6 #define partition STL_PARTITION
10 #include <NTL/vec_ZZ.h>
11 #include <NTL/mat_ZZ.h>
12 #include <barvinok/barvinok.h>
13 #include <barvinok/evalue.h>
14 #include <barvinok/options.h>
15 #include <barvinok/util.h>
16 #include "conversion.h"
17 #include "decomposer.h"
18 #include "lattice_point.h"
19 #include "reduce_domain.h"
23 #include "evalue_util.h"
24 #include "remove_equalities.h"
28 #include "param_util.h"
30 #undef CS /* for Solaris 10 */
43 #define ALLOC(type) (type*)malloc(sizeof(type))
44 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
46 static int type_offset(enode
*p
)
48 return p
->type
== fractional
? 1 :
49 p
->type
== flooring
? 1 : 0;
52 void compute_evalue(evalue
*e
, Value
*val
, Value
*res
)
54 double d
= compute_evalue(e
, val
);
59 value_set_double(*res
, d
);
62 struct indicator_term
{
64 int pos
; /* number of rational vertex */
65 int n
; /* number of cone associated to given rational vertex */
69 indicator_term(unsigned dim
, int pos
) {
71 vertex
= new evalue
* [dim
];
76 indicator_term(unsigned dim
, int pos
, int n
) {
77 den
.SetDims(dim
, dim
);
78 vertex
= new evalue
* [dim
];
82 indicator_term(const indicator_term
& src
) {
87 unsigned dim
= den
.NumCols();
88 vertex
= new evalue
* [dim
];
89 for (int i
= 0; i
< dim
; ++i
) {
90 vertex
[i
] = new evalue();
91 value_init(vertex
[i
]->d
);
92 evalue_copy(vertex
[i
], src
.vertex
[i
]);
95 void swap(indicator_term
*other
) {
97 tmp
= sign
; sign
= other
->sign
; other
->sign
= tmp
;
98 tmp
= pos
; pos
= other
->pos
; other
->pos
= tmp
;
99 tmp
= n
; n
= other
->n
; other
->n
= tmp
;
100 mat_ZZ tmp_den
= den
; den
= other
->den
; other
->den
= tmp_den
;
101 unsigned dim
= den
.NumCols();
102 for (int i
= 0; i
< dim
; ++i
) {
103 evalue
*tmp
= vertex
[i
];
104 vertex
[i
] = other
->vertex
[i
];
105 other
->vertex
[i
] = tmp
;
109 unsigned dim
= den
.NumCols();
110 for (int i
= 0; i
< dim
; ++i
)
111 evalue_free(vertex
[i
]);
114 void print(ostream
& os
, char **p
) const;
115 void substitute(Matrix
*T
);
117 void substitute(evalue
*fract
, evalue
*val
);
118 void substitute(int pos
, evalue
*val
);
119 void reduce_in_domain(Polyhedron
*D
);
120 bool is_opposite(const indicator_term
*neg
) const;
121 vec_ZZ
eval(Value
*val
) const {
123 unsigned dim
= den
.NumCols();
127 for (int i
= 0; i
< dim
; ++i
) {
128 compute_evalue(vertex
[i
], val
, &tmp
);
136 static int evalue_rational_cmp(const evalue
*e1
, const evalue
*e2
)
144 assert(value_notzero_p(e1
->d
));
145 assert(value_notzero_p(e2
->d
));
146 value_multiply(m
, e1
->x
.n
, e2
->d
);
147 value_multiply(m2
, e2
->x
.n
, e1
->d
);
150 else if (value_gt(m
, m2
))
160 static int evalue_cmp(const evalue
*e1
, const evalue
*e2
)
162 if (value_notzero_p(e1
->d
)) {
163 if (value_zero_p(e2
->d
))
165 return evalue_rational_cmp(e1
, e2
);
167 if (value_notzero_p(e2
->d
))
169 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
170 return e1
->x
.p
->type
- e2
->x
.p
->type
;
171 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
172 return e1
->x
.p
->size
- e2
->x
.p
->size
;
173 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
174 return e1
->x
.p
->pos
- e2
->x
.p
->pos
;
175 assert(e1
->x
.p
->type
== polynomial
||
176 e1
->x
.p
->type
== fractional
||
177 e1
->x
.p
->type
== flooring
);
178 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
) {
179 int s
= evalue_cmp(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]);
186 void evalue_length(evalue
*e
, int len
[2])
191 while (value_zero_p(e
->d
)) {
192 assert(e
->x
.p
->type
== polynomial
||
193 e
->x
.p
->type
== fractional
||
194 e
->x
.p
->type
== flooring
);
195 if (e
->x
.p
->type
== polynomial
)
199 int offset
= type_offset(e
->x
.p
);
200 assert(e
->x
.p
->size
== offset
+2);
201 e
= &e
->x
.p
->arr
[offset
];
205 static bool it_smaller(const indicator_term
* it1
, const indicator_term
* it2
)
209 int len1
[2], len2
[2];
210 unsigned dim
= it1
->den
.NumCols();
211 for (int i
= 0; i
< dim
; ++i
) {
212 evalue_length(it1
->vertex
[i
], len1
);
213 evalue_length(it2
->vertex
[i
], len2
);
214 if (len1
[0] != len2
[0])
215 return len1
[0] < len2
[0];
216 if (len1
[1] != len2
[1])
217 return len1
[1] < len2
[1];
219 if (it1
->pos
!= it2
->pos
)
220 return it1
->pos
< it2
->pos
;
221 if (it1
->n
!= it2
->n
)
222 return it1
->n
< it2
->n
;
223 int s
= lex_cmp(it1
->den
, it2
->den
);
226 for (int i
= 0; i
< dim
; ++i
) {
227 s
= evalue_cmp(it1
->vertex
[i
], it2
->vertex
[i
]);
231 assert(it1
->sign
!= 0);
232 assert(it2
->sign
!= 0);
233 if (it1
->sign
!= it2
->sign
)
234 return it1
->sign
> 0;
239 static const int requires_resort
;
240 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
241 return it_smaller(it1
, it2
);
244 const int smaller_it::requires_resort
= 1;
246 struct smaller_it_p
{
247 static const int requires_resort
;
248 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
252 const int smaller_it_p::requires_resort
= 0;
254 /* Returns true if this and neg are opposite using the knowledge
255 * that they have the same numerator.
256 * In particular, we check that the signs are different and that
257 * the denominator is the same.
259 bool indicator_term::is_opposite(const indicator_term
*neg
) const
261 if (sign
+ neg
->sign
!= 0)
268 void indicator_term::reduce_in_domain(Polyhedron
*D
)
270 for (int k
= 0; k
< den
.NumCols(); ++k
) {
271 reduce_evalue_in_domain(vertex
[k
], D
);
272 if (evalue_range_reduction_in_domain(vertex
[k
], D
))
273 reduce_evalue(vertex
[k
]);
277 void indicator_term::print(ostream
& os
, char **p
) const
279 unsigned dim
= den
.NumCols();
280 unsigned factors
= den
.NumRows();
288 for (int i
= 0; i
< dim
; ++i
) {
291 evalue_print(os
, vertex
[i
], p
);
294 for (int i
= 0; i
< factors
; ++i
) {
295 os
<< " + t" << i
<< "*[";
296 for (int j
= 0; j
< dim
; ++j
) {
303 os
<< " ((" << pos
<< ", " << n
<< ", " << (void*)this << "))";
306 /* Perform the substitution specified by T on the variables.
307 * T has dimension (newdim+nparam+1) x (olddim + nparam + 1).
308 * The substitution is performed as in gen_fun::substitute
310 void indicator_term::substitute(Matrix
*T
)
312 unsigned dim
= den
.NumCols();
313 unsigned nparam
= T
->NbColumns
- dim
- 1;
314 unsigned newdim
= T
->NbRows
- nparam
- 1;
317 matrix2zz(T
, trans
, newdim
, dim
);
318 trans
= transpose(trans
);
320 newvertex
= new evalue
* [newdim
];
323 v
.SetLength(nparam
+1);
326 value_init(factor
.d
);
327 value_set_si(factor
.d
, 1);
328 value_init(factor
.x
.n
);
329 for (int i
= 0; i
< newdim
; ++i
) {
330 values2zz(T
->p
[i
]+dim
, v
, nparam
+1);
331 newvertex
[i
] = multi_monom(v
);
333 for (int j
= 0; j
< dim
; ++j
) {
334 if (value_zero_p(T
->p
[i
][j
]))
338 evalue_copy(&term
, vertex
[j
]);
339 value_assign(factor
.x
.n
, T
->p
[i
][j
]);
340 emul(&factor
, &term
);
341 eadd(&term
, newvertex
[i
]);
342 free_evalue_refs(&term
);
345 free_evalue_refs(&factor
);
346 for (int i
= 0; i
< dim
; ++i
)
347 evalue_free(vertex
[i
]);
352 static void evalue_add_constant(evalue
*e
, ZZ v
)
357 /* go down to constant term */
358 while (value_zero_p(e
->d
))
359 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)];
362 value_multiply(tmp
, tmp
, e
->d
);
363 value_addto(e
->x
.n
, e
->x
.n
, tmp
);
368 /* Make all powers in denominator lexico-positive */
369 void indicator_term::normalize()
372 extra_vertex
.SetLength(den
.NumCols());
373 for (int r
= 0; r
< den
.NumRows(); ++r
) {
374 for (int k
= 0; k
< den
.NumCols(); ++k
) {
381 extra_vertex
+= den
[r
];
385 for (int k
= 0; k
< extra_vertex
.length(); ++k
)
386 if (extra_vertex
[k
] != 0)
387 evalue_add_constant(vertex
[k
], extra_vertex
[k
]);
390 static void substitute(evalue
*e
, evalue
*fract
, evalue
*val
)
394 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
395 if (t
->x
.p
->type
== fractional
&& eequal(&t
->x
.p
->arr
[0], fract
))
398 if (value_notzero_p(t
->d
))
401 free_evalue_refs(&t
->x
.p
->arr
[0]);
402 evalue
*term
= &t
->x
.p
->arr
[2];
409 free_evalue_refs(term
);
415 void indicator_term::substitute(evalue
*fract
, evalue
*val
)
417 unsigned dim
= den
.NumCols();
418 for (int i
= 0; i
< dim
; ++i
) {
419 ::substitute(vertex
[i
], fract
, val
);
423 static void substitute(evalue
*e
, int pos
, evalue
*val
)
427 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
428 if (t
->x
.p
->type
== polynomial
&& t
->x
.p
->pos
== pos
)
431 if (value_notzero_p(t
->d
))
434 evalue
*term
= &t
->x
.p
->arr
[1];
441 free_evalue_refs(term
);
447 void indicator_term::substitute(int pos
, evalue
*val
)
449 unsigned dim
= den
.NumCols();
450 for (int i
= 0; i
< dim
; ++i
) {
451 ::substitute(vertex
[i
], pos
, val
);
455 struct indicator_constructor
: public signed_cone_consumer
,
456 public vertex_decomposer
{
458 vector
<indicator_term
*> *terms
;
459 Matrix
*T
; /* Transformation to original space */
464 indicator_constructor(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
,
466 vertex_decomposer(PP
, *this), T(T
), nbV(PP
->nbV
) {
467 vertex
.SetLength(dim
);
468 terms
= new vector
<indicator_term
*>[PP
->nbV
];
470 ~indicator_constructor() {
471 for (int i
= 0; i
< nbV
; ++i
)
472 for (int j
= 0; j
< terms
[i
].size(); ++j
)
476 void substitute(Matrix
*T
);
478 void print(ostream
& os
, char **p
);
480 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
481 void decompose_at_vertex(Param_Vertices
*V
, int _i
,
482 barvinok_options
*options
) {
485 vertex_decomposer::decompose_at_vertex(V
, _i
, options
);
489 void indicator_constructor::handle(const signed_cone
& sc
, barvinok_options
*options
)
492 unsigned dim
= vertex
.length();
494 assert(sc
.rays
.NumRows() == dim
);
496 indicator_term
*term
= new indicator_term(dim
, pos
, n
++);
497 term
->sign
= sc
.sign
;
498 terms
[vert
].push_back(term
);
500 lattice_point(V
, sc
.rays
, vertex
, term
->vertex
, options
);
503 for (int r
= 0; r
< dim
; ++r
) {
504 for (int j
= 0; j
< dim
; ++j
) {
505 if (term
->den
[r
][j
] == 0)
507 if (term
->den
[r
][j
] > 0)
509 term
->sign
= -term
->sign
;
510 term
->den
[r
] = -term
->den
[r
];
511 vertex
+= term
->den
[r
];
516 for (int i
= 0; i
< dim
; ++i
) {
517 if (!term
->vertex
[i
]) {
518 term
->vertex
[i
] = ALLOC(evalue
);
519 value_init(term
->vertex
[i
]->d
);
520 value_init(term
->vertex
[i
]->x
.n
);
521 zz2value(vertex
[i
], term
->vertex
[i
]->x
.n
);
522 value_set_si(term
->vertex
[i
]->d
, 1);
527 evalue_add_constant(term
->vertex
[i
], vertex
[i
]);
535 lex_order_rows(term
->den
);
538 void indicator_constructor::print(ostream
& os
, char **p
)
540 for (int i
= 0; i
< PP
->nbV
; ++i
)
541 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
542 os
<< "i: " << i
<< ", j: " << j
<< endl
;
543 terms
[i
][j
]->print(os
, p
);
548 void indicator_constructor::normalize()
550 for (int i
= 0; i
< PP
->nbV
; ++i
)
551 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
553 vertex
.SetLength(terms
[i
][j
]->den
.NumCols());
554 for (int r
= 0; r
< terms
[i
][j
]->den
.NumRows(); ++r
) {
555 for (int k
= 0; k
< terms
[i
][j
]->den
.NumCols(); ++k
) {
556 if (terms
[i
][j
]->den
[r
][k
] == 0)
558 if (terms
[i
][j
]->den
[r
][k
] > 0)
560 terms
[i
][j
]->sign
= -terms
[i
][j
]->sign
;
561 terms
[i
][j
]->den
[r
] = -terms
[i
][j
]->den
[r
];
562 vertex
+= terms
[i
][j
]->den
[r
];
566 lex_order_rows(terms
[i
][j
]->den
);
567 for (int k
= 0; k
< vertex
.length(); ++k
)
569 evalue_add_constant(terms
[i
][j
]->vertex
[k
], vertex
[k
]);
573 struct order_cache_el
{
575 order_cache_el
copy() const {
577 for (int i
= 0; i
< e
.size(); ++i
) {
578 evalue
*c
= new evalue
;
580 evalue_copy(c
, e
[i
]);
586 for (int i
= 0; i
< e
.size(); ++i
) {
587 free_evalue_refs(e
[i
]);
594 evalue_set_si(&mone
, -1, 1);
595 for (int i
= 0; i
< e
.size(); ++i
)
597 free_evalue_refs(&mone
);
599 void print(ostream
& os
, char **p
);
602 void order_cache_el::print(ostream
& os
, char **p
)
605 for (int i
= 0; i
< e
.size(); ++i
) {
608 evalue_print(os
, e
[i
], p
);
614 vector
<order_cache_el
> lt
;
615 vector
<order_cache_el
> le
;
616 vector
<order_cache_el
> unknown
;
618 void clear_transients() {
619 for (int i
= 0; i
< le
.size(); ++i
)
621 for (int i
= 0; i
< unknown
.size(); ++i
)
628 for (int i
= 0; i
< lt
.size(); ++i
)
632 void add(order_cache_el
& cache_el
, order_sign sign
);
633 order_sign
check_lt(vector
<order_cache_el
>* list
,
634 const indicator_term
*a
, const indicator_term
*b
,
635 order_cache_el
& cache_el
);
636 order_sign
check_lt(const indicator_term
*a
, const indicator_term
*b
,
637 order_cache_el
& cache_el
);
638 order_sign
check_direct(const indicator_term
*a
, const indicator_term
*b
,
639 order_cache_el
& cache_el
);
640 order_sign
check(const indicator_term
*a
, const indicator_term
*b
,
641 order_cache_el
& cache_el
);
642 void copy(const order_cache
& cache
);
643 void print(ostream
& os
, char **p
);
646 void order_cache::copy(const order_cache
& cache
)
648 for (int i
= 0; i
< cache
.lt
.size(); ++i
) {
649 order_cache_el n
= cache
.lt
[i
].copy();
654 void order_cache::add(order_cache_el
& cache_el
, order_sign sign
)
656 if (sign
== order_lt
) {
657 lt
.push_back(cache_el
);
658 } else if (sign
== order_gt
) {
660 lt
.push_back(cache_el
);
661 } else if (sign
== order_le
) {
662 le
.push_back(cache_el
);
663 } else if (sign
== order_ge
) {
665 le
.push_back(cache_el
);
666 } else if (sign
== order_unknown
) {
667 unknown
.push_back(cache_el
);
669 assert(sign
== order_eq
);
676 static evalue
*ediff(const evalue
*a
, const evalue
*b
)
680 evalue_set_si(&mone
, -1, 1);
681 evalue
*diff
= new evalue
;
683 evalue_copy(diff
, b
);
687 free_evalue_refs(&mone
);
691 static bool evalue_first_difference(const evalue
*e1
, const evalue
*e2
,
692 const evalue
**d1
, const evalue
**d2
)
697 if (value_ne(e1
->d
, e2
->d
))
700 if (value_notzero_p(e1
->d
)) {
701 if (value_eq(e1
->x
.n
, e2
->x
.n
))
705 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
707 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
709 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
712 assert(e1
->x
.p
->type
== polynomial
||
713 e1
->x
.p
->type
== fractional
||
714 e1
->x
.p
->type
== flooring
);
715 int offset
= type_offset(e1
->x
.p
);
716 assert(e1
->x
.p
->size
== offset
+2);
717 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
)
718 if (i
!= type_offset(e1
->x
.p
) &&
719 !eequal(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]))
722 return evalue_first_difference(&e1
->x
.p
->arr
[offset
],
723 &e2
->x
.p
->arr
[offset
], d1
, d2
);
726 static order_sign
evalue_diff_constant_sign(const evalue
*e1
, const evalue
*e2
)
728 if (!evalue_first_difference(e1
, e2
, &e1
, &e2
))
730 if (value_zero_p(e1
->d
) || value_zero_p(e2
->d
))
731 return order_undefined
;
732 int s
= evalue_rational_cmp(e1
, e2
);
741 order_sign
order_cache::check_lt(vector
<order_cache_el
>* list
,
742 const indicator_term
*a
, const indicator_term
*b
,
743 order_cache_el
& cache_el
)
745 order_sign sign
= order_undefined
;
746 for (int i
= 0; i
< list
->size(); ++i
) {
748 for (j
= cache_el
.e
.size(); j
< (*list
)[i
].e
.size(); ++j
)
749 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
750 for (j
= 0; j
< (*list
)[i
].e
.size(); ++j
) {
751 order_sign diff_sign
;
752 diff_sign
= evalue_diff_constant_sign((*list
)[i
].e
[j
], cache_el
.e
[j
]);
753 if (diff_sign
== order_gt
) {
756 } else if (diff_sign
== order_lt
)
758 else if (diff_sign
== order_undefined
)
761 assert(diff_sign
== order_eq
);
763 if (j
== (*list
)[i
].e
.size())
764 sign
= list
== <
? order_lt
: order_le
;
765 if (sign
!= order_undefined
)
771 order_sign
order_cache::check_direct(const indicator_term
*a
,
772 const indicator_term
*b
,
773 order_cache_el
& cache_el
)
775 order_sign sign
= check_lt(<
, a
, b
, cache_el
);
776 if (sign
!= order_undefined
)
778 sign
= check_lt(&le
, a
, b
, cache_el
);
779 if (sign
!= order_undefined
)
782 for (int i
= 0; i
< unknown
.size(); ++i
) {
784 for (j
= cache_el
.e
.size(); j
< unknown
[i
].e
.size(); ++j
)
785 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
786 for (j
= 0; j
< unknown
[i
].e
.size(); ++j
) {
787 if (!eequal(unknown
[i
].e
[j
], cache_el
.e
[j
]))
790 if (j
== unknown
[i
].e
.size()) {
791 sign
= order_unknown
;
798 order_sign
order_cache::check(const indicator_term
*a
, const indicator_term
*b
,
799 order_cache_el
& cache_el
)
801 order_sign sign
= check_direct(a
, b
, cache_el
);
802 if (sign
!= order_undefined
)
804 int size
= cache_el
.e
.size();
806 sign
= check_direct(a
, b
, cache_el
);
808 assert(cache_el
.e
.size() == size
);
809 if (sign
== order_undefined
)
811 if (sign
== order_lt
)
813 else if (sign
== order_le
)
816 assert(sign
== order_unknown
);
822 struct partial_order
{
825 typedef std::set
<const indicator_term
*, smaller_it
> head_type
;
827 typedef map
<const indicator_term
*, int, smaller_it
> pred_type
;
829 typedef map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> order_type
;
838 partial_order(indicator
*ind
) : ind(ind
) {}
839 void copy(const partial_order
& order
,
840 map
< const indicator_term
*, indicator_term
* > old2new
);
842 order_type::iterator i
;
843 pred_type::iterator j
;
844 head_type::iterator k
;
846 if (head
.key_comp().requires_resort
) {
848 for (k
= head
.begin(); k
!= head
.end(); ++k
)
854 if (pred
.key_comp().requires_resort
) {
856 for (j
= pred
.begin(); j
!= pred
.end(); ++j
)
857 new_pred
[(*j
).first
] = (*j
).second
;
862 if (lt
.key_comp().requires_resort
) {
864 for (i
= lt
.begin(); i
!= lt
.end(); ++i
)
865 m
[(*i
).first
] = (*i
).second
;
870 if (le
.key_comp().requires_resort
) {
872 for (i
= le
.begin(); i
!= le
.end(); ++i
)
873 m
[(*i
).first
] = (*i
).second
;
878 if (eq
.key_comp().requires_resort
) {
880 for (i
= eq
.begin(); i
!= eq
.end(); ++i
)
881 m
[(*i
).first
] = (*i
).second
;
886 if (pending
.key_comp().requires_resort
) {
888 for (i
= pending
.begin(); i
!= pending
.end(); ++i
)
889 m
[(*i
).first
] = (*i
).second
;
895 order_sign
compare(const indicator_term
*a
, const indicator_term
*b
);
896 void set_equal(const indicator_term
*a
, const indicator_term
*b
);
897 void unset_le(const indicator_term
*a
, const indicator_term
*b
);
898 void dec_pred(const indicator_term
*it
) {
899 if (--pred
[it
] == 0) {
904 void inc_pred(const indicator_term
*it
) {
905 if (head
.find(it
) != head
.end())
910 bool compared(const indicator_term
* a
, const indicator_term
* b
);
911 void add(const indicator_term
* it
, std::set
<const indicator_term
*> *filter
);
912 void remove(const indicator_term
* it
);
914 void print(ostream
& os
, char **p
);
916 /* replace references to orig to references to replacement */
917 void replace(const indicator_term
* orig
, indicator_term
* replacement
);
918 void sanity_check() const;
921 /* We actually replace the contents of orig by that of replacement,
922 * but we have to be careful since replacing the content changes
923 * the order of orig in the maps.
925 void partial_order::replace(const indicator_term
* orig
, indicator_term
* replacement
)
927 head_type::iterator k
;
929 bool is_head
= k
!= head
.end();
934 orig_pred
= pred
[orig
];
937 vector
<const indicator_term
* > orig_lt
;
938 vector
<const indicator_term
* > orig_le
;
939 vector
<const indicator_term
* > orig_eq
;
940 vector
<const indicator_term
* > orig_pending
;
941 order_type::iterator i
;
942 bool in_lt
= ((i
= lt
.find(orig
)) != lt
.end());
944 orig_lt
= (*i
).second
;
947 bool in_le
= ((i
= le
.find(orig
)) != le
.end());
949 orig_le
= (*i
).second
;
952 bool in_eq
= ((i
= eq
.find(orig
)) != eq
.end());
954 orig_eq
= (*i
).second
;
957 bool in_pending
= ((i
= pending
.find(orig
)) != pending
.end());
959 orig_pending
= (*i
).second
;
962 indicator_term
*old
= const_cast<indicator_term
*>(orig
);
963 old
->swap(replacement
);
967 pred
[old
] = orig_pred
;
975 pending
[old
] = orig_pending
;
978 void partial_order::unset_le(const indicator_term
*a
, const indicator_term
*b
)
980 vector
<const indicator_term
*>::iterator i
;
981 i
= std::find(le
[a
].begin(), le
[a
].end(), b
);
983 if (le
[a
].size() == 0)
986 i
= std::find(pending
[a
].begin(), pending
[a
].end(), b
);
987 if (i
!= pending
[a
].end())
991 void partial_order::set_equal(const indicator_term
*a
, const indicator_term
*b
)
993 if (eq
[a
].size() == 0)
995 if (eq
[b
].size() == 0)
1000 if (pred
.key_comp()(b
, a
)) {
1001 const indicator_term
*c
= a
;
1006 const indicator_term
*base
= a
;
1008 order_type::iterator i
;
1010 for (int j
= 0; j
< eq
[b
].size(); ++j
) {
1011 eq
[base
].push_back(eq
[b
][j
]);
1012 eq
[eq
[b
][j
]][0] = base
;
1017 if (i
!= lt
.end()) {
1018 for (int j
= 0; j
< lt
[b
].size(); ++j
) {
1019 if (std::find(eq
[base
].begin(), eq
[base
].end(), lt
[b
][j
]) != eq
[base
].end())
1021 else if (std::find(lt
[base
].begin(), lt
[base
].end(), lt
[b
][j
])
1025 lt
[base
].push_back(lt
[b
][j
]);
1031 if (i
!= le
.end()) {
1032 for (int j
= 0; j
< le
[b
].size(); ++j
) {
1033 if (std::find(eq
[base
].begin(), eq
[base
].end(), le
[b
][j
]) != eq
[base
].end())
1035 else if (std::find(le
[base
].begin(), le
[base
].end(), le
[b
][j
])
1039 le
[base
].push_back(le
[b
][j
]);
1044 i
= pending
.find(base
);
1045 if (i
!= pending
.end()) {
1046 vector
<const indicator_term
* > old
= pending
[base
];
1047 pending
[base
].clear();
1048 for (int j
= 0; j
< old
.size(); ++j
) {
1049 if (std::find(eq
[base
].begin(), eq
[base
].end(), old
[j
]) == eq
[base
].end())
1050 pending
[base
].push_back(old
[j
]);
1054 i
= pending
.find(b
);
1055 if (i
!= pending
.end()) {
1056 for (int j
= 0; j
< pending
[b
].size(); ++j
) {
1057 if (std::find(eq
[base
].begin(), eq
[base
].end(), pending
[b
][j
]) == eq
[base
].end())
1058 pending
[base
].push_back(pending
[b
][j
]);
1064 void partial_order::copy(const partial_order
& order
,
1065 map
< const indicator_term
*, indicator_term
* > old2new
)
1067 cache
.copy(order
.cache
);
1069 order_type::const_iterator i
;
1070 pred_type::const_iterator j
;
1071 head_type::const_iterator k
;
1073 for (k
= order
.head
.begin(); k
!= order
.head
.end(); ++k
)
1074 head
.insert(old2new
[*k
]);
1076 for (j
= order
.pred
.begin(); j
!= order
.pred
.end(); ++j
)
1077 pred
[old2new
[(*j
).first
]] = (*j
).second
;
1079 for (i
= order
.lt
.begin(); i
!= order
.lt
.end(); ++i
) {
1080 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1081 lt
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1083 for (i
= order
.le
.begin(); i
!= order
.le
.end(); ++i
) {
1084 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1085 le
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1087 for (i
= order
.eq
.begin(); i
!= order
.eq
.end(); ++i
) {
1088 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1089 eq
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1091 for (i
= order
.pending
.begin(); i
!= order
.pending
.end(); ++i
) {
1092 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1093 pending
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1099 vector
<evalue
*> max
;
1101 void print(ostream
& os
, char **p
, barvinok_options
*options
) const;
1102 void substitute(Matrix
*T
, barvinok_options
*options
);
1103 Vector
*eval(Value
*val
, unsigned MaxRays
) const;
1106 for (int i
= 0; i
< max
.size(); ++i
) {
1107 free_evalue_refs(max
[i
]);
1115 * Project on first dim dimensions
1117 Polyhedron
* Polyhedron_Project_Initial(Polyhedron
*P
, int dim
)
1123 if (P
->Dimension
== dim
)
1124 return Polyhedron_Copy(P
);
1126 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
1127 for (i
= 0; i
< dim
; ++i
)
1128 value_set_si(T
->p
[i
][i
], 1);
1129 value_set_si(T
->p
[dim
][P
->Dimension
], 1);
1130 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
1136 vector
<indicator_term
*> term
;
1137 indicator_constructor
& ic
;
1138 partial_order order
;
1142 lexmin_options
*options
;
1143 vector
<evalue
*> substitutions
;
1145 indicator(indicator_constructor
& ic
, Param_Domain
*PD
, EDomain
*D
,
1146 lexmin_options
*options
) :
1147 ic(ic
), PD(PD
), D(D
), order(this), options(options
), P(NULL
) {}
1148 indicator(const indicator
& ind
, EDomain
*D
) :
1149 ic(ind
.ic
), PD(ind
.PD
), D(NULL
), order(this), options(ind
.options
),
1150 P(Polyhedron_Copy(ind
.P
)) {
1151 map
< const indicator_term
*, indicator_term
* > old2new
;
1152 for (int i
= 0; i
< ind
.term
.size(); ++i
) {
1153 indicator_term
*it
= new indicator_term(*ind
.term
[i
]);
1154 old2new
[ind
.term
[i
]] = it
;
1157 order
.copy(ind
.order
, old2new
);
1161 for (int i
= 0; i
< term
.size(); ++i
)
1169 void set_domain(EDomain
*D
) {
1170 order
.cache
.clear_transients();
1174 int nparam
= ic
.PP
->Constraints
->NbColumns
-2 - ic
.vertex
.length();
1175 if (options
->reduce
) {
1176 Polyhedron
*Q
= Polyhedron_Project_Initial(D
->D
, nparam
);
1177 Q
= DomainConstraintSimplify(Q
, options
->verify
->barvinok
->MaxRays
);
1178 if (!P
|| !PolyhedronIncludes(Q
, P
))
1179 reduce_in_domain(Q
);
1187 void add(const indicator_term
* it
);
1188 void remove(const indicator_term
* it
);
1189 void remove_initial_rational_vertices();
1190 void expand_rational_vertex(const indicator_term
*initial
);
1192 void print(ostream
& os
, char **p
);
1194 void peel(int i
, int j
);
1195 void combine(const indicator_term
*a
, const indicator_term
*b
);
1196 void add_substitution(evalue
*equation
);
1197 void perform_pending_substitutions();
1198 void reduce_in_domain(Polyhedron
*D
);
1199 bool handle_equal_numerators(const indicator_term
*base
);
1201 max_term
* create_max_term(const indicator_term
*it
);
1203 void substitute(evalue
*equation
);
1206 void partial_order::sanity_check() const
1208 order_type::const_iterator i
;
1209 order_type::const_iterator prev
;
1210 order_type::const_iterator l
;
1211 pred_type::const_iterator k
, prev_k
;
1213 for (k
= pred
.begin(); k
!= pred
.end(); prev_k
= k
, ++k
)
1214 if (k
!= pred
.begin())
1215 assert(pred
.key_comp()((*prev_k
).first
, (*k
).first
));
1216 for (i
= lt
.begin(); i
!= lt
.end(); prev
= i
, ++i
) {
1219 i_v
= (*i
).first
->eval(ind
->D
->sample
->p
);
1220 if (i
!= lt
.begin())
1221 assert(lt
.key_comp()((*prev
).first
, (*i
).first
));
1222 l
= eq
.find((*i
).first
);
1224 assert((*l
).second
.size() > 1);
1225 assert(head
.find((*i
).first
) != head
.end() ||
1226 pred
.find((*i
).first
) != pred
.end());
1227 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1228 k
= pred
.find((*i
).second
[j
]);
1229 assert(k
!= pred
.end());
1230 assert((*k
).second
!= 0);
1231 if ((*i
).first
->sign
!= 0 &&
1232 (*i
).second
[j
]->sign
!= 0 && ind
->D
->sample
) {
1233 vec_ZZ j_v
= (*i
).second
[j
]->eval(ind
->D
->sample
->p
);
1234 assert(lex_cmp(i_v
, j_v
) < 0);
1238 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1239 assert((*i
).second
.size() > 0);
1240 assert(head
.find((*i
).first
) != head
.end() ||
1241 pred
.find((*i
).first
) != pred
.end());
1242 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1243 k
= pred
.find((*i
).second
[j
]);
1244 assert(k
!= pred
.end());
1245 assert((*k
).second
!= 0);
1248 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1249 assert(head
.find((*i
).first
) != head
.end() ||
1250 pred
.find((*i
).first
) != pred
.end());
1251 assert((*i
).second
.size() >= 1);
1253 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1254 assert(head
.find((*i
).first
) != head
.end() ||
1255 pred
.find((*i
).first
) != pred
.end());
1256 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1257 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1258 pred
.find((*i
).second
[j
]) != pred
.end());
1262 max_term
* indicator::create_max_term(const indicator_term
*it
)
1264 int dim
= it
->den
.NumCols();
1265 int nparam
= ic
.PP
->Constraints
->NbColumns
-2 - ic
.vertex
.length();
1266 max_term
*maximum
= new max_term
;
1267 maximum
->domain
= new EDomain(D
);
1268 for (int j
= 0; j
< dim
; ++j
) {
1269 evalue
*E
= new evalue
;
1271 evalue_copy(E
, it
->vertex
[j
]);
1272 if (evalue_frac2floor_in_domain(E
, D
->D
))
1274 maximum
->max
.push_back(E
);
1279 static order_sign
evalue_sign(evalue
*diff
, EDomain
*D
, barvinok_options
*options
)
1281 order_sign sign
= order_eq
;
1284 evalue_set_si(&mone
, -1, 1);
1285 int len
= 1 + D
->D
->Dimension
+ 1;
1286 Vector
*c
= Vector_Alloc(len
);
1287 Matrix
*T
= Matrix_Alloc(2, len
-1);
1289 int fract
= evalue2constraint(D
, diff
, c
->p
, len
);
1290 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1291 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1293 order_sign upper_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1294 if (upper_sign
== order_lt
|| !fract
)
1298 evalue2constraint(D
, diff
, c
->p
, len
);
1300 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1301 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1303 order_sign neg_lower_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1305 if (neg_lower_sign
== order_lt
)
1307 else if (neg_lower_sign
== order_eq
|| neg_lower_sign
== order_le
) {
1308 if (upper_sign
== order_eq
|| upper_sign
== order_le
)
1313 if (upper_sign
== order_lt
|| upper_sign
== order_le
||
1314 upper_sign
== order_eq
)
1317 sign
= order_unknown
;
1323 free_evalue_refs(&mone
);
1328 /* An auxiliary class that keeps a reference to an evalue
1329 * and frees it when it goes out of scope.
1331 struct temp_evalue
{
1333 temp_evalue() : E(NULL
) {}
1334 temp_evalue(evalue
*e
) : E(e
) {}
1335 operator evalue
* () const { return E
; }
1336 evalue
*operator=(evalue
*e
) {
1338 free_evalue_refs(E
);
1346 free_evalue_refs(E
);
1352 static void substitute(vector
<indicator_term
*>& term
, evalue
*equation
)
1354 evalue
*fract
= NULL
;
1355 evalue
*val
= new evalue
;
1357 evalue_copy(val
, equation
);
1360 value_init(factor
.d
);
1361 value_init(factor
.x
.n
);
1364 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= fractional
;
1365 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1368 if (value_zero_p(e
->d
) && e
->x
.p
->type
== fractional
)
1369 fract
= &e
->x
.p
->arr
[0];
1371 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= polynomial
;
1372 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1374 assert(value_zero_p(e
->d
) && e
->x
.p
->type
== polynomial
);
1377 int offset
= type_offset(e
->x
.p
);
1379 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].d
));
1380 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].x
.n
));
1381 if (value_neg_p(e
->x
.p
->arr
[offset
+1].x
.n
)) {
1382 value_oppose(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1383 value_assign(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1385 value_assign(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1386 value_oppose(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1389 free_evalue_refs(&e
->x
.p
->arr
[offset
+1]);
1392 *e
= e
->x
.p
->arr
[offset
];
1397 for (int i
= 0; i
< term
.size(); ++i
)
1398 term
[i
]->substitute(fract
, val
);
1400 free_evalue_refs(&p
->arr
[0]);
1402 for (int i
= 0; i
< term
.size(); ++i
)
1403 term
[i
]->substitute(p
->pos
, val
);
1406 free_evalue_refs(&factor
);
1407 free_evalue_refs(val
);
1413 order_sign
partial_order::compare(const indicator_term
*a
, const indicator_term
*b
)
1415 unsigned dim
= a
->den
.NumCols();
1416 order_sign sign
= order_eq
;
1417 EDomain
*D
= ind
->D
;
1418 unsigned MaxRays
= ind
->options
->verify
->barvinok
->MaxRays
;
1419 bool rational
= a
->sign
== 0 || b
->sign
== 0;
1421 order_sign cached_sign
= order_eq
;
1422 for (int k
= 0; k
< dim
; ++k
) {
1423 cached_sign
= evalue_diff_constant_sign(a
->vertex
[k
], b
->vertex
[k
]);
1424 if (cached_sign
!= order_eq
)
1427 if (cached_sign
!= order_undefined
)
1430 order_cache_el cache_el
;
1431 cached_sign
= order_undefined
;
1433 cached_sign
= cache
.check(a
, b
, cache_el
);
1434 if (cached_sign
!= order_undefined
) {
1439 if (rational
&& POL_ISSET(MaxRays
, POL_INTEGER
)) {
1440 ind
->options
->verify
->barvinok
->MaxRays
&= ~POL_INTEGER
;
1441 if (ind
->options
->verify
->barvinok
->MaxRays
)
1442 ind
->options
->verify
->barvinok
->MaxRays
|= POL_HIGH_BIT
;
1447 vector
<indicator_term
*> term
;
1449 for (int k
= 0; k
< dim
; ++k
) {
1450 /* compute a->vertex[k] - b->vertex[k] */
1452 if (cache_el
.e
.size() <= k
) {
1453 diff
= ediff(a
->vertex
[k
], b
->vertex
[k
]);
1454 cache_el
.e
.push_back(diff
);
1456 diff
= cache_el
.e
[k
];
1459 tdiff
= diff
= ediff(term
[0]->vertex
[k
], term
[1]->vertex
[k
]);
1460 order_sign diff_sign
;
1462 diff_sign
= order_undefined
;
1463 else if (eequal(a
->vertex
[k
], b
->vertex
[k
]))
1464 diff_sign
= order_eq
;
1466 diff_sign
= evalue_sign(diff
, D
, ind
->options
->verify
->barvinok
);
1468 if (diff_sign
== order_undefined
) {
1469 assert(sign
== order_le
|| sign
== order_ge
);
1470 if (sign
== order_le
)
1476 if (diff_sign
== order_lt
) {
1477 if (sign
== order_eq
|| sign
== order_le
)
1480 sign
= order_unknown
;
1483 if (diff_sign
== order_gt
) {
1484 if (sign
== order_eq
|| sign
== order_ge
)
1487 sign
= order_unknown
;
1490 if (diff_sign
== order_eq
) {
1491 if (D
== ind
->D
&& term
.size() == 0 && !rational
&&
1492 !EVALUE_IS_ZERO(*diff
))
1493 ind
->add_substitution(diff
);
1496 if ((diff_sign
== order_unknown
) ||
1497 ((diff_sign
== order_lt
|| diff_sign
== order_le
) && sign
== order_ge
) ||
1498 ((diff_sign
== order_gt
|| diff_sign
== order_ge
) && sign
== order_le
)) {
1499 sign
= order_unknown
;
1506 term
.push_back(new indicator_term(*a
));
1507 term
.push_back(new indicator_term(*b
));
1509 substitute(term
, diff
);
1513 cache
.add(cache_el
, sign
);
1517 if (D
&& D
!= ind
->D
)
1525 ind
->options
->verify
->barvinok
->MaxRays
= MaxRays
;
1529 bool partial_order::compared(const indicator_term
* a
, const indicator_term
* b
)
1531 order_type::iterator j
;
1534 if (j
!= lt
.end() && std::find(lt
[a
].begin(), lt
[a
].end(), b
) != lt
[a
].end())
1538 if (j
!= le
.end() && std::find(le
[a
].begin(), le
[a
].end(), b
) != le
[a
].end())
1544 void partial_order::add(const indicator_term
* it
,
1545 std::set
<const indicator_term
*> *filter
)
1547 if (eq
.find(it
) != eq
.end() && eq
[it
].size() == 1)
1550 head_type
head_copy(head
);
1555 head_type::iterator i
;
1556 for (i
= head_copy
.begin(); i
!= head_copy
.end(); ++i
) {
1559 if (eq
.find(*i
) != eq
.end() && eq
[*i
].size() == 1)
1562 if (filter
->find(*i
) == filter
->end())
1564 if (compared(*i
, it
))
1567 order_sign sign
= compare(it
, *i
);
1568 if (sign
== order_lt
) {
1569 lt
[it
].push_back(*i
);
1571 } else if (sign
== order_le
) {
1572 le
[it
].push_back(*i
);
1574 } else if (sign
== order_eq
) {
1577 } else if (sign
== order_gt
) {
1578 pending
[*i
].push_back(it
);
1579 lt
[*i
].push_back(it
);
1581 } else if (sign
== order_ge
) {
1582 pending
[*i
].push_back(it
);
1583 le
[*i
].push_back(it
);
1589 void partial_order::remove(const indicator_term
* it
)
1591 std::set
<const indicator_term
*> filter
;
1592 order_type::iterator i
;
1594 assert(head
.find(it
) != head
.end());
1597 if (i
!= eq
.end()) {
1598 assert(eq
[it
].size() >= 1);
1599 const indicator_term
*base
;
1600 if (eq
[it
].size() == 1) {
1604 vector
<const indicator_term
* >::iterator j
;
1605 j
= std::find(eq
[base
].begin(), eq
[base
].end(), it
);
1606 assert(j
!= eq
[base
].end());
1609 /* "it" may no longer be the smallest, since the order
1610 * structure may have been copied from another one.
1612 std::sort(eq
[it
].begin()+1, eq
[it
].end(), pred
.key_comp());
1613 assert(eq
[it
][0] == it
);
1614 eq
[it
].erase(eq
[it
].begin());
1619 for (int j
= 1; j
< eq
[base
].size(); ++j
)
1620 eq
[eq
[base
][j
]][0] = base
;
1623 if (i
!= lt
.end()) {
1629 if (i
!= le
.end()) {
1634 i
= pending
.find(it
);
1635 if (i
!= pending
.end()) {
1636 pending
[base
] = pending
[it
];
1641 if (eq
[base
].size() == 1)
1650 if (i
!= lt
.end()) {
1651 for (int j
= 0; j
< lt
[it
].size(); ++j
) {
1652 filter
.insert(lt
[it
][j
]);
1653 dec_pred(lt
[it
][j
]);
1659 if (i
!= le
.end()) {
1660 for (int j
= 0; j
< le
[it
].size(); ++j
) {
1661 filter
.insert(le
[it
][j
]);
1662 dec_pred(le
[it
][j
]);
1669 i
= pending
.find(it
);
1670 if (i
!= pending
.end()) {
1671 vector
<const indicator_term
*> it_pending
= pending
[it
];
1673 for (int j
= 0; j
< it_pending
.size(); ++j
) {
1674 filter
.erase(it_pending
[j
]);
1675 add(it_pending
[j
], &filter
);
1680 void partial_order::print(ostream
& os
, char **p
)
1682 order_type::iterator i
;
1683 pred_type::iterator j
;
1684 head_type::iterator k
;
1685 for (k
= head
.begin(); k
!= head
.end(); ++k
) {
1689 for (j
= pred
.begin(); j
!= pred
.end(); ++j
) {
1690 (*j
).first
->print(os
, p
);
1691 os
<< ": " << (*j
).second
<< endl
;
1693 for (i
= lt
.begin(); i
!= lt
.end(); ++i
) {
1694 (*i
).first
->print(os
, p
);
1695 assert(head
.find((*i
).first
) != head
.end() ||
1696 pred
.find((*i
).first
) != pred
.end());
1697 if (pred
.find((*i
).first
) != pred
.end())
1698 os
<< "(" << pred
[(*i
).first
] << ")";
1700 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1703 (*i
).second
[j
]->print(os
, p
);
1704 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1705 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1709 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1710 (*i
).first
->print(os
, p
);
1711 assert(head
.find((*i
).first
) != head
.end() ||
1712 pred
.find((*i
).first
) != pred
.end());
1713 if (pred
.find((*i
).first
) != pred
.end())
1714 os
<< "(" << pred
[(*i
).first
] << ")";
1716 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1719 (*i
).second
[j
]->print(os
, p
);
1720 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1721 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1725 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1726 if ((*i
).second
.size() <= 1)
1728 (*i
).first
->print(os
, p
);
1729 assert(head
.find((*i
).first
) != head
.end() ||
1730 pred
.find((*i
).first
) != pred
.end());
1731 if (pred
.find((*i
).first
) != pred
.end())
1732 os
<< "(" << pred
[(*i
).first
] << ")";
1733 for (int j
= 1; j
< (*i
).second
.size(); ++j
) {
1736 (*i
).second
[j
]->print(os
, p
);
1737 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1738 pred
.find((*i
).second
[j
]) != pred
.end());
1739 if (pred
.find((*i
).second
[j
]) != pred
.end())
1740 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1744 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1745 os
<< "pending on ";
1746 (*i
).first
->print(os
, p
);
1747 assert(head
.find((*i
).first
) != head
.end() ||
1748 pred
.find((*i
).first
) != pred
.end());
1749 if (pred
.find((*i
).first
) != pred
.end())
1750 os
<< "(" << pred
[(*i
).first
] << ")";
1752 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1755 (*i
).second
[j
]->print(os
, p
);
1756 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1757 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1763 void indicator::add(const indicator_term
* it
)
1765 indicator_term
*nt
= new indicator_term(*it
);
1766 if (options
->reduce
)
1767 nt
->reduce_in_domain(P
? P
: D
->D
);
1769 order
.add(nt
, NULL
);
1770 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1773 void indicator::remove(const indicator_term
* it
)
1775 vector
<indicator_term
*>::iterator i
;
1776 i
= std::find(term
.begin(), term
.end(), it
);
1777 assert(i
!= term
.end());
1780 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1784 void indicator::expand_rational_vertex(const indicator_term
*initial
)
1786 int pos
= initial
->pos
;
1788 if (ic
.terms
[pos
].size() == 0) {
1790 FORALL_PVertex_in_ParamPolyhedron(V
, PD
, ic
.PP
) // _i is internal counter
1792 ic
.decompose_at_vertex(V
, pos
, options
->verify
->barvinok
);
1795 END_FORALL_PVertex_in_ParamPolyhedron
;
1797 for (int j
= 0; j
< ic
.terms
[pos
].size(); ++j
)
1798 add(ic
.terms
[pos
][j
]);
1801 void indicator::remove_initial_rational_vertices()
1804 const indicator_term
*initial
= NULL
;
1805 partial_order::head_type::iterator i
;
1806 for (i
= order
.head
.begin(); i
!= order
.head
.end(); ++i
) {
1807 if ((*i
)->sign
!= 0)
1809 if (order
.eq
.find(*i
) != order
.eq
.end() && order
.eq
[*i
].size() <= 1)
1816 expand_rational_vertex(initial
);
1820 void indicator::reduce_in_domain(Polyhedron
*D
)
1822 for (int i
= 0; i
< term
.size(); ++i
)
1823 term
[i
]->reduce_in_domain(D
);
1826 void indicator::print(ostream
& os
, char **p
)
1828 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1829 for (int i
= 0; i
< term
.size(); ++i
) {
1830 term
[i
]->print(os
, p
);
1832 os
<< ": " << term
[i
]->eval(D
->sample
->p
);
1839 /* Remove pairs of opposite terms */
1840 void indicator::simplify()
1842 for (int i
= 0; i
< term
.size(); ++i
) {
1843 for (int j
= i
+1; j
< term
.size(); ++j
) {
1844 if (term
[i
]->sign
+ term
[j
]->sign
!= 0)
1846 if (term
[i
]->den
!= term
[j
]->den
)
1849 for (k
= 0; k
< term
[i
]->den
.NumCols(); ++k
)
1850 if (!eequal(term
[i
]->vertex
[k
], term
[j
]->vertex
[k
]))
1852 if (k
< term
[i
]->den
.NumCols())
1856 term
.erase(term
.begin()+j
);
1857 term
.erase(term
.begin()+i
);
1864 void indicator::peel(int i
, int j
)
1872 int dim
= term
[i
]->den
.NumCols();
1877 int n_common
= 0, n_i
= 0, n_j
= 0;
1879 common
.SetDims(min(term
[i
]->den
.NumRows(), term
[j
]->den
.NumRows()), dim
);
1880 rest_i
.SetDims(term
[i
]->den
.NumRows(), dim
);
1881 rest_j
.SetDims(term
[j
]->den
.NumRows(), dim
);
1884 for (k
= 0, l
= 0; k
< term
[i
]->den
.NumRows() && l
< term
[j
]->den
.NumRows(); ) {
1885 int s
= lex_cmp(term
[i
]->den
[k
], term
[j
]->den
[l
]);
1887 common
[n_common
++] = term
[i
]->den
[k
];
1891 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1893 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1895 while (k
< term
[i
]->den
.NumRows())
1896 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1897 while (l
< term
[j
]->den
.NumRows())
1898 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1899 common
.SetDims(n_common
, dim
);
1900 rest_i
.SetDims(n_i
, dim
);
1901 rest_j
.SetDims(n_j
, dim
);
1903 for (k
= 0; k
<= n_i
; ++k
) {
1904 indicator_term
*it
= new indicator_term(*term
[i
]);
1905 it
->den
.SetDims(n_common
+ k
, dim
);
1906 for (l
= 0; l
< n_common
; ++l
)
1907 it
->den
[l
] = common
[l
];
1908 for (l
= 0; l
< k
; ++l
)
1909 it
->den
[n_common
+l
] = rest_i
[l
];
1910 lex_order_rows(it
->den
);
1912 for (l
= 0; l
< dim
; ++l
)
1913 evalue_add_constant(it
->vertex
[l
], rest_i
[k
-1][l
]);
1917 for (k
= 0; k
<= n_j
; ++k
) {
1918 indicator_term
*it
= new indicator_term(*term
[j
]);
1919 it
->den
.SetDims(n_common
+ k
, dim
);
1920 for (l
= 0; l
< n_common
; ++l
)
1921 it
->den
[l
] = common
[l
];
1922 for (l
= 0; l
< k
; ++l
)
1923 it
->den
[n_common
+l
] = rest_j
[l
];
1924 lex_order_rows(it
->den
);
1926 for (l
= 0; l
< dim
; ++l
)
1927 evalue_add_constant(it
->vertex
[l
], rest_j
[k
-1][l
]);
1930 term
.erase(term
.begin()+j
);
1931 term
.erase(term
.begin()+i
);
1934 void indicator::combine(const indicator_term
*a
, const indicator_term
*b
)
1936 int dim
= a
->den
.NumCols();
1939 mat_ZZ rest_i
; /* factors in a, but not in b */
1940 mat_ZZ rest_j
; /* factors in b, but not in a */
1941 int n_common
= 0, n_i
= 0, n_j
= 0;
1943 common
.SetDims(min(a
->den
.NumRows(), b
->den
.NumRows()), dim
);
1944 rest_i
.SetDims(a
->den
.NumRows(), dim
);
1945 rest_j
.SetDims(b
->den
.NumRows(), dim
);
1948 for (k
= 0, l
= 0; k
< a
->den
.NumRows() && l
< b
->den
.NumRows(); ) {
1949 int s
= lex_cmp(a
->den
[k
], b
->den
[l
]);
1951 common
[n_common
++] = a
->den
[k
];
1955 rest_i
[n_i
++] = a
->den
[k
++];
1957 rest_j
[n_j
++] = b
->den
[l
++];
1959 while (k
< a
->den
.NumRows())
1960 rest_i
[n_i
++] = a
->den
[k
++];
1961 while (l
< b
->den
.NumRows())
1962 rest_j
[n_j
++] = b
->den
[l
++];
1963 common
.SetDims(n_common
, dim
);
1964 rest_i
.SetDims(n_i
, dim
);
1965 rest_j
.SetDims(n_j
, dim
);
1967 assert(order
.eq
[a
].size() > 1);
1968 indicator_term
*prev
;
1971 for (int k
= n_i
-1; k
>= 0; --k
) {
1972 indicator_term
*it
= new indicator_term(*b
);
1973 it
->den
.SetDims(n_common
+ n_j
+ n_i
-k
, dim
);
1974 for (int l
= k
; l
< n_i
; ++l
)
1975 it
->den
[n_common
+n_j
+l
-k
] = rest_i
[l
];
1976 lex_order_rows(it
->den
);
1977 for (int m
= 0; m
< dim
; ++m
)
1978 evalue_add_constant(it
->vertex
[m
], rest_i
[k
][m
]);
1979 it
->sign
= -it
->sign
;
1981 order
.pending
[it
].push_back(prev
);
1982 order
.lt
[it
].push_back(prev
);
1983 order
.inc_pred(prev
);
1986 order
.head
.insert(it
);
1990 indicator_term
*it
= new indicator_term(*b
);
1991 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
1992 for (l
= 0; l
< n_i
; ++l
)
1993 it
->den
[n_common
+n_j
+l
] = rest_i
[l
];
1994 lex_order_rows(it
->den
);
1996 order
.pending
[a
].push_back(prev
);
1997 order
.lt
[a
].push_back(prev
);
1998 order
.inc_pred(prev
);
1999 order
.replace(b
, it
);
2004 for (int k
= n_j
-1; k
>= 0; --k
) {
2005 indicator_term
*it
= new indicator_term(*a
);
2006 it
->den
.SetDims(n_common
+ n_i
+ n_j
-k
, dim
);
2007 for (int l
= k
; l
< n_j
; ++l
)
2008 it
->den
[n_common
+n_i
+l
-k
] = rest_j
[l
];
2009 lex_order_rows(it
->den
);
2010 for (int m
= 0; m
< dim
; ++m
)
2011 evalue_add_constant(it
->vertex
[m
], rest_j
[k
][m
]);
2012 it
->sign
= -it
->sign
;
2014 order
.pending
[it
].push_back(prev
);
2015 order
.lt
[it
].push_back(prev
);
2016 order
.inc_pred(prev
);
2019 order
.head
.insert(it
);
2023 indicator_term
*it
= new indicator_term(*a
);
2024 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
2025 for (l
= 0; l
< n_j
; ++l
)
2026 it
->den
[n_common
+n_i
+l
] = rest_j
[l
];
2027 lex_order_rows(it
->den
);
2029 order
.pending
[a
].push_back(prev
);
2030 order
.lt
[a
].push_back(prev
);
2031 order
.inc_pred(prev
);
2032 order
.replace(a
, it
);
2036 assert(term
.size() == order
.head
.size() + order
.pred
.size());
2039 bool indicator::handle_equal_numerators(const indicator_term
*base
)
2041 for (int i
= 0; i
< order
.eq
[base
].size(); ++i
) {
2042 for (int j
= i
+1; j
< order
.eq
[base
].size(); ++j
) {
2043 if (order
.eq
[base
][i
]->is_opposite(order
.eq
[base
][j
])) {
2044 remove(order
.eq
[base
][j
]);
2045 remove(i
? order
.eq
[base
][i
] : base
);
2050 for (int j
= 1; j
< order
.eq
[base
].size(); ++j
)
2051 if (order
.eq
[base
][j
]->sign
!= base
->sign
) {
2052 combine(base
, order
.eq
[base
][j
]);
2058 void indicator::substitute(evalue
*equation
)
2060 ::substitute(term
, equation
);
2063 void indicator::add_substitution(evalue
*equation
)
2065 for (int i
= 0; i
< substitutions
.size(); ++i
)
2066 if (eequal(substitutions
[i
], equation
))
2068 evalue
*copy
= new evalue();
2069 value_init(copy
->d
);
2070 evalue_copy(copy
, equation
);
2071 substitutions
.push_back(copy
);
2074 void indicator::perform_pending_substitutions()
2076 if (substitutions
.size() == 0)
2079 for (int i
= 0; i
< substitutions
.size(); ++i
) {
2080 substitute(substitutions
[i
]);
2081 free_evalue_refs(substitutions
[i
]);
2082 delete substitutions
[i
];
2084 substitutions
.clear();
2088 static void print_varlist(ostream
& os
, int n
, char **names
)
2092 for (i
= 0; i
< n
; ++i
) {
2100 void max_term::print(ostream
& os
, char **p
, barvinok_options
*options
) const
2103 print_varlist(os
, domain
->dimension(), p
);
2106 for (int i
= 0; i
< max
.size(); ++i
) {
2109 evalue_print(os
, max
[i
], p
);
2113 domain
->print_constraints(os
, p
, options
);
2117 /* T maps the compressed parameters to the original parameters,
2118 * while this max_term is based on the compressed parameters
2119 * and we want get the original parameters back.
2121 void max_term::substitute(Matrix
*T
, barvinok_options
*options
)
2123 assert(domain
->dimension() == T
->NbColumns
-1);
2124 int nexist
= domain
->D
->Dimension
- (T
->NbColumns
-1);
2126 Matrix
*inv
= left_inverse(T
, &Eq
);
2129 value_init(denom
.d
);
2130 value_init(denom
.x
.n
);
2131 value_set_si(denom
.x
.n
, 1);
2132 value_assign(denom
.d
, inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
2135 v
.SetLength(inv
->NbColumns
);
2136 evalue
**subs
= new evalue
*[inv
->NbRows
-1];
2137 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2138 values2zz(inv
->p
[i
], v
, v
.length());
2139 subs
[i
] = multi_monom(v
);
2140 emul(&denom
, subs
[i
]);
2142 free_evalue_refs(&denom
);
2144 domain
->substitute(subs
, inv
, Eq
, options
->MaxRays
);
2147 for (int i
= 0; i
< max
.size(); ++i
) {
2148 evalue_substitute(max
[i
], subs
);
2149 reduce_evalue(max
[i
]);
2152 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2153 free_evalue_refs(subs
[i
]);
2160 Vector
*max_term::eval(Value
*val
, unsigned MaxRays
) const
2162 if (!domain
->contains(val
, domain
->dimension()))
2164 Vector
*res
= Vector_Alloc(max
.size());
2165 for (int i
= 0; i
< max
.size(); ++i
) {
2166 compute_evalue(max
[i
], val
, &res
->p
[i
]);
2173 enum sign
{ le
, ge
, lge
} sign
;
2175 split (evalue
*c
, enum sign s
) : constraint(c
), sign(s
) {}
2178 static void split_on(const split
& sp
, EDomain
*D
,
2179 EDomain
**Dlt
, EDomain
**Deq
, EDomain
**Dgt
,
2180 lexmin_options
*options
)
2186 ge_constraint
*ge
= D
->compute_ge_constraint(sp
.constraint
);
2187 if (sp
.sign
== split::lge
|| sp
.sign
== split::ge
)
2188 ED
[2] = EDomain::new_from_ge_constraint(ge
, 1, options
->verify
->barvinok
);
2191 if (sp
.sign
== split::lge
|| sp
.sign
== split::le
)
2192 ED
[0] = EDomain::new_from_ge_constraint(ge
, -1, options
->verify
->barvinok
);
2196 assert(sp
.sign
== split::lge
|| sp
.sign
== split::ge
|| sp
.sign
== split::le
);
2197 ED
[1] = EDomain::new_from_ge_constraint(ge
, 0, options
->verify
->barvinok
);
2201 for (int i
= 0; i
< 3; ++i
) {
2204 if (D
->sample
&& ED
[i
]->contains(D
->sample
->p
, D
->sample
->Size
-1)) {
2205 ED
[i
]->sample
= Vector_Alloc(D
->sample
->Size
);
2206 Vector_Copy(D
->sample
->p
, ED
[i
]->sample
->p
, D
->sample
->Size
);
2207 } else if (emptyQ2(ED
[i
]->D
) ||
2208 (options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2209 !(ED
[i
]->not_empty(options
)))) {
2219 ostream
& operator<< (ostream
& os
, const vector
<int> & v
)
2222 for (int i
= 0; i
< v
.size(); ++i
) {
2231 static bool isTranslation(Matrix
*M
)
2234 if (M
->NbRows
!= M
->NbColumns
)
2237 for (i
= 0;i
< M
->NbRows
; i
++)
2238 for (j
= 0; j
< M
->NbColumns
-1; j
++)
2240 if(value_notone_p(M
->p
[i
][j
]))
2243 if(value_notzero_p(M
->p
[i
][j
]))
2246 return value_one_p(M
->p
[M
->NbRows
-1][M
->NbColumns
-1]);
2249 static Matrix
*compress_parameters(Polyhedron
**P
, Polyhedron
**C
,
2250 unsigned nparam
, unsigned MaxRays
)
2254 /* compress_parms doesn't like equalities that only involve parameters */
2255 for (int i
= 0; i
< (*P
)->NbEq
; ++i
)
2256 assert(First_Non_Zero((*P
)->Constraint
[i
]+1, (*P
)->Dimension
-nparam
) != -1);
2258 M
= Matrix_Alloc((*P
)->NbEq
, (*P
)->Dimension
+2);
2259 Vector_Copy((*P
)->Constraint
[0], M
->p
[0], (*P
)->NbEq
* ((*P
)->Dimension
+2));
2260 CP
= compress_parms(M
, nparam
);
2263 if (isTranslation(CP
)) {
2268 T
= align_matrix(CP
, (*P
)->Dimension
+1);
2269 *P
= Polyhedron_Preimage(*P
, T
, MaxRays
);
2272 *C
= Polyhedron_Preimage(*C
, CP
, MaxRays
);
2277 void construct_rational_vertices(Param_Polyhedron
*PP
, Matrix
*T
, unsigned dim
,
2278 int nparam
, vector
<indicator_term
*>& vertices
)
2287 v
.SetLength(nparam
+1);
2290 value_init(factor
.d
);
2291 value_init(factor
.x
.n
);
2292 value_set_si(factor
.x
.n
, 1);
2293 value_set_si(factor
.d
, 1);
2295 for (i
= 0, PV
= PP
->V
; PV
; ++i
, PV
= PV
->next
) {
2296 indicator_term
*term
= new indicator_term(dim
, i
);
2297 vertices
.push_back(term
);
2298 Matrix
*M
= Matrix_Alloc(PV
->Vertex
->NbRows
+nparam
+1, nparam
+1);
2299 value_set_si(lcm
, 1);
2300 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
)
2301 value_lcm(lcm
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2302 value_assign(M
->p
[M
->NbRows
-1][M
->NbColumns
-1], lcm
);
2303 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
) {
2304 value_division(tmp
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2305 Vector_Scale(PV
->Vertex
->p
[j
], M
->p
[j
], tmp
, nparam
+1);
2307 for (int j
= 0; j
< nparam
; ++j
)
2308 value_assign(M
->p
[PV
->Vertex
->NbRows
+j
][j
], lcm
);
2310 Matrix
*M2
= Matrix_Alloc(T
->NbRows
, M
->NbColumns
);
2311 Matrix_Product(T
, M
, M2
);
2315 for (int j
= 0; j
< dim
; ++j
) {
2316 values2zz(M
->p
[j
], v
, nparam
+1);
2317 term
->vertex
[j
] = multi_monom(v
);
2318 value_assign(factor
.d
, lcm
);
2319 emul(&factor
, term
->vertex
[j
]);
2323 assert(i
== PP
->nbV
);
2324 free_evalue_refs(&factor
);
2329 static vector
<max_term
*> lexmin(indicator
& ind
, unsigned nparam
,
2332 vector
<max_term
*> maxima
;
2333 partial_order::head_type::iterator i
;
2334 vector
<int> best_score
;
2335 vector
<int> second_score
;
2336 vector
<int> neg_score
;
2339 ind
.perform_pending_substitutions();
2340 const indicator_term
*best
= NULL
, *second
= NULL
, *neg
= NULL
,
2341 *neg_eq
= NULL
, *neg_le
= NULL
;
2342 for (i
= ind
.order
.head
.begin(); i
!= ind
.order
.head
.end(); ++i
) {
2344 const indicator_term
*term
= *i
;
2345 if (term
->sign
== 0) {
2346 ind
.expand_rational_vertex(term
);
2350 if (ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2352 if (ind
.order
.eq
[term
].size() <= 1)
2354 for (j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2355 if (ind
.order
.pred
.find(ind
.order
.eq
[term
][j
]) !=
2356 ind
.order
.pred
.end())
2358 if (j
< ind
.order
.eq
[term
].size())
2360 score
.push_back(ind
.order
.eq
[term
].size());
2363 if (ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2364 score
.push_back(ind
.order
.le
[term
].size());
2367 if (ind
.order
.lt
.find(term
) != ind
.order
.lt
.end())
2368 score
.push_back(-ind
.order
.lt
[term
].size());
2372 if (term
->sign
> 0) {
2373 if (!best
|| score
< best_score
) {
2375 second_score
= best_score
;
2378 } else if (!second
|| score
< second_score
) {
2380 second_score
= score
;
2383 if (!neg_eq
&& ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2384 for (int j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2385 if (ind
.order
.eq
[term
][j
]->sign
!= term
->sign
) {
2390 if (!neg_le
&& ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2392 if (!neg
|| score
< neg_score
) {
2398 if (i
!= ind
.order
.head
.end())
2401 if (!best
&& neg_eq
) {
2402 assert(ind
.order
.eq
[neg_eq
].size() != 0);
2403 bool handled
= ind
.handle_equal_numerators(neg_eq
);
2408 if (!best
&& neg_le
) {
2409 /* The smallest term is negative and <= some positive term */
2415 /* apparently there can be negative initial term on empty domains */
2416 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2417 ind
.options
->verify
->barvinok
->lp_solver
== BV_LP_POLYLIB
)
2422 if (!second
&& !neg
) {
2423 const indicator_term
*rat
= NULL
;
2425 if (ind
.order
.le
.find(best
) == ind
.order
.le
.end()) {
2426 if (ind
.order
.eq
.find(best
) != ind
.order
.eq
.end()) {
2427 bool handled
= ind
.handle_equal_numerators(best
);
2428 if (ind
.options
->emptiness_check
!=
2429 BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2430 ind
.options
->verify
->barvinok
->lp_solver
== BV_LP_POLYLIB
)
2432 /* If !handled then the leading coefficient is bigger than one;
2433 * must be an empty domain
2440 maxima
.push_back(ind
.create_max_term(best
));
2443 for (int j
= 0; j
< ind
.order
.le
[best
].size(); ++j
) {
2444 if (ind
.order
.le
[best
][j
]->sign
== 0) {
2445 if (!rat
&& ind
.order
.pred
[ind
.order
.le
[best
][j
]] == 1)
2446 rat
= ind
.order
.le
[best
][j
];
2447 } else if (ind
.order
.le
[best
][j
]->sign
> 0) {
2448 second
= ind
.order
.le
[best
][j
];
2451 neg
= ind
.order
.le
[best
][j
];
2454 if (!second
&& !neg
) {
2456 ind
.order
.unset_le(best
, rat
);
2457 ind
.expand_rational_vertex(rat
);
2464 ind
.order
.unset_le(best
, second
);
2470 unsigned dim
= best
->den
.NumCols();
2473 for (int k
= 0; k
< dim
; ++k
) {
2474 diff
= ediff(best
->vertex
[k
], second
->vertex
[k
]);
2475 sign
= evalue_sign(diff
, ind
.D
, ind
.options
->verify
->barvinok
);
2477 /* neg can never be smaller than best, unless it may still cancel.
2478 * This can happen if positive terms have been determined to
2479 * be equal or less than or equal to some negative term.
2481 if (second
== neg
&& !neg_eq
&& !neg_le
) {
2482 if (sign
== order_ge
)
2484 if (sign
== order_unknown
)
2488 if (sign
!= order_eq
)
2490 if (!EVALUE_IS_ZERO(*diff
)) {
2491 ind
.add_substitution(diff
);
2492 ind
.perform_pending_substitutions();
2495 if (sign
== order_eq
) {
2496 ind
.order
.set_equal(best
, second
);
2499 if (sign
== order_lt
) {
2500 ind
.order
.lt
[best
].push_back(second
);
2501 ind
.order
.inc_pred(second
);
2504 if (sign
== order_gt
) {
2505 ind
.order
.lt
[second
].push_back(best
);
2506 ind
.order
.inc_pred(best
);
2510 split
sp(diff
, sign
== order_le
? split::le
:
2511 sign
== order_ge
? split::ge
: split::lge
);
2513 EDomain
*Dlt
, *Deq
, *Dgt
;
2514 split_on(sp
, ind
.D
, &Dlt
, &Deq
, &Dgt
, ind
.options
);
2515 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
)
2516 assert(Dlt
|| Deq
|| Dgt
);
2517 else if (!(Dlt
|| Deq
|| Dgt
))
2518 /* Must have been empty all along */
2521 if (Deq
&& (Dlt
|| Dgt
)) {
2522 int locsize
= loc
.size();
2524 indicator
indeq(ind
, Deq
);
2526 indeq
.add_substitution(diff
);
2527 indeq
.perform_pending_substitutions();
2528 vector
<max_term
*> maxeq
= lexmin(indeq
, nparam
, loc
);
2529 maxima
.insert(maxima
.end(), maxeq
.begin(), maxeq
.end());
2530 loc
.resize(locsize
);
2533 int locsize
= loc
.size();
2535 indicator
indgt(ind
, Dgt
);
2537 /* we don't know the new location of these terms in indgt */
2539 indgt.order.lt[second].push_back(best);
2540 indgt.order.inc_pred(best);
2542 vector
<max_term
*> maxgt
= lexmin(indgt
, nparam
, loc
);
2543 maxima
.insert(maxima
.end(), maxgt
.begin(), maxgt
.end());
2544 loc
.resize(locsize
);
2549 ind
.set_domain(Deq
);
2550 ind
.add_substitution(diff
);
2551 ind
.perform_pending_substitutions();
2555 ind
.set_domain(Dlt
);
2556 ind
.order
.lt
[best
].push_back(second
);
2557 ind
.order
.inc_pred(second
);
2561 ind
.set_domain(Dgt
);
2562 ind
.order
.lt
[second
].push_back(best
);
2563 ind
.order
.inc_pred(best
);
2570 static void lexmin_base(Polyhedron
*P
, Polyhedron
*C
,
2571 Matrix
*CP
, Matrix
*T
,
2572 vector
<max_term
*>& all_max
,
2573 lexmin_options
*options
)
2575 unsigned nparam
= C
->Dimension
;
2576 Param_Polyhedron
*PP
= NULL
;
2578 PP
= Polyhedron2Param_Polyhedron(P
, C
, options
->verify
->barvinok
);
2580 unsigned dim
= P
->Dimension
- nparam
;
2584 indicator_constructor
ic(P
, dim
, PP
, T
);
2586 vector
<indicator_term
*> all_vertices
;
2587 construct_rational_vertices(PP
, T
, T
? T
->NbRows
-nparam
-1 : dim
,
2588 nparam
, all_vertices
);
2590 Polyhedron
*TC
= true_context(P
, C
, options
->verify
->barvinok
->MaxRays
);
2591 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
->verify
->barvinok
, i
, D
, rVD
)
2594 EDomain
*epVD
= new EDomain(rVD
);
2595 indicator
ind(ic
, D
, epVD
, options
);
2597 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
2598 ind
.add(all_vertices
[_i
]);
2599 END_FORALL_PVertex_in_ParamPolyhedron
;
2601 ind
.remove_initial_rational_vertices();
2604 vector
<max_term
*> maxima
= lexmin(ind
, nparam
, loc
);
2606 for (int j
= 0; j
< maxima
.size(); ++j
)
2607 maxima
[j
]->substitute(CP
, options
->verify
->barvinok
);
2608 all_max
.insert(all_max
.end(), maxima
.begin(), maxima
.end());
2611 END_FORALL_REDUCED_DOMAIN
2612 Polyhedron_Free(TC
);
2613 for (int i
= 0; i
< all_vertices
.size(); ++i
)
2614 delete all_vertices
[i
];
2615 Param_Polyhedron_Free(PP
);
2618 static vector
<max_term
*> lexmin(Polyhedron
*P
, Polyhedron
*C
,
2619 lexmin_options
*options
)
2621 unsigned nparam
= C
->Dimension
;
2622 Matrix
*T
= NULL
, *CP
= NULL
;
2623 Polyhedron
*Porig
= P
;
2624 Polyhedron
*Corig
= C
;
2625 vector
<max_term
*> all_max
;
2630 POL_ENSURE_VERTICES(P
);
2635 assert(P
->NbBid
== 0);
2638 remove_all_equalities(&P
, &C
, &CP
, &T
, nparam
,
2639 options
->verify
->barvinok
->MaxRays
);
2641 lexmin_base(P
, C
, CP
, T
, all_max
, options
);
2655 static void verify_results(Polyhedron
*A
, Polyhedron
*C
,
2656 vector
<max_term
*>& maxima
,
2657 struct verify_options
*options
);
2659 int main(int argc
, char **argv
)
2664 char **iter_names
, **param_names
;
2665 int print_solution
= 1;
2666 struct lexmin_options
*options
= lexmin_options_new_with_defaults();
2667 options
->verify
->barvinok
->lookup_table
= 0;
2669 argc
= lexmin_options_parse(options
, argc
, argv
, ISL_ARG_ALL
);
2672 C
= Constraints2Polyhedron(MA
, options
->verify
->barvinok
->MaxRays
);
2674 fscanf(stdin
, " %d", &bignum
);
2675 assert(bignum
== -1);
2677 A
= Constraints2Polyhedron(MA
, options
->verify
->barvinok
->MaxRays
);
2680 verify_options_set_range(options
->verify
, A
->Dimension
);
2682 if (options
->verify
->verify
)
2685 iter_names
= util_generate_names(A
->Dimension
- C
->Dimension
, "i");
2686 param_names
= util_generate_names(C
->Dimension
, "p");
2687 if (print_solution
) {
2688 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
2689 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
2691 vector
<max_term
*> maxima
= lexmin(A
, C
, options
);
2693 for (int i
= 0; i
< maxima
.size(); ++i
)
2694 maxima
[i
]->print(cout
, param_names
, options
->verify
->barvinok
);
2696 if (options
->verify
->verify
)
2697 verify_results(A
, C
, maxima
, options
->verify
);
2699 for (int i
= 0; i
< maxima
.size(); ++i
)
2702 util_free_names(A
->Dimension
- C
->Dimension
, iter_names
);
2703 util_free_names(C
->Dimension
, param_names
);
2707 lexmin_options_free(options
);
2712 static bool lexmin(int pos
, Polyhedron
*P
, Value
*context
)
2721 value_init(LB
); value_init(UB
); value_init(k
);
2724 lu_flags
= lower_upper_bounds(pos
,P
,context
,&LB
,&UB
);
2725 assert(!(lu_flags
& LB_INFINITY
));
2727 value_set_si(context
[pos
],0);
2728 if (!lu_flags
&& value_lt(UB
,LB
)) {
2729 value_clear(LB
); value_clear(UB
); value_clear(k
);
2733 value_assign(context
[pos
], LB
);
2734 value_clear(LB
); value_clear(UB
); value_clear(k
);
2737 for (value_assign(k
,LB
); lu_flags
|| value_le(k
,UB
); value_increment(k
,k
)) {
2738 value_assign(context
[pos
],k
);
2739 if ((found
= lexmin(pos
+1, P
->next
, context
)))
2743 value_set_si(context
[pos
],0);
2744 value_clear(LB
); value_clear(UB
); value_clear(k
);
2748 static void print_list(FILE *out
, Value
*z
, const char* brackets
, int len
)
2750 fprintf(out
, "%c", brackets
[0]);
2751 value_print(out
, VALUE_FMT
,z
[0]);
2752 for (int k
= 1; k
< len
; ++k
) {
2754 value_print(out
, VALUE_FMT
,z
[k
]);
2756 fprintf(out
, "%c", brackets
[1]);
2759 static int check_poly_lexmin(const struct check_poly_data
*data
,
2760 int nparam
, Value
*z
,
2761 const struct verify_options
*options
);
2763 struct check_poly_lexmin_data
: public check_poly_data
{
2765 vector
<max_term
*>& maxima
;
2767 check_poly_lexmin_data(Polyhedron
*S
, Value
*z
,
2768 vector
<max_term
*>& maxima
) : S(S
), maxima(maxima
) {
2770 this->check
= &check_poly_lexmin
;
2774 static int check_poly_lexmin(const struct check_poly_data
*data
,
2775 int nparam
, Value
*z
,
2776 const struct verify_options
*options
)
2778 const check_poly_lexmin_data
*lexmin_data
;
2779 lexmin_data
= static_cast<const check_poly_lexmin_data
*>(data
);
2780 Polyhedron
*S
= lexmin_data
->S
;
2781 vector
<max_term
*>& maxima
= lexmin_data
->maxima
;
2783 bool found
= lexmin(1, S
, lexmin_data
->z
);
2785 if (options
->print_all
) {
2787 print_list(stdout
, z
, "()", nparam
);
2790 print_list(stdout
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2795 for (int i
= 0; i
< maxima
.size(); ++i
)
2796 if ((min
= maxima
[i
]->eval(z
, options
->barvinok
->MaxRays
)))
2799 int ok
= !(found
^ !!min
);
2801 for (int i
= 0; i
< S
->Dimension
-nparam
; ++i
)
2802 if (value_ne(lexmin_data
->z
[1+i
], min
->p
[i
])) {
2809 fprintf(stderr
, "Error !\n");
2810 fprintf(stderr
, "lexmin");
2811 print_list(stderr
, z
, "()", nparam
);
2812 fprintf(stderr
, " should be ");
2814 print_list(stderr
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2815 fprintf(stderr
, " while digging gives ");
2817 print_list(stderr
, min
->p
, "[]", S
->Dimension
-nparam
);
2818 fprintf(stderr
, ".\n");
2820 } else if (options
->print_all
)
2825 for (k
= 1; k
<= S
->Dimension
-nparam
; ++k
)
2826 value_set_si(lexmin_data
->z
[k
], 0);
2829 void verify_results(Polyhedron
*A
, Polyhedron
*C
, vector
<max_term
*>& maxima
,
2830 struct verify_options
*options
)
2833 unsigned nparam
= C
->Dimension
;
2834 unsigned MaxRays
= options
->barvinok
->MaxRays
;
2839 CS
= check_poly_context_scan(A
, &C
, nparam
, options
);
2841 p
= Vector_Alloc(A
->Dimension
+2);
2842 value_set_si(p
->p
[A
->Dimension
+1], 1);
2844 S
= Polyhedron_Scan(A
, C
, MaxRays
& POL_NO_DUAL
? 0 : MaxRays
);
2846 check_poly_init(C
, options
);
2849 if (!(CS
&& emptyQ2(CS
))) {
2850 check_poly_lexmin_data
data(S
, p
->p
, maxima
);
2851 check_poly(CS
, &data
, nparam
, 0, p
->p
+S
->Dimension
-nparam
+1, options
);
2856 if (!options
->print_all
)