3 #include <barvinok/util.h>
4 #include <barvinok/options.h>
7 #ifndef HAVE_ENUMERATE4
8 #define Polyhedron_Enumerate(a,b,c,d) Polyhedron_Enumerate(a,b,c)
11 #define ALLOC(type) (type*)malloc(sizeof(type))
12 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
15 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
17 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
20 #ifndef HAVE_ENUMERATION_FREE
21 #define Enumeration_Free(en) /* just leak some memory */
24 void manual_count(Polyhedron
*P
, Value
* result
)
26 Polyhedron
*U
= Universe_Polyhedron(0);
27 Enumeration
*en
= Polyhedron_Enumerate(P
,U
,1024,NULL
);
28 Value
*v
= compute_poly(en
,NULL
);
29 value_assign(*result
, *v
);
36 #ifndef HAVE_ENUMERATION_FREE
37 #undef Enumeration_Free
40 #include <barvinok/evalue.h>
41 #include <barvinok/util.h>
42 #include <barvinok/barvinok.h>
44 /* Return random value between 0 and max-1 inclusive
46 int random_int(int max
) {
47 return (int) (((double)(max
))*rand()/(RAND_MAX
+1.0));
50 Polyhedron
*Polyhedron_Read(unsigned MaxRays
)
53 unsigned NbRows
, NbColumns
;
58 while (fgets(s
, sizeof(s
), stdin
)) {
61 if (strncasecmp(s
, "vertices", sizeof("vertices")-1) == 0)
63 if (sscanf(s
, "%u %u", &NbRows
, &NbColumns
) == 2)
68 M
= Matrix_Alloc(NbRows
,NbColumns
);
71 P
= Rays2Polyhedron(M
, MaxRays
);
73 P
= Constraints2Polyhedron(M
, MaxRays
);
78 /* Inplace polarization
80 void Polyhedron_Polarize(Polyhedron
*P
)
82 unsigned NbRows
= P
->NbConstraints
+ P
->NbRays
;
86 q
= (Value
**)malloc(NbRows
* sizeof(Value
*));
88 for (i
= 0; i
< P
->NbRays
; ++i
)
90 for (; i
< NbRows
; ++i
)
91 q
[i
] = P
->Constraint
[i
-P
->NbRays
];
92 P
->NbConstraints
= NbRows
- P
->NbConstraints
;
93 P
->NbRays
= NbRows
- P
->NbRays
;
96 P
->Ray
= q
+ P
->NbConstraints
;
100 * Rather general polar
101 * We can optimize it significantly if we assume that
104 * Also, we calculate the polar as defined in Schrijver
105 * The opposite should probably work as well and would
106 * eliminate the need for multiplying by -1
108 Polyhedron
* Polyhedron_Polar(Polyhedron
*P
, unsigned NbMaxRays
)
112 unsigned dim
= P
->Dimension
+ 2;
113 Matrix
*M
= Matrix_Alloc(P
->NbRays
, dim
);
117 value_set_si(mone
, -1);
118 for (i
= 0; i
< P
->NbRays
; ++i
) {
119 Vector_Scale(P
->Ray
[i
], M
->p
[i
], mone
, dim
);
120 value_multiply(M
->p
[i
][0], M
->p
[i
][0], mone
);
121 value_multiply(M
->p
[i
][dim
-1], M
->p
[i
][dim
-1], mone
);
123 P
= Constraints2Polyhedron(M
, NbMaxRays
);
131 * Returns the supporting cone of P at the vertex with index v
133 Polyhedron
* supporting_cone(Polyhedron
*P
, int v
)
138 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
139 unsigned dim
= P
->Dimension
+ 2;
141 assert(v
>=0 && v
< P
->NbRays
);
142 assert(value_pos_p(P
->Ray
[v
][dim
-1]));
146 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
147 Inner_Product(P
->Constraint
[i
] + 1, P
->Ray
[v
] + 1, dim
- 1, &tmp
);
148 if ((supporting
[i
] = value_zero_p(tmp
)))
151 assert(n
>= dim
- 2);
153 M
= Matrix_Alloc(n
, dim
);
155 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
157 value_set_si(M
->p
[j
][dim
-1], 0);
158 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], dim
-1);
161 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
167 void value_lcm(Value i
, Value j
, Value
* lcm
)
171 value_multiply(aux
,i
,j
);
173 value_division(*lcm
,aux
,*lcm
);
177 Polyhedron
* supporting_cone_p(Polyhedron
*P
, Param_Vertices
*v
)
180 Value lcm
, tmp
, tmp2
;
181 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
182 unsigned dim
= P
->Dimension
+ 2;
183 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
184 unsigned nvar
= dim
- nparam
- 2;
189 row
= Vector_Alloc(nparam
+1);
194 value_set_si(lcm
, 1);
195 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
196 Vector_Set(row
->p
, 0, nparam
+1);
197 for (j
= 0 ; j
< nvar
; ++j
) {
198 value_set_si(tmp
, 1);
199 value_assign(tmp2
, P
->Constraint
[i
][j
+1]);
200 if (value_ne(lcm
, v
->Vertex
->p
[j
][nparam
+1])) {
201 value_assign(tmp
, lcm
);
202 value_lcm(lcm
, v
->Vertex
->p
[j
][nparam
+1], &lcm
);
203 value_division(tmp
, lcm
, tmp
);
204 value_multiply(tmp2
, tmp2
, lcm
);
205 value_division(tmp2
, tmp2
, v
->Vertex
->p
[j
][nparam
+1]);
207 Vector_Combine(row
->p
, v
->Vertex
->p
[j
], row
->p
,
208 tmp
, tmp2
, nparam
+1);
210 value_set_si(tmp
, 1);
211 Vector_Combine(row
->p
, P
->Constraint
[i
]+1+nvar
, row
->p
, tmp
, lcm
, nparam
+1);
212 for (j
= 0; j
< nparam
+1; ++j
)
213 if (value_notzero_p(row
->p
[j
]))
215 if ((supporting
[i
] = (j
== nparam
+ 1)))
223 M
= Matrix_Alloc(n
, nvar
+2);
225 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
227 value_set_si(M
->p
[j
][nvar
+1], 0);
228 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], nvar
+1);
231 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
237 Polyhedron
* triangulate_cone(Polyhedron
*P
, unsigned NbMaxCons
)
239 const static int MAX_TRY
=10;
242 unsigned dim
= P
->Dimension
;
243 Matrix
*M
= Matrix_Alloc(P
->NbRays
+1, dim
+3);
245 Polyhedron
*L
, *R
, *T
;
246 assert(P
->NbEq
== 0);
251 Vector_Set(M
->p
[0]+1, 0, dim
+1);
252 value_set_si(M
->p
[0][0], 1);
253 value_set_si(M
->p
[0][dim
+2], 1);
254 Vector_Set(M
->p
[P
->NbRays
]+1, 0, dim
+2);
255 value_set_si(M
->p
[P
->NbRays
][0], 1);
256 value_set_si(M
->p
[P
->NbRays
][dim
+1], 1);
258 /* Delaunay triangulation */
259 for (i
= 0, r
= 1; i
< P
->NbRays
; ++i
) {
260 if (value_notzero_p(P
->Ray
[i
][dim
+1]))
262 Vector_Copy(P
->Ray
[i
], M
->p
[r
], dim
+1);
263 Inner_Product(M
->p
[r
]+1, M
->p
[r
]+1, dim
, &tmp
);
264 value_assign(M
->p
[r
][dim
+1], tmp
);
265 value_set_si(M
->p
[r
][dim
+2], 0);
270 L
= Rays2Polyhedron(M3
, NbMaxCons
);
273 M2
= Matrix_Alloc(dim
+1, dim
+2);
278 /* Usually R should still be 0 */
281 for (r
= 1; r
< P
->NbRays
; ++r
) {
282 value_set_si(M
->p
[r
][dim
+1], random_int((t
+1)*dim
*P
->NbRays
)+1);
285 L
= Rays2Polyhedron(M3
, NbMaxCons
);
289 assert(t
<= MAX_TRY
);
294 for (i
= 0; i
< L
->NbConstraints
; ++i
) {
295 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
296 if (value_negz_p(L
->Constraint
[i
][dim
+1]))
298 if (value_notzero_p(L
->Constraint
[i
][dim
+2]))
300 for (j
= 1, r
= 1; j
< M
->NbRows
; ++j
) {
301 Inner_Product(M
->p
[j
]+1, L
->Constraint
[i
]+1, dim
+1, &tmp
);
302 if (value_notzero_p(tmp
))
306 Vector_Copy(M
->p
[j
]+1, M2
->p
[r
]+1, dim
);
307 value_set_si(M2
->p
[r
][0], 1);
308 value_set_si(M2
->p
[r
][dim
+1], 0);
312 Vector_Set(M2
->p
[0]+1, 0, dim
);
313 value_set_si(M2
->p
[0][0], 1);
314 value_set_si(M2
->p
[0][dim
+1], 1);
315 T
= Rays2Polyhedron(M2
, P
->NbConstraints
+1);
329 void check_triangulization(Polyhedron
*P
, Polyhedron
*T
)
331 Polyhedron
*C
, *D
, *E
, *F
, *G
, *U
;
332 for (C
= T
; C
; C
= C
->next
) {
336 U
= DomainConvex(DomainUnion(U
, C
, 100), 100);
337 for (D
= C
->next
; D
; D
= D
->next
) {
342 E
= DomainIntersection(C
, D
, 600);
343 assert(E
->NbRays
== 0 || E
->NbEq
>= 1);
349 assert(PolyhedronIncludes(U
, P
));
350 assert(PolyhedronIncludes(P
, U
));
353 /* Computes x, y and g such that g = gcd(a,b) and a*x+b*y = g */
354 void Extended_Euclid(Value a
, Value b
, Value
*x
, Value
*y
, Value
*g
)
356 Value c
, d
, e
, f
, tmp
;
363 value_absolute(c
, a
);
364 value_absolute(d
, b
);
367 while(value_pos_p(d
)) {
368 value_division(tmp
, c
, d
);
369 value_multiply(tmp
, tmp
, f
);
370 value_subtract(e
, e
, tmp
);
371 value_division(tmp
, c
, d
);
372 value_multiply(tmp
, tmp
, d
);
373 value_subtract(c
, c
, tmp
);
380 else if (value_pos_p(a
))
382 else value_oppose(*x
, e
);
386 value_multiply(tmp
, a
, *x
);
387 value_subtract(tmp
, c
, tmp
);
388 value_division(*y
, tmp
, b
);
397 Matrix
* unimodular_complete(Vector
*row
)
399 Value g
, b
, c
, old
, tmp
;
408 m
= Matrix_Alloc(row
->Size
, row
->Size
);
409 for (j
= 0; j
< row
->Size
; ++j
) {
410 value_assign(m
->p
[0][j
], row
->p
[j
]);
412 value_assign(g
, row
->p
[0]);
413 for (i
= 1; value_zero_p(g
) && i
< row
->Size
; ++i
) {
414 for (j
= 0; j
< row
->Size
; ++j
) {
416 value_set_si(m
->p
[i
][j
], 1);
418 value_set_si(m
->p
[i
][j
], 0);
420 value_assign(g
, row
->p
[i
]);
422 for (; i
< row
->Size
; ++i
) {
423 value_assign(old
, g
);
424 Extended_Euclid(old
, row
->p
[i
], &c
, &b
, &g
);
426 for (j
= 0; j
< row
->Size
; ++j
) {
428 value_multiply(tmp
, row
->p
[j
], b
);
429 value_division(m
->p
[i
][j
], tmp
, old
);
431 value_assign(m
->p
[i
][j
], c
);
433 value_set_si(m
->p
[i
][j
], 0);
445 * Returns a full-dimensional polyhedron with the same number
446 * of integer points as P
448 Polyhedron
*remove_equalities(Polyhedron
*P
)
452 Polyhedron
*p
= Polyhedron_Copy(P
), *q
;
453 unsigned dim
= p
->Dimension
;
458 while (!emptyQ2(p
) && p
->NbEq
> 0) {
460 Vector_Gcd(p
->Constraint
[0]+1, dim
+1, &g
);
461 Vector_AntiScale(p
->Constraint
[0]+1, p
->Constraint
[0]+1, g
, dim
+1);
462 Vector_Gcd(p
->Constraint
[0]+1, dim
, &g
);
463 if (value_notone_p(g
) && value_notmone_p(g
)) {
465 p
= Empty_Polyhedron(0);
468 v
= Vector_Alloc(dim
);
469 Vector_Copy(p
->Constraint
[0]+1, v
->p
, dim
);
470 m1
= unimodular_complete(v
);
471 m2
= Matrix_Alloc(dim
, dim
+1);
472 for (i
= 0; i
< dim
-1 ; ++i
) {
473 Vector_Copy(m1
->p
[i
+1], m2
->p
[i
], dim
);
474 value_set_si(m2
->p
[i
][dim
], 0);
476 Vector_Set(m2
->p
[dim
-1], 0, dim
);
477 value_set_si(m2
->p
[dim
-1][dim
], 1);
478 q
= Polyhedron_Image(p
, m2
, p
->NbConstraints
+1+p
->NbRays
);
491 * Returns a full-dimensional polyhedron with the same number
492 * of integer points as P
493 * nvar specifies the number of variables
494 * The remaining dimensions are assumed to be parameters
496 * factor is NbEq x (nparam+2) matrix, containing stride constraints
497 * on the parameters; column nparam is the constant;
498 * column nparam+1 is the stride
500 * if factor is NULL, only remove equalities that don't affect
501 * the number of points
503 Polyhedron
*remove_equalities_p(Polyhedron
*P
, unsigned nvar
, Matrix
**factor
)
507 Polyhedron
*p
= P
, *q
;
508 unsigned dim
= p
->Dimension
;
514 f
= Matrix_Alloc(p
->NbEq
, dim
-nvar
+2);
519 while (nvar
> 0 && p
->NbEq
- skip
> 0) {
522 while (skip
< p
->NbEq
&&
523 First_Non_Zero(p
->Constraint
[skip
]+1, nvar
) == -1)
528 Vector_Gcd(p
->Constraint
[skip
]+1, dim
+1, &g
);
529 Vector_AntiScale(p
->Constraint
[skip
]+1, p
->Constraint
[skip
]+1, g
, dim
+1);
530 Vector_Gcd(p
->Constraint
[skip
]+1, nvar
, &g
);
531 if (!factor
&& value_notone_p(g
) && value_notmone_p(g
)) {
536 Vector_Copy(p
->Constraint
[skip
]+1+nvar
, f
->p
[j
], dim
-nvar
+1);
537 value_assign(f
->p
[j
][dim
-nvar
+1], g
);
539 v
= Vector_Alloc(dim
);
540 Vector_AntiScale(p
->Constraint
[skip
]+1, v
->p
, g
, nvar
);
541 Vector_Set(v
->p
+nvar
, 0, dim
-nvar
);
542 m1
= unimodular_complete(v
);
543 m2
= Matrix_Alloc(dim
, dim
+1);
544 for (i
= 0; i
< dim
-1 ; ++i
) {
545 Vector_Copy(m1
->p
[i
+1], m2
->p
[i
], dim
);
546 value_set_si(m2
->p
[i
][dim
], 0);
548 Vector_Set(m2
->p
[dim
-1], 0, dim
);
549 value_set_si(m2
->p
[dim
-1][dim
], 1);
550 q
= Polyhedron_Image(p
, m2
, p
->NbConstraints
+1+p
->NbRays
);
564 void Line_Length(Polyhedron
*P
, Value
*len
)
570 assert(P
->Dimension
== 1);
576 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
577 value_oppose(tmp
, P
->Constraint
[i
][2]);
578 if (value_pos_p(P
->Constraint
[i
][1])) {
579 mpz_cdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
580 if (!p
|| value_gt(tmp
, pos
))
581 value_assign(pos
, tmp
);
584 mpz_fdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
585 if (!n
|| value_lt(tmp
, neg
))
586 value_assign(neg
, tmp
);
590 value_subtract(tmp
, neg
, pos
);
591 value_increment(*len
, tmp
);
593 value_set_si(*len
, -1);
602 * Factors the polyhedron P into polyhedra Q_i such that
603 * the number of integer points in P is equal to the product
604 * of the number of integer points in the individual Q_i
606 * If no factors can be found, NULL is returned.
607 * Otherwise, a linked list of the factors is returned.
609 * The algorithm works by first computing the Hermite normal form
610 * and then grouping columns linked by one or more constraints together,
611 * where a constraints "links" two or more columns if the constraint
612 * has nonzero coefficients in the columns.
614 Polyhedron
* Polyhedron_Factor(Polyhedron
*P
, unsigned nparam
,
618 Matrix
*M
, *H
, *Q
, *U
;
619 int *pos
; /* for each column: row position of pivot */
620 int *group
; /* group to which a column belongs */
621 int *cnt
; /* number of columns in the group */
622 int *rowgroup
; /* group to which a constraint belongs */
623 int nvar
= P
->Dimension
- nparam
;
624 Polyhedron
*F
= NULL
;
632 NALLOC(rowgroup
, P
->NbConstraints
);
634 M
= Matrix_Alloc(P
->NbConstraints
, nvar
);
635 for (i
= 0; i
< P
->NbConstraints
; ++i
)
636 Vector_Copy(P
->Constraint
[i
]+1, M
->p
[i
], nvar
);
637 left_hermite(M
, &H
, &Q
, &U
);
642 for (i
= 0; i
< P
->NbConstraints
; ++i
)
644 for (i
= 0, j
= 0; i
< H
->NbColumns
; ++i
) {
645 for ( ; j
< H
->NbRows
; ++j
)
646 if (value_notzero_p(H
->p
[j
][i
]))
648 assert (j
< H
->NbRows
);
651 for (i
= 0; i
< nvar
; ++i
) {
655 for (i
= 0; i
< H
->NbColumns
&& cnt
[0] < nvar
; ++i
) {
656 if (rowgroup
[pos
[i
]] == -1)
657 rowgroup
[pos
[i
]] = i
;
658 for (j
= pos
[i
]+1; j
< H
->NbRows
; ++j
) {
659 if (value_zero_p(H
->p
[j
][i
]))
661 if (rowgroup
[j
] != -1)
663 rowgroup
[j
] = group
[i
];
664 for (k
= i
+1; k
< H
->NbColumns
&& j
>= pos
[k
]; ++k
) {
669 if (group
[k
] != group
[i
] && value_notzero_p(H
->p
[j
][k
])) {
670 assert(cnt
[group
[k
]] != 0);
671 assert(cnt
[group
[i
]] != 0);
672 if (group
[i
] < group
[k
]) {
673 cnt
[group
[i
]] += cnt
[group
[k
]];
677 cnt
[group
[k
]] += cnt
[group
[i
]];
686 if (cnt
[0] != nvar
) {
687 /* Extract out pure context constraints separately */
688 Polyhedron
**next
= &F
;
689 for (i
= nparam
? -1 : 0; i
< nvar
; ++i
) {
693 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
694 if (rowgroup
[j
] == -1) {
695 if (First_Non_Zero(P
->Constraint
[j
]+1+nvar
,
708 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
709 if (rowgroup
[j
] >= 0 && group
[rowgroup
[j
]] == i
) {
715 M
= Matrix_Alloc(k
, d
+nparam
+2);
716 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
) {
718 if (rowgroup
[j
] != i
)
720 value_assign(M
->p
[k
][0], P
->Constraint
[j
][0]);
721 for (l
= 0, m
= 0; m
< d
; ++l
) {
724 value_assign(M
->p
[k
][1+m
++], H
->p
[j
][l
]);
726 Vector_Copy(P
->Constraint
[j
]+1+nvar
, M
->p
[k
]+1+m
, nparam
+1);
729 *next
= Constraints2Polyhedron(M
, NbMaxRays
);
730 next
= &(*next
)->next
;
743 * Project on final dim dimensions
745 Polyhedron
* Polyhedron_Project(Polyhedron
*P
, int dim
)
748 int remove
= P
->Dimension
- dim
;
752 if (P
->Dimension
== dim
)
753 return Polyhedron_Copy(P
);
755 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
756 for (i
= 0; i
< dim
+1; ++i
)
757 value_set_si(T
->p
[i
][i
+remove
], 1);
758 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
763 /* Constructs a new constraint that ensures that
764 * the first constraint is (strictly) smaller than
767 static void smaller_constraint(Value
*a
, Value
*b
, Value
*c
, int pos
, int shift
,
768 int len
, int strict
, Value
*tmp
)
770 value_oppose(*tmp
, b
[pos
+1]);
771 value_set_si(c
[0], 1);
772 Vector_Combine(a
+1+shift
, b
+1+shift
, c
+1, *tmp
, a
[pos
+1], len
-shift
-1);
774 value_decrement(c
[len
-shift
-1], c
[len
-shift
-1]);
775 ConstraintSimplify(c
, c
, len
-shift
, tmp
);
778 struct section
{ Polyhedron
* D
; evalue E
; };
780 evalue
* ParamLine_Length_mod(Polyhedron
*P
, Polyhedron
*C
, int MaxRays
)
782 unsigned dim
= P
->Dimension
;
783 unsigned nvar
= dim
- C
->Dimension
;
798 NALLOC(pos
, P
->NbConstraints
);
801 evalue_set_si(&mone
, -1, 1);
803 for (i
= 0, z
= 0; i
< P
->NbConstraints
; ++i
)
804 if (value_zero_p(P
->Constraint
[i
][1]))
806 /* put those with positive coefficients first; number: p */
807 for (i
= 0, p
= 0, n
= P
->NbConstraints
-z
-1; i
< P
->NbConstraints
; ++i
)
808 if (value_pos_p(P
->Constraint
[i
][1]))
810 else if (value_neg_p(P
->Constraint
[i
][1]))
812 n
= P
->NbConstraints
-z
-p
;
813 assert (p
>= 1 && n
>= 1);
814 s
= (struct section
*) malloc(p
* n
* sizeof(struct section
));
815 M
= Matrix_Alloc((p
-1) + (n
-1), dim
-nvar
+2);
816 for (k
= 0; k
< p
; ++k
) {
817 for (k2
= 0; k2
< p
; ++k2
) {
822 P
->Constraint
[pos
[k
]],
823 P
->Constraint
[pos
[k2
]],
824 M
->p
[q
], 0, nvar
, dim
+2, k2
> k
, &g
);
826 for (l
= p
; l
< p
+n
; ++l
) {
827 for (l2
= p
; l2
< p
+n
; ++l2
) {
832 P
->Constraint
[pos
[l2
]],
833 P
->Constraint
[pos
[l
]],
834 M
->p
[q
], 0, nvar
, dim
+2, l2
> l
, &g
);
837 T
= Constraints2Polyhedron(M2
, P
->NbRays
);
839 s
[nd
].D
= DomainIntersection(T
, C
, MaxRays
);
841 POL_ENSURE_VERTICES(s
[nd
].D
);
842 if (emptyQ(s
[nd
].D
)) {
843 Polyhedron_Free(s
[nd
].D
);
846 L
= bv_ceil3(P
->Constraint
[pos
[k
]]+1+nvar
,
848 P
->Constraint
[pos
[k
]][0+1], s
[nd
].D
);
849 U
= bv_ceil3(P
->Constraint
[pos
[l
]]+1+nvar
,
851 P
->Constraint
[pos
[l
]][0+1], s
[nd
].D
);
867 value_set_si(F
->d
, 0);
868 F
->x
.p
= new_enode(partition
, 2*nd
, dim
-nvar
);
869 for (k
= 0; k
< nd
; ++k
) {
870 EVALUE_SET_DOMAIN(F
->x
.p
->arr
[2*k
], s
[k
].D
);
871 value_clear(F
->x
.p
->arr
[2*k
+1].d
);
872 F
->x
.p
->arr
[2*k
+1] = s
[k
].E
;
876 free_evalue_refs(&mone
);
883 evalue
* ParamLine_Length(Polyhedron
*P
, Polyhedron
*C
,
884 struct barvinok_options
*options
)
887 tmp
= ParamLine_Length_mod(P
, C
, options
->MaxRays
);
888 if (options
->lookup_table
) {
889 evalue_mod2table(tmp
, C
->Dimension
);
895 Bool
isIdentity(Matrix
*M
)
898 if (M
->NbRows
!= M
->NbColumns
)
901 for (i
= 0;i
< M
->NbRows
; i
++)
902 for (j
= 0; j
< M
->NbColumns
; j
++)
904 if(value_notone_p(M
->p
[i
][j
]))
907 if(value_notzero_p(M
->p
[i
][j
]))
913 void Param_Polyhedron_Print(FILE* DST
, Param_Polyhedron
*PP
, char **param_names
)
918 for(P
=PP
->D
;P
;P
=P
->next
) {
920 /* prints current val. dom. */
921 printf( "---------------------------------------\n" );
922 printf( "Domain :\n");
923 Print_Domain( stdout
, P
->Domain
, param_names
);
925 /* scan the vertices */
926 printf( "Vertices :\n");
927 FORALL_PVertex_in_ParamPolyhedron(V
,P
,PP
) {
929 /* prints each vertex */
930 Print_Vertex( stdout
, V
->Vertex
, param_names
);
933 END_FORALL_PVertex_in_ParamPolyhedron
;
937 void Enumeration_Print(FILE *Dst
, Enumeration
*en
, char **params
)
939 for (; en
; en
= en
->next
) {
940 Print_Domain(Dst
, en
->ValidityDomain
, params
);
941 print_evalue(Dst
, &en
->EP
, params
);
945 void Enumeration_Free(Enumeration
*en
)
951 free_evalue_refs( &(en
->EP
) );
952 Domain_Free( en
->ValidityDomain
);
959 void Enumeration_mod2table(Enumeration
*en
, unsigned nparam
)
961 for (; en
; en
= en
->next
) {
962 evalue_mod2table(&en
->EP
, nparam
);
963 reduce_evalue(&en
->EP
);
967 size_t Enumeration_size(Enumeration
*en
)
971 for (; en
; en
= en
->next
) {
972 s
+= domain_size(en
->ValidityDomain
);
973 s
+= evalue_size(&en
->EP
);
978 void Free_ParamNames(char **params
, int m
)
985 int DomainIncludes(Polyhedron
*Pol1
, Polyhedron
*Pol2
)
988 for ( ; Pol1
; Pol1
= Pol1
->next
) {
989 for (P2
= Pol2
; P2
; P2
= P2
->next
)
990 if (!PolyhedronIncludes(Pol1
, P2
))
998 int line_minmax(Polyhedron
*I
, Value
*min
, Value
*max
)
1003 value_oppose(I
->Constraint
[0][2], I
->Constraint
[0][2]);
1004 /* There should never be a remainder here */
1005 if (value_pos_p(I
->Constraint
[0][1]))
1006 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1008 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1009 value_assign(*max
, *min
);
1010 } else for (i
= 0; i
< I
->NbConstraints
; ++i
) {
1011 if (value_zero_p(I
->Constraint
[i
][1])) {
1016 value_oppose(I
->Constraint
[i
][2], I
->Constraint
[i
][2]);
1017 if (value_pos_p(I
->Constraint
[i
][1]))
1018 mpz_cdiv_q(*min
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1020 mpz_fdiv_q(*max
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1028 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1031 @param pos index position of current loop index (1..hdim-1)
1032 @param P loop domain
1033 @param context context values for fixed indices
1034 @param exist number of existential variables
1035 @return the number of integer points in this
1039 void count_points_e (int pos
, Polyhedron
*P
, int exist
, int nparam
,
1040 Value
*context
, Value
*res
)
1045 value_set_si(*res
, 0);
1049 value_init(LB
); value_init(UB
); value_init(k
);
1053 if (lower_upper_bounds(pos
,P
,context
,&LB
,&UB
) !=0) {
1054 /* Problem if UB or LB is INFINITY */
1055 value_clear(LB
); value_clear(UB
); value_clear(k
);
1056 if (pos
> P
->Dimension
- nparam
- exist
)
1057 value_set_si(*res
, 1);
1059 value_set_si(*res
, -1);
1066 for (value_assign(k
,LB
); value_le(k
,UB
); value_increment(k
,k
)) {
1067 fprintf(stderr
, "(");
1068 for (i
=1; i
<pos
; i
++) {
1069 value_print(stderr
,P_VALUE_FMT
,context
[i
]);
1070 fprintf(stderr
,",");
1072 value_print(stderr
,P_VALUE_FMT
,k
);
1073 fprintf(stderr
,")\n");
1078 value_set_si(context
[pos
],0);
1079 if (value_lt(UB
,LB
)) {
1080 value_clear(LB
); value_clear(UB
); value_clear(k
);
1081 value_set_si(*res
, 0);
1086 value_set_si(*res
, 1);
1088 value_subtract(k
,UB
,LB
);
1089 value_add_int(k
,k
,1);
1090 value_assign(*res
, k
);
1092 value_clear(LB
); value_clear(UB
); value_clear(k
);
1096 /*-----------------------------------------------------------------*/
1097 /* Optimization idea */
1098 /* If inner loops are not a function of k (the current index) */
1099 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1101 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1102 /* (skip the for loop) */
1103 /*-----------------------------------------------------------------*/
1106 value_set_si(*res
, 0);
1107 for (value_assign(k
,LB
);value_le(k
,UB
);value_increment(k
,k
)) {
1108 /* Insert k in context */
1109 value_assign(context
[pos
],k
);
1110 count_points_e(pos
+1, P
->next
, exist
, nparam
, context
, &c
);
1111 if(value_notmone_p(c
))
1112 value_addto(*res
, *res
, c
);
1114 value_set_si(*res
, -1);
1117 if (pos
> P
->Dimension
- nparam
- exist
&&
1124 fprintf(stderr
,"%d\n",CNT
);
1128 value_set_si(context
[pos
],0);
1129 value_clear(LB
); value_clear(UB
); value_clear(k
);
1131 } /* count_points_e */
1133 int DomainContains(Polyhedron
*P
, Value
*list_args
, int len
,
1134 unsigned MaxRays
, int set
)
1139 if (P
->Dimension
== len
)
1140 return in_domain(P
, list_args
);
1142 assert(set
); // assume list_args is large enough
1143 assert((P
->Dimension
- len
) % 2 == 0);
1145 for (i
= 0; i
< P
->Dimension
- len
; i
+= 2) {
1147 for (j
= 0 ; j
< P
->NbEq
; ++j
)
1148 if (value_notzero_p(P
->Constraint
[j
][1+len
+i
]))
1150 assert(j
< P
->NbEq
);
1151 value_absolute(m
, P
->Constraint
[j
][1+len
+i
]);
1152 k
= First_Non_Zero(P
->Constraint
[j
]+1, len
);
1154 assert(First_Non_Zero(P
->Constraint
[j
]+1+k
+1, len
- k
- 1) == -1);
1155 mpz_fdiv_q(list_args
[len
+i
], list_args
[k
], m
);
1156 mpz_fdiv_r(list_args
[len
+i
+1], list_args
[k
], m
);
1160 return in_domain(P
, list_args
);
1163 Polyhedron
*DomainConcat(Polyhedron
*head
, Polyhedron
*tail
)
1168 for (S
= head
; S
->next
; S
= S
->next
)
1174 #ifndef HAVE_LEXSMALLER
1176 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1177 Polyhedron
*C
, unsigned MaxRays
)
1183 #include <polylib/ranking.h>
1185 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1186 Polyhedron
*C
, unsigned MaxRays
)
1189 Polyhedron
*RC
, *RD
, *Q
;
1190 unsigned nparam
= dim
+ C
->Dimension
;
1194 RC
= LexSmaller(P
, D
, dim
, C
, MaxRays
);
1198 exist
= RD
->Dimension
- nparam
- dim
;
1199 CA
= align_context(RC
, RD
->Dimension
, MaxRays
);
1200 Q
= DomainIntersection(RD
, CA
, MaxRays
);
1201 Polyhedron_Free(CA
);
1203 Polyhedron_Free(RC
);
1206 for (Q
= RD
; Q
; Q
= Q
->next
) {
1208 Polyhedron
*next
= Q
->next
;
1211 t
= barvinok_enumerate_e(Q
, exist
, nparam
, MaxRays
);
1217 free_evalue_refs(t
);
1229 Enumeration
*barvinok_lexsmaller(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1230 Polyhedron
*C
, unsigned MaxRays
)
1232 evalue
*EP
= barvinok_lexsmaller_ev(P
, D
, dim
, C
, MaxRays
);
1234 return partition2enumeration(EP
);
1238 /* "align" matrix to have nrows by inserting
1239 * the necessary number of rows and an equal number of columns in front
1241 Matrix
*align_matrix(Matrix
*M
, int nrows
)
1244 int newrows
= nrows
- M
->NbRows
;
1245 Matrix
*M2
= Matrix_Alloc(nrows
, newrows
+ M
->NbColumns
);
1246 for (i
= 0; i
< newrows
; ++i
)
1247 value_set_si(M2
->p
[i
][i
], 1);
1248 for (i
= 0; i
< M
->NbRows
; ++i
)
1249 Vector_Copy(M
->p
[i
], M2
->p
[newrows
+i
]+newrows
, M
->NbColumns
);
1253 static void print_varlist(FILE *out
, int n
, char **names
)
1257 for (i
= 0; i
< n
; ++i
) {
1260 fprintf(out
, "%s", names
[i
]);
1265 static void print_term(FILE *out
, Value v
, int pos
, int dim
, int nparam
,
1266 char **iter_names
, char **param_names
, int *first
)
1268 if (value_zero_p(v
)) {
1269 if (first
&& *first
&& pos
>= dim
+ nparam
)
1275 if (!*first
&& value_pos_p(v
))
1279 if (pos
< dim
+ nparam
) {
1280 if (value_mone_p(v
))
1282 else if (!value_one_p(v
))
1283 value_print(out
, VALUE_FMT
, v
);
1285 fprintf(out
, "%s", iter_names
[pos
]);
1287 fprintf(out
, "%s", param_names
[pos
-dim
]);
1289 value_print(out
, VALUE_FMT
, v
);
1292 char **util_generate_names(int n
, char *prefix
)
1295 int len
= (prefix
? strlen(prefix
) : 0) + 10;
1296 char **names
= ALLOCN(char*, n
);
1298 fprintf(stderr
, "ERROR: memory overflow.\n");
1301 for (i
= 0; i
< n
; ++i
) {
1302 names
[i
] = ALLOCN(char, len
);
1304 fprintf(stderr
, "ERROR: memory overflow.\n");
1308 snprintf(names
[i
], len
, "%d", i
);
1310 snprintf(names
[i
], len
, "%s%d", prefix
, i
);
1316 void util_free_names(int n
, char **names
)
1319 for (i
= 0; i
< n
; ++i
)
1324 void Polyhedron_pprint(FILE *out
, Polyhedron
*P
, int dim
, int nparam
,
1325 char **iter_names
, char **param_names
)
1330 assert(dim
+ nparam
== P
->Dimension
);
1336 print_varlist(out
, nparam
, param_names
);
1337 fprintf(out
, " -> ");
1339 print_varlist(out
, dim
, iter_names
);
1340 fprintf(out
, " : ");
1343 fprintf(out
, "FALSE");
1344 else for (i
= 0; i
< P
->NbConstraints
; ++i
) {
1346 int v
= First_Non_Zero(P
->Constraint
[i
]+1, P
->Dimension
);
1347 if (v
== -1 && value_pos_p(P
->Constraint
[i
][0]))
1350 fprintf(out
, " && ");
1351 if (v
== -1 && value_notzero_p(P
->Constraint
[i
][1+P
->Dimension
]))
1352 fprintf(out
, "FALSE");
1353 else if (value_pos_p(P
->Constraint
[i
][v
+1])) {
1354 print_term(out
, P
->Constraint
[i
][v
+1], v
, dim
, nparam
,
1355 iter_names
, param_names
, NULL
);
1356 if (value_zero_p(P
->Constraint
[i
][0]))
1357 fprintf(out
, " = ");
1359 fprintf(out
, " >= ");
1360 for (j
= v
+1; j
<= dim
+nparam
; ++j
) {
1361 value_oppose(tmp
, P
->Constraint
[i
][1+j
]);
1362 print_term(out
, tmp
, j
, dim
, nparam
,
1363 iter_names
, param_names
, &first
);
1366 value_oppose(tmp
, P
->Constraint
[i
][1+v
]);
1367 print_term(out
, tmp
, v
, dim
, nparam
,
1368 iter_names
, param_names
, NULL
);
1369 fprintf(out
, " <= ");
1370 for (j
= v
+1; j
<= dim
+nparam
; ++j
)
1371 print_term(out
, P
->Constraint
[i
][1+j
], j
, dim
, nparam
,
1372 iter_names
, param_names
, &first
);
1376 fprintf(out
, " }\n");
1381 /* Construct a cone over P with P placed at x_d = 1, with
1382 * x_d the coordinate of an extra dimension
1384 * It's probably a mistake to depend so much on the internal
1385 * representation. We should probably simply compute the
1386 * vertices/facets first.
1388 Polyhedron
*Cone_over_Polyhedron(Polyhedron
*P
)
1390 unsigned NbConstraints
= 0;
1391 unsigned NbRays
= 0;
1395 if (POL_HAS(P
, POL_INEQUALITIES
))
1396 NbConstraints
= P
->NbConstraints
+ 1;
1397 if (POL_HAS(P
, POL_POINTS
))
1398 NbRays
= P
->NbRays
+ 1;
1400 C
= Polyhedron_Alloc(P
->Dimension
+1, NbConstraints
, NbRays
);
1401 if (POL_HAS(P
, POL_INEQUALITIES
)) {
1403 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1404 Vector_Copy(P
->Constraint
[i
], C
->Constraint
[i
], P
->Dimension
+2);
1406 value_set_si(C
->Constraint
[P
->NbConstraints
][0], 1);
1407 value_set_si(C
->Constraint
[P
->NbConstraints
][1+P
->Dimension
], 1);
1409 if (POL_HAS(P
, POL_POINTS
)) {
1410 C
->NbBid
= P
->NbBid
;
1411 for (i
= 0; i
< P
->NbRays
; ++i
)
1412 Vector_Copy(P
->Ray
[i
], C
->Ray
[i
], P
->Dimension
+2);
1414 value_set_si(C
->Ray
[P
->NbRays
][0], 1);
1415 value_set_si(C
->Ray
[P
->NbRays
][1+C
->Dimension
], 1);
1417 POL_SET(C
, POL_VALID
);
1418 if (POL_HAS(P
, POL_INEQUALITIES
))
1419 POL_SET(C
, POL_INEQUALITIES
);
1420 if (POL_HAS(P
, POL_POINTS
))
1421 POL_SET(C
, POL_POINTS
);
1422 if (POL_HAS(P
, POL_VERTICES
))
1423 POL_SET(C
, POL_VERTICES
);
1427 /* Returns a (dim+nparam+1)x((dim-n)+nparam+1) matrix
1428 * mapping the transformed subspace back to the original space.
1429 * n is the number of equalities involving the variables
1430 * (i.e., not purely the parameters).
1431 * The remaining n coordinates in the transformed space would
1432 * have constant (parametric) values and are therefore not
1433 * included in the variables of the new space.
1435 Matrix
*compress_variables(Matrix
*Equalities
, unsigned nparam
)
1437 unsigned dim
= (Equalities
->NbColumns
-2) - nparam
;
1438 Matrix
*M
, *H
, *Q
, *U
, *C
, *ratH
, *invH
, *Ul
, *T1
, *T2
, *T
;
1443 for (n
= 0; n
< Equalities
->NbRows
; ++n
)
1444 if (First_Non_Zero(Equalities
->p
[n
]+1, dim
) == -1)
1447 return Identity(dim
+nparam
+1);
1449 value_set_si(mone
, -1);
1450 M
= Matrix_Alloc(n
, dim
);
1451 C
= Matrix_Alloc(n
+1, nparam
+1);
1452 for (i
= 0; i
< n
; ++i
) {
1453 Vector_Copy(Equalities
->p
[i
]+1, M
->p
[i
], dim
);
1454 Vector_Scale(Equalities
->p
[i
]+1+dim
, C
->p
[i
], mone
, nparam
+1);
1456 value_set_si(C
->p
[n
][nparam
], 1);
1457 left_hermite(M
, &H
, &Q
, &U
);
1462 ratH
= Matrix_Alloc(n
+1, n
+1);
1463 invH
= Matrix_Alloc(n
+1, n
+1);
1464 for (i
= 0; i
< n
; ++i
)
1465 Vector_Copy(H
->p
[i
], ratH
->p
[i
], n
);
1466 value_set_si(ratH
->p
[n
][n
], 1);
1467 ok
= Matrix_Inverse(ratH
, invH
);
1471 T1
= Matrix_Alloc(n
+1, nparam
+1);
1472 Matrix_Product(invH
, C
, T1
);
1475 if (value_notone_p(T1
->p
[n
][nparam
])) {
1476 for (i
= 0; i
< n
; ++i
) {
1477 if (!mpz_divisible_p(T1
->p
[i
][nparam
], T1
->p
[n
][nparam
])) {
1482 /* compress_params should have taken care of this */
1483 for (j
= 0; j
< nparam
; ++j
)
1484 assert(mpz_divisible_p(T1
->p
[i
][j
], T1
->p
[n
][nparam
]));
1485 Vector_AntiScale(T1
->p
[i
], T1
->p
[i
], T1
->p
[n
][nparam
], nparam
+1);
1487 value_set_si(T1
->p
[n
][nparam
], 1);
1489 Ul
= Matrix_Alloc(dim
+1, n
+1);
1490 for (i
= 0; i
< dim
; ++i
)
1491 Vector_Copy(U
->p
[i
], Ul
->p
[i
], n
);
1492 value_set_si(Ul
->p
[dim
][n
], 1);
1493 T2
= Matrix_Alloc(dim
+1, nparam
+1);
1494 Matrix_Product(Ul
, T1
, T2
);
1498 T
= Matrix_Alloc(dim
+nparam
+1, (dim
-n
)+nparam
+1);
1499 for (i
= 0; i
< dim
; ++i
) {
1500 Vector_Copy(U
->p
[i
]+n
, T
->p
[i
], dim
-n
);
1501 Vector_Copy(T2
->p
[i
], T
->p
[i
]+dim
-n
, nparam
+1);
1503 for (i
= 0; i
< nparam
+1; ++i
)
1504 value_set_si(T
->p
[dim
+i
][(dim
-n
)+i
], 1);
1505 assert(value_one_p(T2
->p
[dim
][nparam
]));
1512 Matrix
*left_inverse(Matrix
*M
, Matrix
**Eq
)
1515 Matrix
*L
, *H
, *Q
, *U
, *ratH
, *invH
, *Ut
, *inv
;
1520 L
= Matrix_Alloc(M
->NbRows
-1, M
->NbColumns
-1);
1521 for (i
= 0; i
< L
->NbRows
; ++i
)
1522 Vector_Copy(M
->p
[i
], L
->p
[i
], L
->NbColumns
);
1523 right_hermite(L
, &H
, &U
, &Q
);
1526 t
= Vector_Alloc(U
->NbColumns
);
1527 for (i
= 0; i
< U
->NbColumns
; ++i
)
1528 value_oppose(t
->p
[i
], M
->p
[i
][M
->NbColumns
-1]);
1530 *Eq
= Matrix_Alloc(H
->NbRows
- H
->NbColumns
, 2 + U
->NbColumns
);
1531 for (i
= 0; i
< H
->NbRows
- H
->NbColumns
; ++i
) {
1532 Vector_Copy(U
->p
[H
->NbColumns
+i
], (*Eq
)->p
[i
]+1, U
->NbColumns
);
1533 Inner_Product(U
->p
[H
->NbColumns
+i
], t
->p
, U
->NbColumns
,
1534 (*Eq
)->p
[i
]+1+U
->NbColumns
);
1537 ratH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1538 invH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1539 for (i
= 0; i
< H
->NbColumns
; ++i
)
1540 Vector_Copy(H
->p
[i
], ratH
->p
[i
], H
->NbColumns
);
1541 value_set_si(ratH
->p
[ratH
->NbRows
-1][ratH
->NbColumns
-1], 1);
1543 ok
= Matrix_Inverse(ratH
, invH
);
1546 Ut
= Matrix_Alloc(invH
->NbRows
, U
->NbColumns
+1);
1547 for (i
= 0; i
< Ut
->NbRows
-1; ++i
) {
1548 Vector_Copy(U
->p
[i
], Ut
->p
[i
], U
->NbColumns
);
1549 Inner_Product(U
->p
[i
], t
->p
, U
->NbColumns
, &Ut
->p
[i
][Ut
->NbColumns
-1]);
1553 value_set_si(Ut
->p
[Ut
->NbRows
-1][Ut
->NbColumns
-1], 1);
1554 inv
= Matrix_Alloc(invH
->NbRows
, Ut
->NbColumns
);
1555 Matrix_Product(invH
, Ut
, inv
);
1561 /* Check whether all rays are revlex positive in the parameters
1563 int Polyhedron_has_revlex_positive_rays(Polyhedron
*P
, unsigned nparam
)
1566 for (r
= 0; r
< P
->NbRays
; ++r
) {
1567 if (value_notzero_p(P
->Ray
[r
][P
->Dimension
+1]))
1570 for (i
= P
->Dimension
-1; i
>= P
->Dimension
-nparam
; --i
) {
1571 if (value_neg_p(P
->Ray
[r
][i
+1]))
1573 if (value_pos_p(P
->Ray
[r
][i
+1]))
1576 /* A ray independent of the parameters */
1577 if (i
< P
->Dimension
-nparam
)