(M
->p
[0][1+D
->Dimension
], M
->p
[0][1+D
->Dimension
], d
);
3804 value_set_si(d
, -1);
3805 value_set_si(M
->p
[1][0], 1);
3806 Vector_Scale(T
->p
[0], M
->p
[1]+1, d
, D
->Dimension
+1);
3807 value_addmul(M
->p
[1][1+D
->Dimension
], max
, T
->p
[1][D
->Dimension
]);
3808 value_addto(M
->p
[1][1+D
->Dimension
], M
->p
[1][1+D
->Dimension
],
3809 T
->p
[1][D
->Dimension
]);
3810 value_decrement(M
->p
[1][1+D
->Dimension
], M
->p
[1][1+D
->Dimension
]);
3812 p
= new_enode(partition
, e
->x
.p
->size
+ (n
-1)*2, e
->x
.p
->pos
);
3813 for (j
= 0; j
< 2*i
; ++j
) {
3814 value_clear(p
->arr
[j
].d
);
3815 p
->arr
[j
] = e
->x
.p
->arr
[j
];
3817 for (j
= 2*i
+2; j
< e
->x
.p
->size
; ++j
) {
3818 value_clear(p
->arr
[j
+2*(n
-1)].d
);
3819 p
->arr
[j
+2*(n
-1)] = e
->x
.p
->arr
[j
];
3821 for (j
= n
-1; j
>= 0; --j
) {
3823 value_clear(p
->arr
[2*i
+1].d
);
3824 p
->arr
[2*i
+1] = e
->x
.p
->arr
[2*i
+1];
3826 evalue_copy(&p
->arr
[2*(i
+j
)+1], &e
->x
.p
->arr
[2*i
+1]);
3828 value_subtract(M
->p
[1][1+D
->Dimension
], M
->p
[1][1+D
->Dimension
],
3829 T
->p
[1][D
->Dimension
]);
3830 value_addto(M
->p
[0][1+D
->Dimension
], M
->p
[0][1+D
->Dimension
],
3831 T
->p
[1][D
->Dimension
]);
3833 E
= DomainAddConstraints(D
, M
, MaxRays
);
3834 EVALUE_SET_DOMAIN(p
->arr
[2*(i
+j
)], E
);
3835 if (evalue_range_reduction_in_domain(&p
->arr
[2*(i
+j
)+1], E
))
3836 reduce_evalue(&p
->arr
[2*(i
+j
)+1]);
3838 value_clear(e
->x
.p
->arr
[2*i
].d
);
3852 void evalue_extract_affine(const evalue
*e
, Value
*coeff
, Value
*cst
, Value
*d
)
3854 value_set_si(*d
, 1);
3856 for ( ; value_zero_p(e
->d
); e
= &e
->x
.p
->arr
[0]) {
3857 assert(e
->x
.p
->type
== polynomial
);
3858 assert(e
->x
.p
->size
== 2);
3859 evalue
*c
= &e
->x
.p
->arr
[1];
3860 value_multiply(coeff
[e
->x
.p
->pos
-1], *d
, c
->x
.n
);
3861 value_division(coeff
[e
->x
.p
->pos
-1], coeff
[e
->x
.p
->pos
-1], c
->d
);
3863 value_multiply(*cst
, *d
, e
->x
.n
);
3864 value_division(*cst
, *cst
, e
->d
);
3867 /* returns an evalue that corresponds to
3871 static evalue
*term(int param
, Value c
, Value den
)
3873 evalue
*EP
= ALLOC(evalue
);
3875 value_set_si(EP
->d
,0);
3876 EP
->x
.p
= new_enode(polynomial
, 2, param
+ 1);
3877 evalue_set_si(&EP
->x
.p
->arr
[0], 0, 1);
3878 value_init(EP
->x
.p
->arr
[1].x
.n
);
3879 value_assign(EP
->x
.p
->arr
[1].d
, den
);
3880 value_assign(EP
->x
.p
->arr
[1].x
.n
, c
);
3884 evalue
*affine2evalue(Value
*coeff
, Value denom
, int nvar
)
3887 evalue
*E
= ALLOC(evalue
);
3889 evalue_set(E
, coeff
[nvar
], denom
);
3890 for (i
= 0; i
< nvar
; ++i
) {
3891 evalue
*t
= term(i
, coeff
[i
], denom
);
3893 free_evalue_refs(t
);
3899 void evalue_substitute(evalue
*e
, evalue
**subs
)
3905 if (value_notzero_p(e
->d
))
3909 assert(p
->type
!= partition
);
3911 for (i
= 0; i
< p
->size
; ++i
)
3912 evalue_substitute(&p
->arr
[i
], subs
);
3914 if (p
->type
== polynomial
)
3919 value_set_si(v
->d
, 0);
3920 v
->x
.p
= new_enode(p
->type
, 3, -1);
3921 value_clear(v
->x
.p
->arr
[0].d
);
3922 v
->x
.p
->arr
[0] = p
->arr
[0];
3923 evalue_set_si(&v
->x
.p
->arr
[1], 0, 1);
3924 evalue_set_si(&v
->x
.p
->arr
[2], 1, 1);
3927 offset
= type_offset(p
);
3929 for (i
= p
->size
-1; i
>= offset
+1; i
--) {
3930 emul(v
, &p
->arr
[i
]);
3931 eadd(&p
->arr
[i
], &p
->arr
[i
-1]);
3932 free_evalue_refs(&(p
->arr
[i
]));
3935 if (p
->type
!= polynomial
) {
3936 free_evalue_refs(v
);
3941 *e
= p
->arr
[offset
];
3945 /* evalue e is given in terms of "new" parameter; CP maps the new
3946 * parameters back to the old parameters.
3947 * Transforms e such that it refers back to the old parameters.
3949 void evalue_backsubstitute(evalue
*e
, Matrix
*CP
, unsigned MaxRays
)
3956 unsigned nparam
= CP
->NbColumns
-1;
3959 if (EVALUE_IS_ZERO(*e
))
3962 assert(value_zero_p(e
->d
));
3964 assert(p
->type
== partition
);
3966 inv
= left_inverse(CP
, &eq
);
3967 subs
= ALLOCN(evalue
*, nparam
);
3968 for (i
= 0; i
< nparam
; ++i
)
3969 subs
[i
] = affine2evalue(inv
->p
[i
], inv
->p
[nparam
][inv
->NbColumns
-1],
3972 CEq
= Constraints2Polyhedron(eq
, MaxRays
);
3973 addeliminatedparams_partition(p
, inv
, CEq
, inv
->NbColumns
-1, MaxRays
);
3974 Polyhedron_Free(CEq
);
3976 for (i
= 0; i
< p
->size
/2; ++i
)
3977 evalue_substitute(&p
->arr
[2*i
+1], subs
);
3979 for (i
= 0; i
< nparam
; ++i
) {
3980 free_evalue_refs(subs
[i
]);