typo
[barvinok.git] / barvinok.cc
blobee03289cc16152579ca1fd82073f190f413b1a94
1 #include <assert.h>
2 #include <iostream>
3 #include <vector>
4 #include <deque>
5 #include <string>
6 #include <sstream>
7 #include <gmp.h>
8 #include <NTL/mat_ZZ.h>
9 #include <NTL/LLL.h>
10 #include <util.h>
11 extern "C" {
12 #include <polylib/polylibgmp.h>
13 #include "ev_operations.h"
14 #include "piputil.h"
16 #include "config.h"
17 #include <barvinok.h>
18 #include <genfun.h>
20 #ifdef NTL_STD_CXX
21 using namespace NTL;
22 #endif
23 using std::cout;
24 using std::endl;
25 using std::vector;
26 using std::deque;
27 using std::string;
28 using std::ostringstream;
30 #define ALLOC(p) (((long *) (p))[0])
31 #define SIZE(p) (((long *) (p))[1])
32 #define DATA(p) ((mp_limb_t *) (((long *) (p)) + 2))
34 static void value2zz(Value v, ZZ& z)
36 int sa = v[0]._mp_size;
37 int abs_sa = sa < 0 ? -sa : sa;
39 _ntl_gsetlength(&z.rep, abs_sa);
40 mp_limb_t * adata = DATA(z.rep);
41 for (int i = 0; i < abs_sa; ++i)
42 adata[i] = v[0]._mp_d[i];
43 SIZE(z.rep) = sa;
46 static void zz2value(ZZ& z, Value& v)
48 if (!z.rep) {
49 value_set_si(v, 0);
50 return;
53 int sa = SIZE(z.rep);
54 int abs_sa = sa < 0 ? -sa : sa;
56 mp_limb_t * adata = DATA(z.rep);
57 _mpz_realloc(v, abs_sa);
58 for (int i = 0; i < abs_sa; ++i)
59 v[0]._mp_d[i] = adata[i];
60 v[0]._mp_size = sa;
63 #undef ALLOC
64 #define ALLOC(t,p) p = (t*)malloc(sizeof(*p))
67 * We just ignore the last column and row
68 * If the final element is not equal to one
69 * then the result will actually be a multiple of the input
71 static void matrix2zz(Matrix *M, mat_ZZ& m, unsigned nr, unsigned nc)
73 m.SetDims(nr, nc);
75 for (int i = 0; i < nr; ++i) {
76 // assert(value_one_p(M->p[i][M->NbColumns - 1]));
77 for (int j = 0; j < nc; ++j) {
78 value2zz(M->p[i][j], m[i][j]);
83 static void values2zz(Value *p, vec_ZZ& v, int len)
85 v.SetLength(len);
87 for (int i = 0; i < len; ++i) {
88 value2zz(p[i], v[i]);
94 static void zz2values(vec_ZZ& v, Value *p)
96 for (int i = 0; i < v.length(); ++i)
97 zz2value(v[i], p[i]);
100 static void rays(mat_ZZ& r, Polyhedron *C)
102 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
103 assert(C->NbRays - 1 == C->Dimension);
104 r.SetDims(dim, dim);
105 ZZ tmp;
107 int i, c;
108 for (i = 0, c = 0; i < dim; ++i)
109 if (value_zero_p(C->Ray[i][dim+1])) {
110 for (int j = 0; j < dim; ++j) {
111 value2zz(C->Ray[i][j+1], tmp);
112 r[j][c] = tmp;
114 ++c;
118 static Matrix * rays(Polyhedron *C)
120 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
121 assert(C->NbRays - 1 == C->Dimension);
123 Matrix *M = Matrix_Alloc(dim+1, dim+1);
124 assert(M);
126 int i, c;
127 for (i = 0, c = 0; i <= dim && c < dim; ++i)
128 if (value_zero_p(C->Ray[i][dim+1])) {
129 Vector_Copy(C->Ray[i] + 1, M->p[c], dim);
130 value_set_si(M->p[c++][dim], 0);
132 assert(c == dim);
133 value_set_si(M->p[dim][dim], 1);
135 return M;
138 static Matrix * rays2(Polyhedron *C)
140 unsigned dim = C->NbRays - 1; /* don't count zero vertex */
141 assert(C->NbRays - 1 == C->Dimension);
143 Matrix *M = Matrix_Alloc(dim, dim);
144 assert(M);
146 int i, c;
147 for (i = 0, c = 0; i <= dim && c < dim; ++i)
148 if (value_zero_p(C->Ray[i][dim+1]))
149 Vector_Copy(C->Ray[i] + 1, M->p[c++], dim);
150 assert(c == dim);
152 return M;
156 * Returns the largest absolute value in the vector
158 static ZZ max(vec_ZZ& v)
160 ZZ max = abs(v[0]);
161 for (int i = 1; i < v.length(); ++i)
162 if (abs(v[i]) > max)
163 max = abs(v[i]);
164 return max;
167 class cone {
168 public:
169 cone(Matrix *M) {
170 Cone = 0;
171 Rays = Matrix_Copy(M);
172 set_det();
174 cone(Polyhedron *C) {
175 Cone = Polyhedron_Copy(C);
176 Rays = rays(C);
177 set_det();
179 void set_det() {
180 mat_ZZ A;
181 matrix2zz(Rays, A, Rays->NbRows - 1, Rays->NbColumns - 1);
182 det = determinant(A);
183 Value v;
184 value_init(v);
185 zz2value(det, v);
186 value_clear(v);
189 Vector* short_vector(vec_ZZ& lambda) {
190 Matrix *M = Matrix_Copy(Rays);
191 Matrix *inv = Matrix_Alloc(M->NbRows, M->NbColumns);
192 int ok = Matrix_Inverse(M, inv);
193 assert(ok);
194 Matrix_Free(M);
196 ZZ det2;
197 mat_ZZ B;
198 mat_ZZ U;
199 matrix2zz(inv, B, inv->NbRows - 1, inv->NbColumns - 1);
200 long r = LLL(det2, B, U);
202 ZZ min = max(B[0]);
203 int index = 0;
204 for (int i = 1; i < B.NumRows(); ++i) {
205 ZZ tmp = max(B[i]);
206 if (tmp < min) {
207 min = tmp;
208 index = i;
212 Matrix_Free(inv);
214 lambda = B[index];
216 Vector *z = Vector_Alloc(U[index].length()+1);
217 assert(z);
218 zz2values(U[index], z->p);
219 value_set_si(z->p[U[index].length()], 0);
221 Value tmp;
222 value_init(tmp);
223 Polyhedron *C = poly();
224 int i;
225 for (i = 0; i < C->NbConstraints; ++i) {
226 Inner_Product(z->p, C->Constraint[i]+1, z->Size-1, &tmp);
227 if (value_pos_p(tmp))
228 break;
230 if (i == C->NbConstraints) {
231 value_set_si(tmp, -1);
232 Vector_Scale(z->p, z->p, tmp, z->Size-1);
234 value_clear(tmp);
235 return z;
238 ~cone() {
239 Polyhedron_Free(Cone);
240 Matrix_Free(Rays);
243 Polyhedron *poly() {
244 if (!Cone) {
245 Matrix *M = Matrix_Alloc(Rays->NbRows+1, Rays->NbColumns+1);
246 for (int i = 0; i < Rays->NbRows; ++i) {
247 Vector_Copy(Rays->p[i], M->p[i]+1, Rays->NbColumns);
248 value_set_si(M->p[i][0], 1);
250 Vector_Set(M->p[Rays->NbRows]+1, 0, Rays->NbColumns-1);
251 value_set_si(M->p[Rays->NbRows][0], 1);
252 value_set_si(M->p[Rays->NbRows][Rays->NbColumns], 1);
253 Cone = Rays2Polyhedron(M, M->NbRows+1);
254 assert(Cone->NbConstraints == Cone->NbRays);
255 Matrix_Free(M);
257 return Cone;
260 ZZ det;
261 Polyhedron *Cone;
262 Matrix *Rays;
265 class dpoly {
266 public:
267 vec_ZZ coeff;
268 dpoly(int d, ZZ& degree, int offset = 0) {
269 coeff.SetLength(d+1);
271 int min = d + offset;
272 if (degree >= 0 && degree < ZZ(INIT_VAL, min))
273 min = to_int(degree);
275 ZZ c = ZZ(INIT_VAL, 1);
276 if (!offset)
277 coeff[0] = c;
278 for (int i = 1; i <= min; ++i) {
279 c *= (degree -i + 1);
280 c /= i;
281 coeff[i-offset] = c;
284 void operator *= (dpoly& f) {
285 assert(coeff.length() == f.coeff.length());
286 vec_ZZ old = coeff;
287 coeff = f.coeff[0] * coeff;
288 for (int i = 1; i < coeff.length(); ++i)
289 for (int j = 0; i+j < coeff.length(); ++j)
290 coeff[i+j] += f.coeff[i] * old[j];
292 void div(dpoly& d, mpq_t count, ZZ& sign) {
293 int len = coeff.length();
294 Value tmp;
295 value_init(tmp);
296 mpq_t* c = new mpq_t[coeff.length()];
297 mpq_t qtmp;
298 mpq_init(qtmp);
299 for (int i = 0; i < len; ++i) {
300 mpq_init(c[i]);
301 zz2value(coeff[i], tmp);
302 mpq_set_z(c[i], tmp);
304 for (int j = 1; j <= i; ++j) {
305 zz2value(d.coeff[j], tmp);
306 mpq_set_z(qtmp, tmp);
307 mpq_mul(qtmp, qtmp, c[i-j]);
308 mpq_sub(c[i], c[i], qtmp);
311 zz2value(d.coeff[0], tmp);
312 mpq_set_z(qtmp, tmp);
313 mpq_div(c[i], c[i], qtmp);
315 if (sign == -1)
316 mpq_sub(count, count, c[len-1]);
317 else
318 mpq_add(count, count, c[len-1]);
320 value_clear(tmp);
321 mpq_clear(qtmp);
322 for (int i = 0; i < len; ++i)
323 mpq_clear(c[i]);
324 delete [] c;
328 class dpoly_n {
329 public:
330 Matrix *coeff;
331 ~dpoly_n() {
332 Matrix_Free(coeff);
334 dpoly_n(int d, ZZ& degree_0, ZZ& degree_1, int offset = 0) {
335 Value d0, d1;
336 value_init(d0);
337 value_init(d1);
338 zz2value(degree_0, d0);
339 zz2value(degree_1, d1);
340 coeff = Matrix_Alloc(d+1, d+1+1);
341 value_set_si(coeff->p[0][0], 1);
342 value_set_si(coeff->p[0][d+1], 1);
343 for (int i = 1; i <= d; ++i) {
344 value_multiply(coeff->p[i][0], coeff->p[i-1][0], d0);
345 Vector_Combine(coeff->p[i-1], coeff->p[i-1]+1, coeff->p[i]+1,
346 d1, d0, i);
347 value_set_si(coeff->p[i][d+1], i);
348 value_multiply(coeff->p[i][d+1], coeff->p[i][d+1], coeff->p[i-1][d+1]);
349 value_decrement(d0, d0);
351 value_clear(d0);
352 value_clear(d1);
354 void div(dpoly& d, Vector *count, ZZ& sign) {
355 int len = coeff->NbRows;
356 Matrix * c = Matrix_Alloc(coeff->NbRows, coeff->NbColumns);
357 Value tmp;
358 value_init(tmp);
359 for (int i = 0; i < len; ++i) {
360 Vector_Copy(coeff->p[i], c->p[i], len+1);
361 for (int j = 1; j <= i; ++j) {
362 zz2value(d.coeff[j], tmp);
363 value_multiply(tmp, tmp, c->p[i][len]);
364 value_oppose(tmp, tmp);
365 Vector_Combine(c->p[i], c->p[i-j], c->p[i],
366 c->p[i-j][len], tmp, len);
367 value_multiply(c->p[i][len], c->p[i][len], c->p[i-j][len]);
369 zz2value(d.coeff[0], tmp);
370 value_multiply(c->p[i][len], c->p[i][len], tmp);
372 if (sign == -1) {
373 value_set_si(tmp, -1);
374 Vector_Scale(c->p[len-1], count->p, tmp, len);
375 value_assign(count->p[len], c->p[len-1][len]);
376 } else
377 Vector_Copy(c->p[len-1], count->p, len+1);
378 Vector_Normalize(count->p, len+1);
379 value_clear(tmp);
380 Matrix_Free(c);
384 struct dpoly_r_term {
385 int *powers;
386 ZZ coeff;
389 struct dpoly_r {
390 vector< dpoly_r_term * > *c;
391 int len;
392 int dim;
394 void add_term(int i, int * powers, ZZ& coeff) {
395 for (int k = 0; k < c[i].size(); ++k) {
396 if (memcmp(c[i][k]->powers, powers, dim * sizeof(int)) == 0) {
397 c[i][k]->coeff += coeff;
398 return;
401 dpoly_r_term *t = new dpoly_r_term;
402 t->powers = new int[dim];
403 memcpy(t->powers, powers, dim * sizeof(int));
404 t->coeff = coeff;
405 c[i].push_back(t);
407 dpoly_r(int len, int dim) {
408 this->len = len;
409 this->dim = dim;
410 c = new vector< dpoly_r_term * > [len];
412 dpoly_r(dpoly& num, dpoly& den, int pos, int sign, int dim) {
413 len = num.coeff.length();
414 c = new vector< dpoly_r_term * > [len];
415 this->dim = dim;
416 int powers[dim];
418 for (int i = 0; i < len; ++i) {
419 ZZ coeff = num.coeff[i];
420 memset(powers, 0, dim * sizeof(int));
421 powers[pos] = sign;
423 add_term(i, powers, coeff);
425 for (int j = 1; j <= i; ++j) {
426 for (int k = 0; k < c[i-j].size(); ++k) {
427 memcpy(powers, c[i-j][k]->powers, dim*sizeof(int));
428 powers[pos] += sign;
429 coeff = -den.coeff[j-1] * c[i-j][k]->coeff;
430 add_term(i, powers, coeff);
434 //dump();
436 void div(dpoly& d, ZZ& sign, gen_fun *gf, mat_ZZ& pden, mat_ZZ& den,
437 vec_ZZ& num_p) {
438 dpoly_r rc(len, dim);
439 ZZ max_d = power(d.coeff[0], len+1);
440 ZZ cur_d = max_d;
441 ZZ coeff;
443 for (int i = 0; i < len; ++i) {
444 cur_d /= d.coeff[0];
446 for (int k = 0; k < c[i].size(); ++k) {
447 coeff = c[i][k]->coeff * cur_d;
448 rc.add_term(i, c[i][k]->powers, coeff);
451 for (int j = 1; j <= i; ++j) {
452 for (int k = 0; k < rc.c[i-j].size(); ++k) {
453 coeff = - d.coeff[j] * rc.c[i-j][k]->coeff / d.coeff[0];
454 rc.add_term(i, rc.c[i-j][k]->powers, coeff);
458 //rc.dump();
459 int common = pden.NumRows();
461 vector< dpoly_r_term * >& final = rc.c[len-1];
462 int rows;
463 for (int j = 0; j < final.size(); ++j) {
464 rows = common;
465 pden.SetDims(rows, pden.NumCols());
466 for (int k = 0; k < dim; ++k) {
467 int n = final[j]->powers[k];
468 if (n == 0)
469 continue;
470 int abs_n = n < 0 ? -n : n;
471 pden.SetDims(rows+abs_n, pden.NumCols());
472 for (int l = 0; l < abs_n; ++l) {
473 if (n > 0)
474 pden[rows+l] = den[k];
475 else
476 pden[rows+l] = -den[k];
478 rows += abs_n;
480 gf->add(final[j]->coeff, max_d, num_p, pden);
483 void dump(void) {
484 for (int i = 0; i < len; ++i) {
485 cout << endl;
486 cout << i << endl;
487 cout << c[i].size() << endl;
488 for (int j = 0; j < c[i].size(); ++j) {
489 for (int k = 0; k < dim; ++k) {
490 cout << c[i][j]->powers[k] << " ";
492 cout << ": " << c[i][j]->coeff << endl;
494 cout << endl;
500 * Barvinok's Decomposition of a simplicial cone
502 * Returns two lists of polyhedra
504 void barvinok_decompose(Polyhedron *C, Polyhedron **ppos, Polyhedron **pneg)
506 Polyhedron *pos = *ppos, *neg = *pneg;
507 vector<cone *> nonuni;
508 cone * c = new cone(C);
509 ZZ det = c->det;
510 int s = sign(det);
511 assert(det != 0);
512 if (abs(det) > 1) {
513 nonuni.push_back(c);
514 } else {
515 Polyhedron *p = Polyhedron_Copy(c->Cone);
516 p->next = pos;
517 pos = p;
518 delete c;
520 vec_ZZ lambda;
521 while (!nonuni.empty()) {
522 c = nonuni.back();
523 nonuni.pop_back();
524 Vector* v = c->short_vector(lambda);
525 for (int i = 0; i < c->Rays->NbRows - 1; ++i) {
526 if (lambda[i] == 0)
527 continue;
528 Matrix* M = Matrix_Copy(c->Rays);
529 Vector_Copy(v->p, M->p[i], v->Size);
530 cone * pc = new cone(M);
531 assert (pc->det != 0);
532 if (abs(pc->det) > 1) {
533 assert(abs(pc->det) < abs(c->det));
534 nonuni.push_back(pc);
535 } else {
536 Polyhedron *p = pc->poly();
537 pc->Cone = 0;
538 if (sign(pc->det) == s) {
539 p->next = pos;
540 pos = p;
541 } else {
542 p->next = neg;
543 neg = p;
545 delete pc;
547 Matrix_Free(M);
549 Vector_Free(v);
550 delete c;
552 *ppos = pos;
553 *pneg = neg;
557 * Returns a single list of npos "positive" cones followed by nneg
558 * "negative" cones.
559 * The input cone is freed
561 void decompose(Polyhedron *cone, Polyhedron **parts, int *npos, int *nneg, unsigned MaxRays)
563 Polyhedron_Polarize(cone);
564 if (cone->NbRays - 1 != cone->Dimension) {
565 Polyhedron *tmp = cone;
566 cone = triangularize_cone(cone, MaxRays);
567 Polyhedron_Free(tmp);
569 Polyhedron *polpos = NULL, *polneg = NULL;
570 *npos = 0; *nneg = 0;
571 for (Polyhedron *Polar = cone; Polar; Polar = Polar->next)
572 barvinok_decompose(Polar, &polpos, &polneg);
574 Polyhedron *last;
575 for (Polyhedron *i = polpos; i; i = i->next) {
576 Polyhedron_Polarize(i);
577 ++*npos;
578 last = i;
580 for (Polyhedron *i = polneg; i; i = i->next) {
581 Polyhedron_Polarize(i);
582 ++*nneg;
584 if (last) {
585 last->next = polneg;
586 *parts = polpos;
587 } else
588 *parts = polneg;
589 Domain_Free(cone);
592 const int MAX_TRY=10;
594 * Searches for a vector that is not othogonal to any
595 * of the rays in rays.
597 static void nonorthog(mat_ZZ& rays, vec_ZZ& lambda)
599 int dim = rays.NumCols();
600 bool found = false;
601 lambda.SetLength(dim);
602 if (dim == 0)
603 return;
605 for (int i = 2; !found && i <= 50*dim; i+=4) {
606 for (int j = 0; j < MAX_TRY; ++j) {
607 for (int k = 0; k < dim; ++k) {
608 int r = random_int(i)+2;
609 int v = (2*(r%2)-1) * (r >> 1);
610 lambda[k] = v;
612 int k = 0;
613 for (; k < rays.NumRows(); ++k)
614 if (lambda * rays[k] == 0)
615 break;
616 if (k == rays.NumRows()) {
617 found = true;
618 break;
622 assert(found);
625 static void add_rays(mat_ZZ& rays, Polyhedron *i, int *r, int nvar = -1,
626 bool all = false)
628 unsigned dim = i->Dimension;
629 if (nvar == -1)
630 nvar = dim;
631 for (int k = 0; k < i->NbRays; ++k) {
632 if (!value_zero_p(i->Ray[k][dim+1]))
633 continue;
634 if (!all && nvar != dim && First_Non_Zero(i->Ray[k]+1, nvar) == -1)
635 continue;
636 values2zz(i->Ray[k]+1, rays[(*r)++], nvar);
640 void lattice_point(Value* values, Polyhedron *i, vec_ZZ& vertex)
642 unsigned dim = i->Dimension;
643 if(!value_one_p(values[dim])) {
644 Matrix* Rays = rays(i);
645 Matrix *inv = Matrix_Alloc(Rays->NbRows, Rays->NbColumns);
646 int ok = Matrix_Inverse(Rays, inv);
647 assert(ok);
648 Matrix_Free(Rays);
649 Rays = rays(i);
650 Vector *lambda = Vector_Alloc(dim+1);
651 Vector_Matrix_Product(values, inv, lambda->p);
652 Matrix_Free(inv);
653 for (int j = 0; j < dim; ++j)
654 mpz_cdiv_q(lambda->p[j], lambda->p[j], lambda->p[dim]);
655 value_set_si(lambda->p[dim], 1);
656 Vector *A = Vector_Alloc(dim+1);
657 Vector_Matrix_Product(lambda->p, Rays, A->p);
658 Vector_Free(lambda);
659 Matrix_Free(Rays);
660 values2zz(A->p, vertex, dim);
661 Vector_Free(A);
662 } else
663 values2zz(values, vertex, dim);
666 static evalue *term(int param, ZZ& c, Value *den = NULL)
668 evalue *EP = new evalue();
669 value_init(EP->d);
670 value_set_si(EP->d,0);
671 EP->x.p = new_enode(polynomial, 2, param + 1);
672 evalue_set_si(&EP->x.p->arr[0], 0, 1);
673 value_init(EP->x.p->arr[1].x.n);
674 if (den == NULL)
675 value_set_si(EP->x.p->arr[1].d, 1);
676 else
677 value_assign(EP->x.p->arr[1].d, *den);
678 zz2value(c, EP->x.p->arr[1].x.n);
679 return EP;
682 static void vertex_period(
683 Polyhedron *i, vec_ZZ& lambda, Matrix *T,
684 Value lcm, int p, Vector *val,
685 evalue *E, evalue* ev,
686 ZZ& offset)
688 unsigned nparam = T->NbRows - 1;
689 unsigned dim = i->Dimension;
690 Value tmp;
691 ZZ nump;
693 if (p == nparam) {
694 vec_ZZ vertex;
695 ZZ num, l;
696 Vector * values = Vector_Alloc(dim + 1);
697 Vector_Matrix_Product(val->p, T, values->p);
698 value_assign(values->p[dim], lcm);
699 lattice_point(values->p, i, vertex);
700 num = vertex * lambda;
701 value2zz(lcm, l);
702 num *= l;
703 num += offset;
704 value_init(ev->x.n);
705 zz2value(num, ev->x.n);
706 value_assign(ev->d, lcm);
707 Vector_Free(values);
708 return;
711 value_init(tmp);
712 vec_ZZ vertex;
713 values2zz(T->p[p], vertex, dim);
714 nump = vertex * lambda;
715 if (First_Non_Zero(val->p, p) == -1) {
716 value_assign(tmp, lcm);
717 evalue *ET = term(p, nump, &tmp);
718 eadd(ET, E);
719 free_evalue_refs(ET);
720 delete ET;
723 value_assign(tmp, lcm);
724 if (First_Non_Zero(T->p[p], dim) != -1)
725 Vector_Gcd(T->p[p], dim, &tmp);
726 Gcd(tmp, lcm, &tmp);
727 if (value_lt(tmp, lcm)) {
728 ZZ count;
730 value_division(tmp, lcm, tmp);
731 value_set_si(ev->d, 0);
732 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
733 value2zz(tmp, count);
734 do {
735 value_decrement(tmp, tmp);
736 --count;
737 ZZ new_offset = offset - count * nump;
738 value_assign(val->p[p], tmp);
739 vertex_period(i, lambda, T, lcm, p+1, val, E,
740 &ev->x.p->arr[VALUE_TO_INT(tmp)], new_offset);
741 } while (value_pos_p(tmp));
742 } else
743 vertex_period(i, lambda, T, lcm, p+1, val, E, ev, offset);
744 value_clear(tmp);
747 static void mask_r(Matrix *f, int nr, Vector *lcm, int p, Vector *val, evalue *ev)
749 unsigned nparam = lcm->Size;
751 if (p == nparam) {
752 Vector * prod = Vector_Alloc(f->NbRows);
753 Matrix_Vector_Product(f, val->p, prod->p);
754 int isint = 1;
755 for (int i = 0; i < nr; ++i) {
756 value_modulus(prod->p[i], prod->p[i], f->p[i][nparam+1]);
757 isint &= value_zero_p(prod->p[i]);
759 value_set_si(ev->d, 1);
760 value_init(ev->x.n);
761 value_set_si(ev->x.n, isint);
762 Vector_Free(prod);
763 return;
766 Value tmp;
767 value_init(tmp);
768 if (value_one_p(lcm->p[p]))
769 mask_r(f, nr, lcm, p+1, val, ev);
770 else {
771 value_assign(tmp, lcm->p[p]);
772 value_set_si(ev->d, 0);
773 ev->x.p = new_enode(periodic, VALUE_TO_INT(tmp), p+1);
774 do {
775 value_decrement(tmp, tmp);
776 value_assign(val->p[p], tmp);
777 mask_r(f, nr, lcm, p+1, val, &ev->x.p->arr[VALUE_TO_INT(tmp)]);
778 } while (value_pos_p(tmp));
780 value_clear(tmp);
783 static evalue *multi_monom(vec_ZZ& p)
785 evalue *X = new evalue();
786 value_init(X->d);
787 value_init(X->x.n);
788 unsigned nparam = p.length()-1;
789 zz2value(p[nparam], X->x.n);
790 value_set_si(X->d, 1);
791 for (int i = 0; i < nparam; ++i) {
792 if (p[i] == 0)
793 continue;
794 evalue *T = term(i, p[i]);
795 eadd(T, X);
796 free_evalue_refs(T);
797 delete T;
799 return X;
803 * Check whether mapping polyhedron P on the affine combination
804 * num yields a range that has a fixed quotient on integer
805 * division by d
806 * If zero is true, then we are only interested in the quotient
807 * for the cases where the remainder is zero.
808 * Returns NULL if false and a newly allocated value if true.
810 static Value *fixed_quotient(Polyhedron *P, vec_ZZ& num, Value d, bool zero)
812 Value* ret = NULL;
813 int len = num.length();
814 Matrix *T = Matrix_Alloc(2, len);
815 zz2values(num, T->p[0]);
816 value_set_si(T->p[1][len-1], 1);
817 Polyhedron *I = Polyhedron_Image(P, T, P->NbConstraints);
818 Matrix_Free(T);
820 int i;
821 for (i = 0; i < I->NbRays; ++i)
822 if (value_zero_p(I->Ray[i][2])) {
823 Polyhedron_Free(I);
824 return NULL;
827 Value min, max;
828 value_init(min);
829 value_init(max);
830 int bounded = line_minmax(I, &min, &max);
831 assert(bounded);
833 if (zero)
834 mpz_cdiv_q(min, min, d);
835 else
836 mpz_fdiv_q(min, min, d);
837 mpz_fdiv_q(max, max, d);
839 if (value_eq(min, max)) {
840 ALLOC(Value, ret);
841 value_init(*ret);
842 value_assign(*ret, min);
844 value_clear(min);
845 value_clear(max);
846 return ret;
850 * Normalize linear expression coef modulo m
851 * Removes common factor and reduces coefficients
852 * Returns index of first non-zero coefficient or len
854 static int normal_mod(Value *coef, int len, Value *m)
856 Value gcd;
857 value_init(gcd);
859 Vector_Gcd(coef, len, &gcd);
860 Gcd(gcd, *m, &gcd);
861 Vector_AntiScale(coef, coef, gcd, len);
863 value_division(*m, *m, gcd);
864 value_clear(gcd);
866 if (value_one_p(*m))
867 return len;
869 int j;
870 for (j = 0; j < len; ++j)
871 mpz_fdiv_r(coef[j], coef[j], *m);
872 for (j = 0; j < len; ++j)
873 if (value_notzero_p(coef[j]))
874 break;
876 return j;
879 #ifdef USE_MODULO
880 static void mask(Matrix *f, evalue *factor)
882 int nr = f->NbRows, nc = f->NbColumns;
883 int n;
884 bool found = false;
885 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
886 if (value_notone_p(f->p[n][nc-1]) &&
887 value_notmone_p(f->p[n][nc-1]))
888 found = true;
889 if (!found)
890 return;
892 evalue EP;
893 nr = n;
895 Value m;
896 value_init(m);
898 evalue EV;
899 value_init(EV.d);
900 value_init(EV.x.n);
901 value_set_si(EV.x.n, 1);
903 for (n = 0; n < nr; ++n) {
904 value_assign(m, f->p[n][nc-1]);
905 if (value_one_p(m) || value_mone_p(m))
906 continue;
908 int j = normal_mod(f->p[n], nc-1, &m);
909 if (j == nc-1) {
910 free_evalue_refs(factor);
911 value_init(factor->d);
912 evalue_set_si(factor, 0, 1);
913 break;
915 vec_ZZ row;
916 values2zz(f->p[n], row, nc-1);
917 ZZ g;
918 value2zz(m, g);
919 if (j < (nc-1)-1 && row[j] > g/2) {
920 for (int k = j; k < (nc-1); ++k)
921 if (row[k] != 0)
922 row[k] = g - row[k];
925 value_init(EP.d);
926 value_set_si(EP.d, 0);
927 EP.x.p = new_enode(relation, 2, 0);
928 value_clear(EP.x.p->arr[1].d);
929 EP.x.p->arr[1] = *factor;
930 evalue *ev = &EP.x.p->arr[0];
931 value_set_si(ev->d, 0);
932 ev->x.p = new_enode(fractional, 3, -1);
933 evalue_set_si(&ev->x.p->arr[1], 0, 1);
934 evalue_set_si(&ev->x.p->arr[2], 1, 1);
935 evalue *E = multi_monom(row);
936 value_assign(EV.d, m);
937 emul(&EV, E);
938 value_clear(ev->x.p->arr[0].d);
939 ev->x.p->arr[0] = *E;
940 delete E;
941 *factor = EP;
944 value_clear(m);
945 free_evalue_refs(&EV);
947 #else
951 static void mask(Matrix *f, evalue *factor)
953 int nr = f->NbRows, nc = f->NbColumns;
954 int n;
955 bool found = false;
956 for (n = 0; n < nr && value_notzero_p(f->p[n][nc-1]); ++n)
957 if (value_notone_p(f->p[n][nc-1]) &&
958 value_notmone_p(f->p[n][nc-1]))
959 found = true;
960 if (!found)
961 return;
963 Value tmp;
964 value_init(tmp);
965 nr = n;
966 unsigned np = nc - 2;
967 Vector *lcm = Vector_Alloc(np);
968 Vector *val = Vector_Alloc(nc);
969 Vector_Set(val->p, 0, nc);
970 value_set_si(val->p[np], 1);
971 Vector_Set(lcm->p, 1, np);
972 for (n = 0; n < nr; ++n) {
973 if (value_one_p(f->p[n][nc-1]) ||
974 value_mone_p(f->p[n][nc-1]))
975 continue;
976 for (int j = 0; j < np; ++j)
977 if (value_notzero_p(f->p[n][j])) {
978 Gcd(f->p[n][j], f->p[n][nc-1], &tmp);
979 value_division(tmp, f->p[n][nc-1], tmp);
980 value_lcm(tmp, lcm->p[j], &lcm->p[j]);
983 evalue EP;
984 value_init(EP.d);
985 mask_r(f, nr, lcm, 0, val, &EP);
986 value_clear(tmp);
987 Vector_Free(val);
988 Vector_Free(lcm);
989 emul(&EP,factor);
990 free_evalue_refs(&EP);
992 #endif
994 struct term_info {
995 evalue *E;
996 ZZ constant;
997 ZZ coeff;
998 int pos;
1001 static bool mod_needed(Polyhedron *PD, vec_ZZ& num, Value d, evalue *E)
1003 Value *q = fixed_quotient(PD, num, d, false);
1005 if (!q)
1006 return true;
1008 value_oppose(*q, *q);
1009 evalue EV;
1010 value_init(EV.d);
1011 value_set_si(EV.d, 1);
1012 value_init(EV.x.n);
1013 value_multiply(EV.x.n, *q, d);
1014 eadd(&EV, E);
1015 free_evalue_refs(&EV);
1016 value_clear(*q);
1017 free(q);
1018 return false;
1021 static void ceil_mod(Value *coef, int len, Value d, ZZ& f, evalue *EP, Polyhedron *PD)
1023 Value m;
1024 value_init(m);
1025 value_set_si(m, -1);
1027 Vector_Scale(coef, coef, m, len);
1029 value_assign(m, d);
1030 int j = normal_mod(coef, len, &m);
1032 if (j == len) {
1033 value_clear(m);
1034 return;
1037 vec_ZZ num;
1038 values2zz(coef, num, len);
1040 ZZ g;
1041 value2zz(m, g);
1043 evalue tmp;
1044 value_init(tmp.d);
1045 evalue_set_si(&tmp, 0, 1);
1047 int p = j;
1048 if (g % 2 == 0)
1049 while (j < len-1 && (num[j] == g/2 || num[j] == 0))
1050 ++j;
1051 if ((j < len-1 && num[j] > g/2) || (j == len-1 && num[j] >= (g+1)/2)) {
1052 for (int k = j; k < len-1; ++k)
1053 if (num[k] != 0)
1054 num[k] = g - num[k];
1055 num[len-1] = g - 1 - num[len-1];
1056 value_assign(tmp.d, m);
1057 ZZ t = f*(g-1);
1058 zz2value(t, tmp.x.n);
1059 eadd(&tmp, EP);
1060 f = -f;
1063 if (p >= len-1) {
1064 ZZ t = num[len-1] * f;
1065 zz2value(t, tmp.x.n);
1066 value_assign(tmp.d, m);
1067 eadd(&tmp, EP);
1068 } else {
1069 evalue *E = multi_monom(num);
1070 evalue EV;
1071 value_init(EV.d);
1073 if (PD && !mod_needed(PD, num, m, E)) {
1074 value_init(EV.x.n);
1075 zz2value(f, EV.x.n);
1076 value_assign(EV.d, m);
1077 emul(&EV, E);
1078 eadd(E, EP);
1079 } else {
1080 value_init(EV.x.n);
1081 value_set_si(EV.x.n, 1);
1082 value_assign(EV.d, m);
1083 emul(&EV, E);
1084 value_clear(EV.x.n);
1085 value_set_si(EV.d, 0);
1086 EV.x.p = new_enode(fractional, 3, -1);
1087 evalue_copy(&EV.x.p->arr[0], E);
1088 evalue_set_si(&EV.x.p->arr[1], 0, 1);
1089 value_init(EV.x.p->arr[2].x.n);
1090 zz2value(f, EV.x.p->arr[2].x.n);
1091 value_set_si(EV.x.p->arr[2].d, 1);
1093 eadd(&EV, EP);
1096 free_evalue_refs(&EV);
1097 free_evalue_refs(E);
1098 delete E;
1101 free_evalue_refs(&tmp);
1103 out:
1104 value_clear(m);
1107 evalue* bv_ceil3(Value *coef, int len, Value d, Polyhedron *P)
1109 Vector *val = Vector_Alloc(len);
1111 Value t;
1112 value_init(t);
1113 value_set_si(t, -1);
1114 Vector_Scale(coef, val->p, t, len);
1115 value_absolute(t, d);
1117 vec_ZZ num;
1118 values2zz(val->p, num, len);
1119 evalue *EP = multi_monom(num);
1121 evalue tmp;
1122 value_init(tmp.d);
1123 value_init(tmp.x.n);
1124 value_set_si(tmp.x.n, 1);
1125 value_assign(tmp.d, t);
1127 emul(&tmp, EP);
1129 ZZ one;
1130 one = 1;
1131 ceil_mod(val->p, len, t, one, EP, P);
1132 value_clear(t);
1134 /* copy EP to malloc'ed evalue */
1135 evalue *E;
1136 ALLOC(evalue, E);
1137 *E = *EP;
1138 delete EP;
1140 free_evalue_refs(&tmp);
1141 Vector_Free(val);
1143 return E;
1146 #ifdef USE_MODULO
1147 evalue* lattice_point(
1148 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1150 unsigned nparam = W->NbColumns - 1;
1152 Matrix* Rays = rays2(i);
1153 Matrix *T = Transpose(Rays);
1154 Matrix *T2 = Matrix_Copy(T);
1155 Matrix *inv = Matrix_Alloc(T2->NbRows, T2->NbColumns);
1156 int ok = Matrix_Inverse(T2, inv);
1157 assert(ok);
1158 Matrix_Free(Rays);
1159 Matrix_Free(T2);
1160 mat_ZZ vertex;
1161 matrix2zz(W, vertex, W->NbRows, W->NbColumns);
1163 vec_ZZ num;
1164 num = lambda * vertex;
1166 evalue *EP = multi_monom(num);
1168 evalue tmp;
1169 value_init(tmp.d);
1170 value_init(tmp.x.n);
1171 value_set_si(tmp.x.n, 1);
1172 value_assign(tmp.d, lcm);
1174 emul(&tmp, EP);
1176 Matrix *L = Matrix_Alloc(inv->NbRows, W->NbColumns);
1177 Matrix_Product(inv, W, L);
1179 mat_ZZ RT;
1180 matrix2zz(T, RT, T->NbRows, T->NbColumns);
1181 Matrix_Free(T);
1183 vec_ZZ p = lambda * RT;
1185 for (int i = 0; i < L->NbRows; ++i) {
1186 ceil_mod(L->p[i], nparam+1, lcm, p[i], EP, PD);
1189 Matrix_Free(L);
1191 Matrix_Free(inv);
1192 free_evalue_refs(&tmp);
1193 return EP;
1195 #else
1196 evalue* lattice_point(
1197 Polyhedron *i, vec_ZZ& lambda, Matrix *W, Value lcm, Polyhedron *PD)
1199 Matrix *T = Transpose(W);
1200 unsigned nparam = T->NbRows - 1;
1202 evalue *EP = new evalue();
1203 value_init(EP->d);
1204 evalue_set_si(EP, 0, 1);
1206 evalue ev;
1207 Vector *val = Vector_Alloc(nparam+1);
1208 value_set_si(val->p[nparam], 1);
1209 ZZ offset(INIT_VAL, 0);
1210 value_init(ev.d);
1211 vertex_period(i, lambda, T, lcm, 0, val, EP, &ev, offset);
1212 Vector_Free(val);
1213 eadd(&ev, EP);
1214 free_evalue_refs(&ev);
1216 Matrix_Free(T);
1218 reduce_evalue(EP);
1220 return EP;
1222 #endif
1224 void lattice_point(
1225 Param_Vertices* V, Polyhedron *i, vec_ZZ& lambda, term_info* term,
1226 Polyhedron *PD)
1228 unsigned nparam = V->Vertex->NbColumns - 2;
1229 unsigned dim = i->Dimension;
1230 mat_ZZ vertex;
1231 vertex.SetDims(V->Vertex->NbRows, nparam+1);
1232 Value lcm, tmp;
1233 value_init(lcm);
1234 value_init(tmp);
1235 value_set_si(lcm, 1);
1236 for (int j = 0; j < V->Vertex->NbRows; ++j) {
1237 value_lcm(lcm, V->Vertex->p[j][nparam+1], &lcm);
1239 if (value_notone_p(lcm)) {
1240 Matrix * mv = Matrix_Alloc(dim, nparam+1);
1241 for (int j = 0 ; j < dim; ++j) {
1242 value_division(tmp, lcm, V->Vertex->p[j][nparam+1]);
1243 Vector_Scale(V->Vertex->p[j], mv->p[j], tmp, nparam+1);
1246 term->E = lattice_point(i, lambda, mv, lcm, PD);
1247 term->constant = 0;
1249 Matrix_Free(mv);
1250 value_clear(lcm);
1251 value_clear(tmp);
1252 return;
1254 for (int i = 0; i < V->Vertex->NbRows; ++i) {
1255 assert(value_one_p(V->Vertex->p[i][nparam+1])); // for now
1256 values2zz(V->Vertex->p[i], vertex[i], nparam+1);
1259 vec_ZZ num;
1260 num = lambda * vertex;
1262 int p = -1;
1263 int nn = 0;
1264 for (int j = 0; j < nparam; ++j)
1265 if (num[j] != 0) {
1266 ++nn;
1267 p = j;
1269 if (nn >= 2) {
1270 term->E = multi_monom(num);
1271 term->constant = 0;
1272 } else {
1273 term->E = NULL;
1274 term->constant = num[nparam];
1275 term->pos = p;
1276 if (p != -1)
1277 term->coeff = num[p];
1280 value_clear(lcm);
1281 value_clear(tmp);
1284 void normalize(Polyhedron *i, vec_ZZ& lambda, ZZ& sign, ZZ& num, vec_ZZ& den)
1286 unsigned dim = i->Dimension;
1288 int r = 0;
1289 mat_ZZ rays;
1290 rays.SetDims(dim, dim);
1291 add_rays(rays, i, &r);
1292 den = rays * lambda;
1293 int change = 0;
1295 for (int j = 0; j < den.length(); ++j) {
1296 if (den[j] > 0)
1297 change ^= 1;
1298 else {
1299 den[j] = abs(den[j]);
1300 num += den[j];
1303 if (change)
1304 sign = -sign;
1307 typedef Polyhedron * Polyhedron_p;
1309 void barvinok_count(Polyhedron *P, Value* result, unsigned NbMaxCons)
1311 Polyhedron ** vcone;
1312 vec_ZZ sign;
1313 int ncone = 0;
1314 sign.SetLength(ncone);
1315 unsigned dim;
1316 int allocated = 0;
1317 Value factor;
1318 Polyhedron *Q;
1319 int r = 0;
1321 if (emptyQ(P)) {
1322 value_set_si(*result, 0);
1323 return;
1325 if (P->NbBid == 0)
1326 for (; r < P->NbRays; ++r)
1327 if (value_zero_p(P->Ray[r][P->Dimension+1]))
1328 break;
1329 if (P->NbBid !=0 || r < P->NbRays) {
1330 value_set_si(*result, -1);
1331 return;
1333 if (P->NbEq != 0) {
1334 P = remove_equalities(P);
1335 if (emptyQ(P)) {
1336 Polyhedron_Free(P);
1337 value_set_si(*result, 0);
1338 return;
1340 allocated = 1;
1342 value_init(factor);
1343 value_set_si(factor, 1);
1344 Q = Polyhedron_Reduce(P, &factor);
1345 if (Q) {
1346 if (allocated)
1347 Polyhedron_Free(P);
1348 P = Q;
1349 allocated = 1;
1351 if (P->Dimension == 0) {
1352 value_assign(*result, factor);
1353 if (allocated)
1354 Polyhedron_Free(P);
1355 value_clear(factor);
1356 return;
1359 dim = P->Dimension;
1360 vcone = new Polyhedron_p[P->NbRays];
1362 for (int j = 0; j < P->NbRays; ++j) {
1363 int npos, nneg;
1364 Polyhedron *C = supporting_cone(P, j);
1365 decompose(C, &vcone[j], &npos, &nneg, NbMaxCons);
1366 ncone += npos + nneg;
1367 sign.SetLength(ncone);
1368 for (int k = 0; k < npos; ++k)
1369 sign[ncone-nneg-k-1] = 1;
1370 for (int k = 0; k < nneg; ++k)
1371 sign[ncone-k-1] = -1;
1374 mat_ZZ rays;
1375 rays.SetDims(ncone * dim, dim);
1376 r = 0;
1377 for (int j = 0; j < P->NbRays; ++j) {
1378 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1379 assert(i->NbRays-1 == dim);
1380 add_rays(rays, i, &r);
1383 vec_ZZ lambda;
1384 nonorthog(rays, lambda);
1386 ZZ num;
1387 vec_ZZ den;
1388 den.SetLength(dim);
1390 int f = 0;
1391 vec_ZZ vertex;
1392 mpq_t count;
1393 mpq_init(count);
1394 for (int j = 0; j < P->NbRays; ++j) {
1395 for (Polyhedron *i = vcone[j]; i; i = i->next) {
1396 lattice_point(P->Ray[j]+1, i, vertex);
1397 num = vertex * lambda;
1398 normalize(i, lambda, sign[f], num, den);
1400 dpoly d(dim, num);
1401 dpoly n(dim, den[0], 1);
1402 for (int k = 1; k < dim; ++k) {
1403 dpoly fact(dim, den[k], 1);
1404 n *= fact;
1406 d.div(n, count, sign[f]);
1408 ++f;
1410 Domain_Free(vcone[j]);
1413 assert(value_one_p(&count[0]._mp_den));
1414 value_multiply(*result, &count[0]._mp_num, factor);
1415 mpq_clear(count);
1417 delete [] vcone;
1419 if (allocated)
1420 Polyhedron_Free(P);
1421 value_clear(factor);
1424 static void uni_polynom(int param, Vector *c, evalue *EP)
1426 unsigned dim = c->Size-2;
1427 value_init(EP->d);
1428 value_set_si(EP->d,0);
1429 EP->x.p = new_enode(polynomial, dim+1, param+1);
1430 for (int j = 0; j <= dim; ++j)
1431 evalue_set(&EP->x.p->arr[j], c->p[j], c->p[dim+1]);
1434 static void multi_polynom(Vector *c, evalue* X, evalue *EP)
1436 unsigned dim = c->Size-2;
1437 evalue EC;
1439 value_init(EC.d);
1440 evalue_set(&EC, c->p[dim], c->p[dim+1]);
1442 value_init(EP->d);
1443 evalue_set(EP, c->p[dim], c->p[dim+1]);
1445 for (int i = dim-1; i >= 0; --i) {
1446 emul(X, EP);
1447 value_assign(EC.x.n, c->p[i]);
1448 eadd(&EC, EP);
1450 free_evalue_refs(&EC);
1453 Polyhedron *unfringe (Polyhedron *P, unsigned MaxRays)
1455 int len = P->Dimension+2;
1456 Polyhedron *T, *R = P;
1457 Value g;
1458 value_init(g);
1459 Vector *row = Vector_Alloc(len);
1460 value_set_si(row->p[0], 1);
1462 R = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
1464 Matrix *M = Matrix_Alloc(2, len-1);
1465 value_set_si(M->p[1][len-2], 1);
1466 for (int v = 0; v < P->Dimension; ++v) {
1467 value_set_si(M->p[0][v], 1);
1468 Polyhedron *I = Polyhedron_Image(P, M, 2+1);
1469 value_set_si(M->p[0][v], 0);
1470 for (int r = 0; r < I->NbConstraints; ++r) {
1471 if (value_zero_p(I->Constraint[r][0]))
1472 continue;
1473 if (value_zero_p(I->Constraint[r][1]))
1474 continue;
1475 if (value_one_p(I->Constraint[r][1]))
1476 continue;
1477 if (value_mone_p(I->Constraint[r][1]))
1478 continue;
1479 value_absolute(g, I->Constraint[r][1]);
1480 Vector_Set(row->p+1, 0, len-2);
1481 value_division(row->p[1+v], I->Constraint[r][1], g);
1482 mpz_fdiv_q(row->p[len-1], I->Constraint[r][2], g);
1483 T = R;
1484 R = AddConstraints(row->p, 1, R, MaxRays);
1485 if (T != P)
1486 Polyhedron_Free(T);
1488 Polyhedron_Free(I);
1490 Matrix_Free(M);
1491 Vector_Free(row);
1492 value_clear(g);
1493 return R;
1496 static Polyhedron *reduce_domain(Polyhedron *D, Matrix *CT, Polyhedron *CEq,
1497 Polyhedron **fVD, int nd, unsigned MaxRays)
1499 assert(CEq);
1501 Polyhedron *Dt;
1502 Dt = CT ? DomainPreimage(D, CT, MaxRays) : D;
1503 Polyhedron *rVD = DomainIntersection(Dt, CEq, MaxRays);
1505 /* if rVD is empty or too small in geometric dimension */
1506 if(!rVD || emptyQ(rVD) ||
1507 (rVD->Dimension-rVD->NbEq < Dt->Dimension-Dt->NbEq-CEq->NbEq)) {
1508 if(rVD)
1509 Domain_Free(rVD);
1510 if (CT)
1511 Domain_Free(Dt);
1512 return 0; /* empty validity domain */
1515 if (CT)
1516 Domain_Free(Dt);
1518 fVD[nd] = Domain_Copy(rVD);
1519 for (int i = 0 ; i < nd; ++i) {
1520 Polyhedron *I = DomainIntersection(fVD[nd], fVD[i], MaxRays);
1521 if (emptyQ(I)) {
1522 Domain_Free(I);
1523 continue;
1525 Polyhedron *F = DomainSimplify(I, fVD[nd], MaxRays);
1526 if (F->NbEq == 1) {
1527 Polyhedron *T = rVD;
1528 rVD = DomainDifference(rVD, F, MaxRays);
1529 Domain_Free(T);
1531 Domain_Free(F);
1532 Domain_Free(I);
1535 rVD = DomainConstraintSimplify(rVD, MaxRays);
1536 if (emptyQ(rVD)) {
1537 Domain_Free(fVD[nd]);
1538 Domain_Free(rVD);
1539 return 0;
1542 Value c;
1543 value_init(c);
1544 barvinok_count(rVD, &c, MaxRays);
1545 if (value_zero_p(c)) {
1546 Domain_Free(rVD);
1547 rVD = 0;
1549 value_clear(c);
1551 return rVD;
1554 static bool Polyhedron_is_infinite(Polyhedron *P, unsigned nparam)
1556 int r;
1557 for (r = 0; r < P->NbRays; ++r)
1558 if (value_zero_p(P->Ray[r][0]) ||
1559 value_zero_p(P->Ray[r][P->Dimension+1])) {
1560 int i;
1561 for (i = P->Dimension - nparam; i < P->Dimension; ++i)
1562 if (value_notzero_p(P->Ray[r][i+1]))
1563 break;
1564 if (i >= P->Dimension)
1565 break;
1567 return r < P->NbRays;
1570 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1572 //P = unfringe(P, MaxRays);
1573 Polyhedron *CEq = NULL, *rVD, *pVD, *CA;
1574 Matrix *CT = NULL;
1575 Param_Polyhedron *PP = NULL;
1576 Param_Domain *D, *next;
1577 Param_Vertices *V;
1578 int r = 0;
1579 unsigned nparam = C->Dimension;
1580 evalue *eres;
1581 ALLOC(evalue, eres);
1582 value_init(eres->d);
1583 value_set_si(eres->d, 0);
1585 evalue factor;
1586 value_init(factor.d);
1587 evalue_set_si(&factor, 1, 1);
1589 CA = align_context(C, P->Dimension, MaxRays);
1590 P = DomainIntersection(P, CA, MaxRays);
1591 Polyhedron_Free(CA);
1593 if (C->Dimension == 0 || emptyQ(P)) {
1594 constant:
1595 eres->x.p = new_enode(partition, 2, C->Dimension);
1596 EVALUE_SET_DOMAIN(eres->x.p->arr[0],
1597 DomainConstraintSimplify(CEq ? CEq : Polyhedron_Copy(C), MaxRays));
1598 value_set_si(eres->x.p->arr[1].d, 1);
1599 value_init(eres->x.p->arr[1].x.n);
1600 if (emptyQ(P))
1601 value_set_si(eres->x.p->arr[1].x.n, 0);
1602 else
1603 barvinok_count(P, &eres->x.p->arr[1].x.n, MaxRays);
1604 out:
1605 emul(&factor, eres);
1606 reduce_evalue(eres);
1607 free_evalue_refs(&factor);
1608 Polyhedron_Free(P);
1609 if (CT)
1610 Matrix_Free(CT);
1611 if (PP)
1612 Param_Polyhedron_Free(PP);
1614 return eres;
1616 if (Polyhedron_is_infinite(P, nparam))
1617 goto constant;
1619 if (P->NbEq != 0) {
1620 Matrix *f;
1621 P = remove_equalities_p(P, P->Dimension-nparam, &f);
1622 mask(f, &factor);
1623 Matrix_Free(f);
1625 if (P->Dimension == nparam) {
1626 CEq = P;
1627 P = Universe_Polyhedron(0);
1628 goto constant;
1631 Polyhedron *Q = ParamPolyhedron_Reduce(P, P->Dimension-nparam, &factor);
1632 if (Q) {
1633 Polyhedron_Free(P);
1634 if (Q->Dimension == nparam) {
1635 CEq = Q;
1636 P = Universe_Polyhedron(0);
1637 goto constant;
1639 P = Q;
1641 Polyhedron *oldP = P;
1642 PP = Polyhedron2Param_SimplifiedDomain(&P,C,MaxRays,&CEq,&CT);
1643 if (P != oldP)
1644 Polyhedron_Free(oldP);
1646 if (isIdentity(CT)) {
1647 Matrix_Free(CT);
1648 CT = NULL;
1649 } else {
1650 assert(CT->NbRows != CT->NbColumns);
1651 if (CT->NbRows == 1) // no more parameters
1652 goto constant;
1653 nparam = CT->NbRows - 1;
1656 unsigned dim = P->Dimension - nparam;
1657 Polyhedron ** vcone = new Polyhedron_p[PP->nbV];
1658 int * npos = new int[PP->nbV];
1659 int * nneg = new int[PP->nbV];
1660 ZZ sign;
1662 int i;
1663 for (i = 0, V = PP->V; V; ++i, V = V->next) {
1664 Polyhedron *C = supporting_cone_p(P, V);
1665 decompose(C, &vcone[i], &npos[i], &nneg[i], MaxRays);
1668 Vector *c = Vector_Alloc(dim+2);
1670 int nd;
1671 for (nd = 0, D=PP->D; D; ++nd, D=D->next);
1672 struct section { Polyhedron *D; evalue E; };
1673 section *s = new section[nd];
1674 Polyhedron **fVD = new Polyhedron_p[nd];
1676 for(nd = 0, D=PP->D; D; D=next) {
1677 next = D->next;
1679 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
1680 fVD, nd, MaxRays);
1681 if (!rVD)
1682 continue;
1684 pVD = CT ? DomainImage(rVD,CT,MaxRays) : rVD;
1686 int ncone = 0;
1687 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1688 ncone += npos[_i] + nneg[_i];
1689 END_FORALL_PVertex_in_ParamPolyhedron;
1691 mat_ZZ rays;
1692 rays.SetDims(ncone * dim, dim);
1693 r = 0;
1694 FORALL_PVertex_in_ParamPolyhedron(V,D,PP) // _i is internal counter
1695 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1696 assert(i->NbRays-1 == dim);
1697 add_rays(rays, i, &r);
1699 END_FORALL_PVertex_in_ParamPolyhedron;
1700 vec_ZZ lambda;
1701 nonorthog(rays, lambda);
1703 vec_ZZ den;
1704 den.SetLength(dim);
1705 term_info num;
1707 value_init(s[nd].E.d);
1708 evalue_set_si(&s[nd].E, 0, 1);
1709 mpq_t count;
1710 mpq_init(count);
1711 FORALL_PVertex_in_ParamPolyhedron(V,D,PP)
1712 int f = 0;
1713 for (Polyhedron *i = vcone[_i]; i; i = i->next) {
1714 sign = f < npos[_i] ? 1 : -1;
1715 lattice_point(V, i, lambda, &num, pVD);
1716 normalize(i, lambda, sign, num.constant, den);
1718 dpoly n(dim, den[0], 1);
1719 for (int k = 1; k < dim; ++k) {
1720 dpoly fact(dim, den[k], 1);
1721 n *= fact;
1723 if (num.E != NULL) {
1724 ZZ one(INIT_VAL, 1);
1725 dpoly_n d(dim, num.constant, one);
1726 d.div(n, c, sign);
1727 evalue EV;
1728 multi_polynom(c, num.E, &EV);
1729 eadd(&EV , &s[nd].E);
1730 free_evalue_refs(&EV);
1731 free_evalue_refs(num.E);
1732 delete num.E;
1733 } else if (num.pos != -1) {
1734 dpoly_n d(dim, num.constant, num.coeff);
1735 d.div(n, c, sign);
1736 evalue EV;
1737 uni_polynom(num.pos, c, &EV);
1738 eadd(&EV , &s[nd].E);
1739 free_evalue_refs(&EV);
1740 } else {
1741 mpq_set_si(count, 0, 1);
1742 dpoly d(dim, num.constant);
1743 d.div(n, count, sign);
1744 evalue EV;
1745 value_init(EV.d);
1746 evalue_set(&EV, &count[0]._mp_num, &count[0]._mp_den);
1747 eadd(&EV , &s[nd].E);
1748 free_evalue_refs(&EV);
1750 ++f;
1752 END_FORALL_PVertex_in_ParamPolyhedron;
1754 mpq_clear(count);
1756 if (CT)
1757 addeliminatedparams_evalue(&s[nd].E, CT);
1758 s[nd].D = rVD;
1759 ++nd;
1760 if (rVD != pVD)
1761 Domain_Free(pVD);
1764 if (nd == 0)
1765 evalue_set_si(eres, 0, 1);
1766 else {
1767 eres->x.p = new_enode(partition, 2*nd, C->Dimension);
1768 for (int j = 0; j < nd; ++j) {
1769 EVALUE_SET_DOMAIN(eres->x.p->arr[2*j], s[j].D);
1770 value_clear(eres->x.p->arr[2*j+1].d);
1771 eres->x.p->arr[2*j+1] = s[j].E;
1772 Domain_Free(fVD[j]);
1775 delete [] s;
1776 delete [] fVD;
1778 Vector_Free(c);
1780 for (int j = 0; j < PP->nbV; ++j)
1781 Domain_Free(vcone[j]);
1782 delete [] vcone;
1783 delete [] npos;
1784 delete [] nneg;
1786 if (CEq)
1787 Polyhedron_Free(CEq);
1789 goto out;
1792 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
1794 evalue *EP = barvinok_enumerate_ev(P, C, MaxRays);
1796 return partition2enumeration(EP);
1799 static void SwapColumns(Value **V, int n, int i, int j)
1801 for (int r = 0; r < n; ++r)
1802 value_swap(V[r][i], V[r][j]);
1805 static void SwapColumns(Polyhedron *P, int i, int j)
1807 SwapColumns(P->Constraint, P->NbConstraints, i, j);
1808 SwapColumns(P->Ray, P->NbRays, i, j);
1811 static void negative_test_constraint(Value *l, Value *u, Value *c, int pos,
1812 int len, Value *v)
1814 value_oppose(*v, u[pos+1]);
1815 Vector_Combine(l+1, u+1, c+1, *v, l[pos+1], len-1);
1816 value_multiply(*v, *v, l[pos+1]);
1817 value_substract(c[len-1], c[len-1], *v);
1818 value_set_si(*v, -1);
1819 Vector_Scale(c+1, c+1, *v, len-1);
1820 value_decrement(c[len-1], c[len-1]);
1821 ConstraintSimplify(c, c, len, v);
1824 static void oppose_constraint(Value *c, int len, Value *v)
1826 value_set_si(*v, -1);
1827 Vector_Scale(c+1, c+1, *v, len-1);
1828 value_decrement(c[len-1], c[len-1]);
1831 static bool SplitOnConstraint(Polyhedron *P, int i, int l, int u,
1832 int nvar, int len, int exist, int MaxRays,
1833 Vector *row, Value& f, bool independent,
1834 Polyhedron **pos, Polyhedron **neg)
1836 negative_test_constraint(P->Constraint[l], P->Constraint[u],
1837 row->p, nvar+i, len, &f);
1838 *neg = AddConstraints(row->p, 1, P, MaxRays);
1840 /* We found an independent, but useless constraint
1841 * Maybe we should detect this earlier and not
1842 * mark the variable as INDEPENDENT
1844 if (emptyQ((*neg))) {
1845 Polyhedron_Free(*neg);
1846 return false;
1849 oppose_constraint(row->p, len, &f);
1850 *pos = AddConstraints(row->p, 1, P, MaxRays);
1852 if (emptyQ((*pos))) {
1853 Polyhedron_Free(*neg);
1854 Polyhedron_Free(*pos);
1855 return false;
1858 return true;
1862 * unimodularly transform P such that constraint r is transformed
1863 * into a constraint that involves only a single (the first)
1864 * existential variable
1867 static Polyhedron *rotate_along(Polyhedron *P, int r, int nvar, int exist,
1868 unsigned MaxRays)
1870 Value g;
1871 value_init(g);
1873 Vector *row = Vector_Alloc(exist);
1874 Vector_Copy(P->Constraint[r]+1+nvar, row->p, exist);
1875 Vector_Gcd(row->p, exist, &g);
1876 if (value_notone_p(g))
1877 Vector_AntiScale(row->p, row->p, g, exist);
1878 value_clear(g);
1880 Matrix *M = unimodular_complete(row);
1881 Matrix *M2 = Matrix_Alloc(P->Dimension+1, P->Dimension+1);
1882 for (r = 0; r < nvar; ++r)
1883 value_set_si(M2->p[r][r], 1);
1884 for ( ; r < nvar+exist; ++r)
1885 Vector_Copy(M->p[r-nvar], M2->p[r]+nvar, exist);
1886 for ( ; r < P->Dimension+1; ++r)
1887 value_set_si(M2->p[r][r], 1);
1888 Polyhedron *T = Polyhedron_Image(P, M2, MaxRays);
1890 Matrix_Free(M2);
1891 Matrix_Free(M);
1892 Vector_Free(row);
1894 return T;
1897 static bool SplitOnVar(Polyhedron *P, int i,
1898 int nvar, int len, int exist, int MaxRays,
1899 Vector *row, Value& f, bool independent,
1900 Polyhedron **pos, Polyhedron **neg)
1902 int j;
1904 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
1905 if (value_negz_p(P->Constraint[l][nvar+i+1]))
1906 continue;
1908 if (independent) {
1909 for (j = 0; j < exist; ++j)
1910 if (j != i && value_notzero_p(P->Constraint[l][nvar+j+1]))
1911 break;
1912 if (j < exist)
1913 continue;
1916 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
1917 if (value_posz_p(P->Constraint[u][nvar+i+1]))
1918 continue;
1920 if (independent) {
1921 for (j = 0; j < exist; ++j)
1922 if (j != i && value_notzero_p(P->Constraint[u][nvar+j+1]))
1923 break;
1924 if (j < exist)
1925 continue;
1928 if (SplitOnConstraint(P, i, l, u,
1929 nvar, len, exist, MaxRays,
1930 row, f, independent,
1931 pos, neg)) {
1932 if (independent) {
1933 if (i != 0)
1934 SwapColumns(*neg, nvar+1, nvar+1+i);
1936 return true;
1941 return false;
1944 static bool double_bound_pair(Polyhedron *P, int nvar, int exist,
1945 int i, int l1, int l2,
1946 Polyhedron **pos, Polyhedron **neg)
1948 Value f;
1949 value_init(f);
1950 Vector *row = Vector_Alloc(P->Dimension+2);
1951 value_set_si(row->p[0], 1);
1952 value_oppose(f, P->Constraint[l1][nvar+i+1]);
1953 Vector_Combine(P->Constraint[l1]+1, P->Constraint[l2]+1,
1954 row->p+1,
1955 P->Constraint[l2][nvar+i+1], f,
1956 P->Dimension+1);
1957 ConstraintSimplify(row->p, row->p, P->Dimension+2, &f);
1958 *pos = AddConstraints(row->p, 1, P, 0);
1959 value_set_si(f, -1);
1960 Vector_Scale(row->p+1, row->p+1, f, P->Dimension+1);
1961 value_decrement(row->p[P->Dimension+1], row->p[P->Dimension+1]);
1962 *neg = AddConstraints(row->p, 1, P, 0);
1963 Vector_Free(row);
1964 value_clear(f);
1966 return !emptyQ((*pos)) && !emptyQ((*neg));
1969 static bool double_bound(Polyhedron *P, int nvar, int exist,
1970 Polyhedron **pos, Polyhedron **neg)
1972 for (int i = 0; i < exist; ++i) {
1973 int l1, l2;
1974 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1975 if (value_negz_p(P->Constraint[l1][nvar+i+1]))
1976 continue;
1977 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1978 if (value_negz_p(P->Constraint[l2][nvar+i+1]))
1979 continue;
1980 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1981 return true;
1984 for (l1 = P->NbEq; l1 < P->NbConstraints; ++l1) {
1985 if (value_posz_p(P->Constraint[l1][nvar+i+1]))
1986 continue;
1987 if (l1 < P->NbConstraints)
1988 for (l2 = l1 + 1; l2 < P->NbConstraints; ++l2) {
1989 if (value_posz_p(P->Constraint[l2][nvar+i+1]))
1990 continue;
1991 if (double_bound_pair(P, nvar, exist, i, l1, l2, pos, neg))
1992 return true;
1995 return false;
1997 return false;
2000 enum constraint {
2001 ALL_POS = 1 << 0,
2002 ONE_NEG = 1 << 1,
2003 INDEPENDENT = 1 << 2
2006 static evalue* enumerate_or(Polyhedron *D,
2007 unsigned exist, unsigned nparam, unsigned MaxRays)
2009 #ifdef DEBUG_ER
2010 fprintf(stderr, "\nER: Or\n");
2011 #endif /* DEBUG_ER */
2013 Polyhedron *N = D->next;
2014 D->next = 0;
2015 evalue *EP =
2016 barvinok_enumerate_e(D, exist, nparam, MaxRays);
2017 Polyhedron_Free(D);
2019 for (D = N; D; D = N) {
2020 N = D->next;
2021 D->next = 0;
2023 evalue *EN =
2024 barvinok_enumerate_e(D, exist, nparam, MaxRays);
2026 eor(EN, EP);
2027 free_evalue_refs(EN);
2028 free(EN);
2029 Polyhedron_Free(D);
2032 reduce_evalue(EP);
2034 return EP;
2037 static evalue* enumerate_sum(Polyhedron *P,
2038 unsigned exist, unsigned nparam, unsigned MaxRays)
2040 int nvar = P->Dimension - exist - nparam;
2041 int toswap = nvar < exist ? nvar : exist;
2042 for (int i = 0; i < toswap; ++i)
2043 SwapColumns(P, 1 + i, nvar+exist - i);
2044 nparam += nvar;
2046 #ifdef DEBUG_ER
2047 fprintf(stderr, "\nER: Sum\n");
2048 #endif /* DEBUG_ER */
2050 evalue *EP = barvinok_enumerate_e(P, exist, nparam, MaxRays);
2052 for (int i = 0; i < /* nvar */ nparam; ++i) {
2053 Matrix *C = Matrix_Alloc(1, 1 + nparam + 1);
2054 value_set_si(C->p[0][0], 1);
2055 evalue split;
2056 value_init(split.d);
2057 value_set_si(split.d, 0);
2058 split.x.p = new_enode(partition, 4, nparam);
2059 value_set_si(C->p[0][1+i], 1);
2060 Matrix *C2 = Matrix_Copy(C);
2061 EVALUE_SET_DOMAIN(split.x.p->arr[0],
2062 Constraints2Polyhedron(C2, MaxRays));
2063 Matrix_Free(C2);
2064 evalue_set_si(&split.x.p->arr[1], 1, 1);
2065 value_set_si(C->p[0][1+i], -1);
2066 value_set_si(C->p[0][1+nparam], -1);
2067 EVALUE_SET_DOMAIN(split.x.p->arr[2],
2068 Constraints2Polyhedron(C, MaxRays));
2069 evalue_set_si(&split.x.p->arr[3], 1, 1);
2070 emul(&split, EP);
2071 free_evalue_refs(&split);
2072 Matrix_Free(C);
2074 reduce_evalue(EP);
2075 evalue_range_reduction(EP);
2077 evalue_frac2floor(EP);
2079 evalue *sum = esum(EP, nvar);
2081 free_evalue_refs(EP);
2082 free(EP);
2083 EP = sum;
2085 evalue_range_reduction(EP);
2087 return EP;
2090 static evalue* split_sure(Polyhedron *P, Polyhedron *S,
2091 unsigned exist, unsigned nparam, unsigned MaxRays)
2093 int nvar = P->Dimension - exist - nparam;
2095 Matrix *M = Matrix_Alloc(exist, S->Dimension+2);
2096 for (int i = 0; i < exist; ++i)
2097 value_set_si(M->p[i][nvar+i+1], 1);
2098 Polyhedron *O = S;
2099 S = DomainAddRays(S, M, MaxRays);
2100 Polyhedron_Free(O);
2101 Polyhedron *F = DomainAddRays(P, M, MaxRays);
2102 Polyhedron *D = DomainDifference(F, S, MaxRays);
2103 O = D;
2104 D = Disjoint_Domain(D, 0, MaxRays);
2105 Polyhedron_Free(F);
2106 Domain_Free(O);
2107 Matrix_Free(M);
2109 M = Matrix_Alloc(P->Dimension+1-exist, P->Dimension+1);
2110 for (int j = 0; j < nvar; ++j)
2111 value_set_si(M->p[j][j], 1);
2112 for (int j = 0; j < nparam+1; ++j)
2113 value_set_si(M->p[nvar+j][nvar+exist+j], 1);
2114 Polyhedron *T = Polyhedron_Image(S, M, MaxRays);
2115 evalue *EP = barvinok_enumerate_e(T, 0, nparam, MaxRays);
2116 Polyhedron_Free(S);
2117 Polyhedron_Free(T);
2118 Matrix_Free(M);
2120 for (Polyhedron *Q = D; Q; Q = Q->next) {
2121 Polyhedron *N = Q->next;
2122 Q->next = 0;
2123 T = DomainIntersection(P, Q, MaxRays);
2124 evalue *E = barvinok_enumerate_e(T, exist, nparam, MaxRays);
2125 eadd(E, EP);
2126 free_evalue_refs(E);
2127 free(E);
2128 Polyhedron_Free(T);
2129 Q->next = N;
2131 Domain_Free(D);
2132 return EP;
2135 static evalue* enumerate_sure(Polyhedron *P,
2136 unsigned exist, unsigned nparam, unsigned MaxRays)
2138 int i;
2139 Polyhedron *S = P;
2140 int nvar = P->Dimension - exist - nparam;
2141 Value lcm;
2142 Value f;
2143 value_init(lcm);
2144 value_init(f);
2146 for (i = 0; i < exist; ++i) {
2147 Matrix *M = Matrix_Alloc(S->NbConstraints, S->Dimension+2);
2148 int c = 0;
2149 value_set_si(lcm, 1);
2150 for (int j = 0; j < S->NbConstraints; ++j) {
2151 if (value_negz_p(S->Constraint[j][1+nvar+i]))
2152 continue;
2153 if (value_one_p(S->Constraint[j][1+nvar+i]))
2154 continue;
2155 value_lcm(lcm, S->Constraint[j][1+nvar+i], &lcm);
2158 for (int j = 0; j < S->NbConstraints; ++j) {
2159 if (value_negz_p(S->Constraint[j][1+nvar+i]))
2160 continue;
2161 if (value_one_p(S->Constraint[j][1+nvar+i]))
2162 continue;
2163 value_division(f, lcm, S->Constraint[j][1+nvar+i]);
2164 Vector_Scale(S->Constraint[j], M->p[c], f, S->Dimension+2);
2165 value_substract(M->p[c][S->Dimension+1],
2166 M->p[c][S->Dimension+1],
2167 lcm);
2168 value_increment(M->p[c][S->Dimension+1],
2169 M->p[c][S->Dimension+1]);
2170 ++c;
2172 Polyhedron *O = S;
2173 S = AddConstraints(M->p[0], c, S, MaxRays);
2174 if (O != P)
2175 Polyhedron_Free(O);
2176 Matrix_Free(M);
2177 if (emptyQ(S)) {
2178 Polyhedron_Free(S);
2179 value_clear(lcm);
2180 value_clear(f);
2181 return 0;
2184 value_clear(lcm);
2185 value_clear(f);
2187 #ifdef DEBUG_ER
2188 fprintf(stderr, "\nER: Sure\n");
2189 #endif /* DEBUG_ER */
2191 return split_sure(P, S, exist, nparam, MaxRays);
2194 static evalue* enumerate_sure2(Polyhedron *P,
2195 unsigned exist, unsigned nparam, unsigned MaxRays)
2197 int nvar = P->Dimension - exist - nparam;
2198 int r;
2199 for (r = 0; r < P->NbRays; ++r)
2200 if (value_one_p(P->Ray[r][0]) &&
2201 value_one_p(P->Ray[r][P->Dimension+1]))
2202 break;
2204 if (r >= P->NbRays)
2205 return 0;
2207 Matrix *M = Matrix_Alloc(nvar + 1 + nparam, P->Dimension+2);
2208 for (int i = 0; i < nvar; ++i)
2209 value_set_si(M->p[i][1+i], 1);
2210 for (int i = 0; i < nparam; ++i)
2211 value_set_si(M->p[i+nvar][1+nvar+exist+i], 1);
2212 Vector_Copy(P->Ray[r]+1+nvar, M->p[nvar+nparam]+1+nvar, exist);
2213 value_set_si(M->p[nvar+nparam][0], 1);
2214 value_set_si(M->p[nvar+nparam][P->Dimension+1], 1);
2215 Polyhedron * F = Rays2Polyhedron(M, MaxRays);
2216 Matrix_Free(M);
2218 Polyhedron *I = DomainIntersection(F, P, MaxRays);
2219 Polyhedron_Free(F);
2221 #ifdef DEBUG_ER
2222 fprintf(stderr, "\nER: Sure2\n");
2223 #endif /* DEBUG_ER */
2225 return split_sure(P, I, exist, nparam, MaxRays);
2228 static evalue* enumerate_cyclic(Polyhedron *P,
2229 unsigned exist, unsigned nparam,
2230 evalue * EP, int r, int p, unsigned MaxRays)
2232 int nvar = P->Dimension - exist - nparam;
2234 /* If EP in its fractional maps only contains references
2235 * to the remainder parameter with appropriate coefficients
2236 * then we could in principle avoid adding existentially
2237 * quantified variables to the validity domains.
2238 * We'd have to replace the remainder by m { p/m }
2239 * and multiply with an appropriate factor that is one
2240 * only in the appropriate range.
2241 * This last multiplication can be avoided if EP
2242 * has a single validity domain with no (further)
2243 * constraints on the remainder parameter
2246 Matrix *CT = Matrix_Alloc(nparam+1, nparam+3);
2247 Matrix *M = Matrix_Alloc(1, 1+nparam+3);
2248 for (int j = 0; j < nparam; ++j)
2249 if (j != p)
2250 value_set_si(CT->p[j][j], 1);
2251 value_set_si(CT->p[p][nparam+1], 1);
2252 value_set_si(CT->p[nparam][nparam+2], 1);
2253 value_set_si(M->p[0][1+p], -1);
2254 value_absolute(M->p[0][1+nparam], P->Ray[0][1+nvar+exist+p]);
2255 value_set_si(M->p[0][1+nparam+1], 1);
2256 Polyhedron *CEq = Constraints2Polyhedron(M, 1);
2257 Matrix_Free(M);
2258 addeliminatedparams_enum(EP, CT, CEq, MaxRays, nparam);
2259 Polyhedron_Free(CEq);
2260 Matrix_Free(CT);
2262 return EP;
2265 static void enumerate_vd_add_ray(evalue *EP, Matrix *Rays, unsigned MaxRays)
2267 if (value_notzero_p(EP->d))
2268 return;
2270 assert(EP->x.p->type == partition);
2271 assert(EP->x.p->pos == EVALUE_DOMAIN(EP->x.p->arr[0])->Dimension);
2272 for (int i = 0; i < EP->x.p->size/2; ++i) {
2273 Polyhedron *D = EVALUE_DOMAIN(EP->x.p->arr[2*i]);
2274 Polyhedron *N = DomainAddRays(D, Rays, MaxRays);
2275 EVALUE_SET_DOMAIN(EP->x.p->arr[2*i], N);
2276 Domain_Free(D);
2280 static evalue* enumerate_line(Polyhedron *P,
2281 unsigned exist, unsigned nparam, unsigned MaxRays)
2283 if (P->NbBid == 0)
2284 return 0;
2286 #ifdef DEBUG_ER
2287 fprintf(stderr, "\nER: Line\n");
2288 #endif /* DEBUG_ER */
2290 int nvar = P->Dimension - exist - nparam;
2291 int i, j;
2292 for (i = 0; i < nparam; ++i)
2293 if (value_notzero_p(P->Ray[0][1+nvar+exist+i]))
2294 break;
2295 assert(i < nparam);
2296 for (j = i+1; j < nparam; ++j)
2297 if (value_notzero_p(P->Ray[0][1+nvar+exist+i]))
2298 break;
2299 assert(j >= nparam); // for now
2301 Matrix *M = Matrix_Alloc(2, P->Dimension+2);
2302 value_set_si(M->p[0][0], 1);
2303 value_set_si(M->p[0][1+nvar+exist+i], 1);
2304 value_set_si(M->p[1][0], 1);
2305 value_set_si(M->p[1][1+nvar+exist+i], -1);
2306 value_absolute(M->p[1][1+P->Dimension], P->Ray[0][1+nvar+exist+i]);
2307 value_decrement(M->p[1][1+P->Dimension], M->p[1][1+P->Dimension]);
2308 Polyhedron *S = AddConstraints(M->p[0], 2, P, MaxRays);
2309 evalue *EP = barvinok_enumerate_e(S, exist, nparam, MaxRays);
2310 Polyhedron_Free(S);
2311 Matrix_Free(M);
2313 return enumerate_cyclic(P, exist, nparam, EP, 0, i, MaxRays);
2316 static int single_param_pos(Polyhedron*P, unsigned exist, unsigned nparam,
2317 int r)
2319 int nvar = P->Dimension - exist - nparam;
2320 if (First_Non_Zero(P->Ray[r]+1, nvar) != -1)
2321 return -1;
2322 int i = First_Non_Zero(P->Ray[r]+1+nvar+exist, nparam);
2323 if (i == -1)
2324 return -1;
2325 if (First_Non_Zero(P->Ray[r]+1+nvar+exist+1, nparam-i-1) != -1)
2326 return -1;
2327 return i;
2330 static evalue* enumerate_remove_ray(Polyhedron *P, int r,
2331 unsigned exist, unsigned nparam, unsigned MaxRays)
2333 #ifdef DEBUG_ER
2334 fprintf(stderr, "\nER: RedundantRay\n");
2335 #endif /* DEBUG_ER */
2337 Value one;
2338 value_init(one);
2339 value_set_si(one, 1);
2340 int len = P->NbRays-1;
2341 Matrix *M = Matrix_Alloc(2 * len, P->Dimension+2);
2342 Vector_Copy(P->Ray[0], M->p[0], r * (P->Dimension+2));
2343 Vector_Copy(P->Ray[r+1], M->p[r], (len-r) * (P->Dimension+2));
2344 for (int j = 0; j < P->NbRays; ++j) {
2345 if (j == r)
2346 continue;
2347 Vector_Combine(P->Ray[j], P->Ray[r], M->p[len+j-(j>r)],
2348 one, P->Ray[j][P->Dimension+1], P->Dimension+2);
2351 P = Rays2Polyhedron(M, MaxRays);
2352 Matrix_Free(M);
2353 evalue *EP = barvinok_enumerate_e(P, exist, nparam, MaxRays);
2354 Polyhedron_Free(P);
2355 value_clear(one);
2357 return EP;
2360 static evalue* enumerate_redundant_ray(Polyhedron *P,
2361 unsigned exist, unsigned nparam, unsigned MaxRays)
2363 assert(P->NbBid == 0);
2364 int nvar = P->Dimension - exist - nparam;
2365 Value m;
2366 value_init(m);
2368 for (int r = 0; r < P->NbRays; ++r) {
2369 if (value_notzero_p(P->Ray[r][P->Dimension+1]))
2370 continue;
2371 int i1 = single_param_pos(P, exist, nparam, r);
2372 if (i1 == -1)
2373 continue;
2374 for (int r2 = r+1; r2 < P->NbRays; ++r2) {
2375 if (value_notzero_p(P->Ray[r2][P->Dimension+1]))
2376 continue;
2377 int i2 = single_param_pos(P, exist, nparam, r2);
2378 if (i2 == -1)
2379 continue;
2380 if (i1 != i2)
2381 continue;
2383 value_division(m, P->Ray[r][1+nvar+exist+i1],
2384 P->Ray[r2][1+nvar+exist+i1]);
2385 value_multiply(m, m, P->Ray[r2][1+nvar+exist+i1]);
2386 /* r2 divides r => r redundant */
2387 if (value_eq(m, P->Ray[r][1+nvar+exist+i1])) {
2388 value_clear(m);
2389 return enumerate_remove_ray(P, r, exist, nparam, MaxRays);
2392 value_division(m, P->Ray[r2][1+nvar+exist+i1],
2393 P->Ray[r][1+nvar+exist+i1]);
2394 value_multiply(m, m, P->Ray[r][1+nvar+exist+i1]);
2395 /* r divides r2 => r2 redundant */
2396 if (value_eq(m, P->Ray[r2][1+nvar+exist+i1])) {
2397 value_clear(m);
2398 return enumerate_remove_ray(P, r2, exist, nparam, MaxRays);
2402 value_clear(m);
2403 return 0;
2406 static Polyhedron *upper_bound(Polyhedron *P,
2407 int pos, Value *max, Polyhedron **R)
2409 Value v;
2410 int r;
2411 value_init(v);
2413 *R = 0;
2414 Polyhedron *N;
2415 Polyhedron *B = 0;
2416 for (Polyhedron *Q = P; Q; Q = N) {
2417 N = Q->next;
2418 for (r = 0; r < P->NbRays; ++r) {
2419 if (value_zero_p(P->Ray[r][P->Dimension+1]) &&
2420 value_pos_p(P->Ray[r][1+pos]))
2421 break;
2423 if (r < P->NbRays) {
2424 Q->next = *R;
2425 *R = Q;
2426 continue;
2427 } else {
2428 Q->next = B;
2429 B = Q;
2431 for (r = 0; r < P->NbRays; ++r) {
2432 if (value_zero_p(P->Ray[r][P->Dimension+1]))
2433 continue;
2434 mpz_fdiv_q(v, P->Ray[r][1+pos], P->Ray[r][1+P->Dimension]);
2435 if ((!Q->next && r == 0) || value_gt(v, *max))
2436 value_assign(*max, v);
2439 value_clear(v);
2440 return B;
2443 static evalue* enumerate_ray(Polyhedron *P,
2444 unsigned exist, unsigned nparam, unsigned MaxRays)
2446 assert(P->NbBid == 0);
2447 int nvar = P->Dimension - exist - nparam;
2449 int r;
2450 for (r = 0; r < P->NbRays; ++r)
2451 if (value_zero_p(P->Ray[r][P->Dimension+1]))
2452 break;
2453 if (r >= P->NbRays)
2454 return 0;
2456 int r2;
2457 for (r2 = r+1; r2 < P->NbRays; ++r2)
2458 if (value_zero_p(P->Ray[r2][P->Dimension+1]))
2459 break;
2460 if (r2 < P->NbRays) {
2461 if (nvar > 0)
2462 return enumerate_sum(P, exist, nparam, MaxRays);
2465 #ifdef DEBUG_ER
2466 fprintf(stderr, "\nER: Ray\n");
2467 #endif /* DEBUG_ER */
2469 Value m;
2470 Value one;
2471 value_init(m);
2472 value_init(one);
2473 value_set_si(one, 1);
2474 int i = single_param_pos(P, exist, nparam, r);
2475 assert(i != -1); // for now;
2477 Matrix *M = Matrix_Alloc(P->NbRays, P->Dimension+2);
2478 for (int j = 0; j < P->NbRays; ++j) {
2479 Vector_Combine(P->Ray[j], P->Ray[r], M->p[j],
2480 one, P->Ray[j][P->Dimension+1], P->Dimension+2);
2482 Polyhedron *S = Rays2Polyhedron(M, MaxRays);
2483 Matrix_Free(M);
2484 Polyhedron *D = DomainDifference(P, S, MaxRays);
2485 Polyhedron_Free(S);
2486 // Polyhedron_Print(stderr, P_VALUE_FMT, D);
2487 assert(value_pos_p(P->Ray[r][1+nvar+exist+i])); // for now
2488 Polyhedron *R;
2489 D = upper_bound(D, nvar+exist+i, &m, &R);
2490 assert(D);
2491 Domain_Free(D);
2493 M = Matrix_Alloc(2, P->Dimension+2);
2494 value_set_si(M->p[0][0], 1);
2495 value_set_si(M->p[1][0], 1);
2496 value_set_si(M->p[0][1+nvar+exist+i], -1);
2497 value_set_si(M->p[1][1+nvar+exist+i], 1);
2498 value_assign(M->p[0][1+P->Dimension], m);
2499 value_oppose(M->p[1][1+P->Dimension], m);
2500 value_addto(M->p[1][1+P->Dimension], M->p[1][1+P->Dimension],
2501 P->Ray[r][1+nvar+exist+i]);
2502 value_decrement(M->p[1][1+P->Dimension], M->p[1][1+P->Dimension]);
2503 // Matrix_Print(stderr, P_VALUE_FMT, M);
2504 D = AddConstraints(M->p[0], 2, P, MaxRays);
2505 // Polyhedron_Print(stderr, P_VALUE_FMT, D);
2506 value_substract(M->p[0][1+P->Dimension], M->p[0][1+P->Dimension],
2507 P->Ray[r][1+nvar+exist+i]);
2508 // Matrix_Print(stderr, P_VALUE_FMT, M);
2509 S = AddConstraints(M->p[0], 1, P, MaxRays);
2510 // Polyhedron_Print(stderr, P_VALUE_FMT, S);
2511 Matrix_Free(M);
2513 evalue *EP = barvinok_enumerate_e(D, exist, nparam, MaxRays);
2514 Polyhedron_Free(D);
2515 value_clear(one);
2516 value_clear(m);
2518 if (value_notone_p(P->Ray[r][1+nvar+exist+i]))
2519 EP = enumerate_cyclic(P, exist, nparam, EP, r, i, MaxRays);
2520 else {
2521 M = Matrix_Alloc(1, nparam+2);
2522 value_set_si(M->p[0][0], 1);
2523 value_set_si(M->p[0][1+i], 1);
2524 enumerate_vd_add_ray(EP, M, MaxRays);
2525 Matrix_Free(M);
2528 if (!emptyQ(S)) {
2529 evalue *E = barvinok_enumerate_e(S, exist, nparam, MaxRays);
2530 eadd(E, EP);
2531 free_evalue_refs(E);
2532 free(E);
2534 Polyhedron_Free(S);
2536 if (R) {
2537 assert(nvar == 0);
2538 evalue *ER = enumerate_or(R, exist, nparam, MaxRays);
2539 eor(ER, EP);
2540 free_evalue_refs(ER);
2541 free(ER);
2544 return EP;
2547 static evalue* new_zero_ep()
2549 evalue *EP;
2550 ALLOC(evalue, EP);
2551 value_init(EP->d);
2552 evalue_set_si(EP, 0, 1);
2553 return EP;
2556 static evalue* enumerate_vd(Polyhedron **PA,
2557 unsigned exist, unsigned nparam, unsigned MaxRays)
2559 Polyhedron *P = *PA;
2560 int nvar = P->Dimension - exist - nparam;
2561 Param_Polyhedron *PP = NULL;
2562 Polyhedron *C = Universe_Polyhedron(nparam);
2563 Polyhedron *CEq;
2564 Matrix *CT;
2565 Polyhedron *PR = P;
2566 PP = Polyhedron2Param_SimplifiedDomain(&PR,C,MaxRays,&CEq,&CT);
2567 Polyhedron_Free(C);
2569 int nd;
2570 Param_Domain *D, *last;
2571 Value c;
2572 value_init(c);
2573 for (nd = 0, D=PP->D; D; D=D->next, ++nd)
2576 Polyhedron **VD = new Polyhedron_p[nd];
2577 Polyhedron **fVD = new Polyhedron_p[nd];
2578 for(nd = 0, D=PP->D; D; D=D->next) {
2579 Polyhedron *rVD = reduce_domain(D->Domain, CT, CEq,
2580 fVD, nd, MaxRays);
2581 if (!rVD)
2582 continue;
2584 VD[nd++] = rVD;
2585 last = D;
2588 evalue *EP = 0;
2590 if (nd == 0)
2591 EP = new_zero_ep();
2593 /* This doesn't seem to have any effect */
2594 if (nd == 1) {
2595 Polyhedron *CA = align_context(VD[0], P->Dimension, MaxRays);
2596 Polyhedron *O = P;
2597 P = DomainIntersection(P, CA, MaxRays);
2598 if (O != *PA)
2599 Polyhedron_Free(O);
2600 Polyhedron_Free(CA);
2601 if (emptyQ(P))
2602 EP = new_zero_ep();
2605 if (!EP && CT->NbColumns != CT->NbRows) {
2606 Polyhedron *CEqr = DomainImage(CEq, CT, MaxRays);
2607 Polyhedron *CA = align_context(CEqr, PR->Dimension, MaxRays);
2608 Polyhedron *I = DomainIntersection(PR, CA, MaxRays);
2609 Polyhedron_Free(CEqr);
2610 Polyhedron_Free(CA);
2611 #ifdef DEBUG_ER
2612 fprintf(stderr, "\nER: Eliminate\n");
2613 #endif /* DEBUG_ER */
2614 nparam -= CT->NbColumns - CT->NbRows;
2615 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2616 nparam += CT->NbColumns - CT->NbRows;
2617 addeliminatedparams_enum(EP, CT, CEq, MaxRays, nparam);
2618 Polyhedron_Free(I);
2620 if (PR != *PA)
2621 Polyhedron_Free(PR);
2622 PR = 0;
2624 if (!EP && nd > 1) {
2625 #ifdef DEBUG_ER
2626 fprintf(stderr, "\nER: VD\n");
2627 #endif /* DEBUG_ER */
2628 for (int i = 0; i < nd; ++i) {
2629 Polyhedron *CA = align_context(VD[i], P->Dimension, MaxRays);
2630 Polyhedron *I = DomainIntersection(P, CA, MaxRays);
2632 if (i == 0)
2633 EP = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2634 else {
2635 evalue *E = barvinok_enumerate_e(I, exist, nparam, MaxRays);
2636 eadd(E, EP);
2637 free_evalue_refs(E);
2638 free(E);
2640 Polyhedron_Free(I);
2641 Polyhedron_Free(CA);
2645 for (int i = 0; i < nd; ++i) {
2646 Polyhedron_Free(VD[i]);
2647 Polyhedron_Free(fVD[i]);
2649 delete [] VD;
2650 delete [] fVD;
2651 value_clear(c);
2653 if (!EP && nvar == 0) {
2654 Value f;
2655 value_init(f);
2656 Param_Vertices *V, *V2;
2657 Matrix* M = Matrix_Alloc(1, P->Dimension+2);
2659 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2660 bool found = false;
2661 FORALL_PVertex_in_ParamPolyhedron(V2, last, PP) {
2662 if (V == V2) {
2663 found = true;
2664 continue;
2666 if (!found)
2667 continue;
2668 for (int i = 0; i < exist; ++i) {
2669 value_oppose(f, V->Vertex->p[i][nparam+1]);
2670 Vector_Combine(V->Vertex->p[i],
2671 V2->Vertex->p[i],
2672 M->p[0] + 1 + nvar + exist,
2673 V2->Vertex->p[i][nparam+1],
2675 nparam+1);
2676 int j;
2677 for (j = 0; j < nparam; ++j)
2678 if (value_notzero_p(M->p[0][1+nvar+exist+j]))
2679 break;
2680 if (j >= nparam)
2681 continue;
2682 ConstraintSimplify(M->p[0], M->p[0],
2683 P->Dimension+2, &f);
2684 value_set_si(M->p[0][0], 0);
2685 Polyhedron *para = AddConstraints(M->p[0], 1, P,
2686 MaxRays);
2687 if (emptyQ(para)) {
2688 Polyhedron_Free(para);
2689 continue;
2691 Polyhedron *pos, *neg;
2692 value_set_si(M->p[0][0], 1);
2693 value_decrement(M->p[0][P->Dimension+1],
2694 M->p[0][P->Dimension+1]);
2695 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2696 value_set_si(f, -1);
2697 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2698 P->Dimension+1);
2699 value_decrement(M->p[0][P->Dimension+1],
2700 M->p[0][P->Dimension+1]);
2701 value_decrement(M->p[0][P->Dimension+1],
2702 M->p[0][P->Dimension+1]);
2703 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2704 if (emptyQ(neg) && emptyQ(pos)) {
2705 Polyhedron_Free(para);
2706 Polyhedron_Free(pos);
2707 Polyhedron_Free(neg);
2708 continue;
2710 #ifdef DEBUG_ER
2711 fprintf(stderr, "\nER: Order\n");
2712 #endif /* DEBUG_ER */
2713 EP = barvinok_enumerate_e(para, exist, nparam, MaxRays);
2714 evalue *E;
2715 if (!emptyQ(pos)) {
2716 E = barvinok_enumerate_e(pos, exist, nparam, MaxRays);
2717 eadd(E, EP);
2718 free_evalue_refs(E);
2719 free(E);
2721 if (!emptyQ(neg)) {
2722 E = barvinok_enumerate_e(neg, exist, nparam, MaxRays);
2723 eadd(E, EP);
2724 free_evalue_refs(E);
2725 free(E);
2727 Polyhedron_Free(para);
2728 Polyhedron_Free(pos);
2729 Polyhedron_Free(neg);
2730 break;
2732 if (EP)
2733 break;
2734 } END_FORALL_PVertex_in_ParamPolyhedron;
2735 if (EP)
2736 break;
2737 } END_FORALL_PVertex_in_ParamPolyhedron;
2739 if (!EP) {
2740 /* Search for vertex coordinate to split on */
2741 /* First look for one independent of the parameters */
2742 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2743 for (int i = 0; i < exist; ++i) {
2744 int j;
2745 for (j = 0; j < nparam; ++j)
2746 if (value_notzero_p(V->Vertex->p[i][j]))
2747 break;
2748 if (j < nparam)
2749 continue;
2750 value_set_si(M->p[0][0], 1);
2751 Vector_Set(M->p[0]+1, 0, nvar+exist);
2752 Vector_Copy(V->Vertex->p[i],
2753 M->p[0] + 1 + nvar + exist, nparam+1);
2754 value_oppose(M->p[0][1+nvar+i],
2755 V->Vertex->p[i][nparam+1]);
2757 Polyhedron *pos, *neg;
2758 value_set_si(M->p[0][0], 1);
2759 value_decrement(M->p[0][P->Dimension+1],
2760 M->p[0][P->Dimension+1]);
2761 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2762 value_set_si(f, -1);
2763 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2764 P->Dimension+1);
2765 value_decrement(M->p[0][P->Dimension+1],
2766 M->p[0][P->Dimension+1]);
2767 value_decrement(M->p[0][P->Dimension+1],
2768 M->p[0][P->Dimension+1]);
2769 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2770 if (emptyQ(neg) || emptyQ(pos)) {
2771 Polyhedron_Free(pos);
2772 Polyhedron_Free(neg);
2773 continue;
2775 Polyhedron_Free(pos);
2776 value_increment(M->p[0][P->Dimension+1],
2777 M->p[0][P->Dimension+1]);
2778 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2779 #ifdef DEBUG_ER
2780 fprintf(stderr, "\nER: Vertex\n");
2781 #endif /* DEBUG_ER */
2782 pos->next = neg;
2783 EP = enumerate_or(pos, exist, nparam, MaxRays);
2784 break;
2786 if (EP)
2787 break;
2788 } END_FORALL_PVertex_in_ParamPolyhedron;
2791 if (!EP) {
2792 /* Search for vertex coordinate to split on */
2793 /* Now look for one that depends on the parameters */
2794 FORALL_PVertex_in_ParamPolyhedron(V, last, PP) {
2795 for (int i = 0; i < exist; ++i) {
2796 value_set_si(M->p[0][0], 1);
2797 Vector_Set(M->p[0]+1, 0, nvar+exist);
2798 Vector_Copy(V->Vertex->p[i],
2799 M->p[0] + 1 + nvar + exist, nparam+1);
2800 value_oppose(M->p[0][1+nvar+i],
2801 V->Vertex->p[i][nparam+1]);
2803 Polyhedron *pos, *neg;
2804 value_set_si(M->p[0][0], 1);
2805 value_decrement(M->p[0][P->Dimension+1],
2806 M->p[0][P->Dimension+1]);
2807 neg = AddConstraints(M->p[0], 1, P, MaxRays);
2808 value_set_si(f, -1);
2809 Vector_Scale(M->p[0]+1, M->p[0]+1, f,
2810 P->Dimension+1);
2811 value_decrement(M->p[0][P->Dimension+1],
2812 M->p[0][P->Dimension+1]);
2813 value_decrement(M->p[0][P->Dimension+1],
2814 M->p[0][P->Dimension+1]);
2815 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2816 if (emptyQ(neg) || emptyQ(pos)) {
2817 Polyhedron_Free(pos);
2818 Polyhedron_Free(neg);
2819 continue;
2821 Polyhedron_Free(pos);
2822 value_increment(M->p[0][P->Dimension+1],
2823 M->p[0][P->Dimension+1]);
2824 pos = AddConstraints(M->p[0], 1, P, MaxRays);
2825 #ifdef DEBUG_ER
2826 fprintf(stderr, "\nER: ParamVertex\n");
2827 #endif /* DEBUG_ER */
2828 pos->next = neg;
2829 EP = enumerate_or(pos, exist, nparam, MaxRays);
2830 break;
2832 if (EP)
2833 break;
2834 } END_FORALL_PVertex_in_ParamPolyhedron;
2837 Matrix_Free(M);
2838 value_clear(f);
2841 if (CEq)
2842 Polyhedron_Free(CEq);
2843 if (CT)
2844 Matrix_Free(CT);
2845 if (PP)
2846 Param_Polyhedron_Free(PP);
2847 *PA = P;
2849 return EP;
2852 #ifndef HAVE_PIPLIB
2853 evalue *barvinok_enumerate_pip(Polyhedron *P,
2854 unsigned exist, unsigned nparam, unsigned MaxRays)
2856 return 0;
2858 #else
2859 evalue *barvinok_enumerate_pip(Polyhedron *P,
2860 unsigned exist, unsigned nparam, unsigned MaxRays)
2862 int nvar = P->Dimension - exist - nparam;
2863 evalue *EP = new_zero_ep();
2864 Polyhedron *Q, *N, *T = 0;
2865 Value min, tmp;
2866 value_init(min);
2867 value_init(tmp);
2869 #ifdef DEBUG_ER
2870 fprintf(stderr, "\nER: PIP\n");
2871 #endif /* DEBUG_ER */
2873 for (int i = 0; i < P->Dimension; ++i) {
2874 bool pos = false;
2875 bool neg = false;
2876 bool posray = false;
2877 bool negray = false;
2878 value_set_si(min, 0);
2879 for (int j = 0; j < P->NbRays; ++j) {
2880 if (value_pos_p(P->Ray[j][1+i])) {
2881 pos = true;
2882 if (value_zero_p(P->Ray[j][1+P->Dimension]))
2883 posray = true;
2884 } else if (value_neg_p(P->Ray[j][1+i])) {
2885 neg = true;
2886 if (value_zero_p(P->Ray[j][1+P->Dimension]))
2887 negray = true;
2888 else {
2889 mpz_fdiv_q(tmp,
2890 P->Ray[j][1+i], P->Ray[j][1+P->Dimension]);
2891 if (value_lt(tmp, min))
2892 value_assign(min, tmp);
2896 if (pos && neg) {
2897 assert(!(posray && negray));
2898 assert(!negray); // for now
2899 Polyhedron *O = T ? T : P;
2900 /* shift by a safe amount */
2901 Matrix *M = Matrix_Alloc(O->NbRays, O->Dimension+2);
2902 Vector_Copy(O->Ray[0], M->p[0], O->NbRays * (O->Dimension+2));
2903 for (int j = 0; j < P->NbRays; ++j) {
2904 if (value_notzero_p(M->p[j][1+P->Dimension])) {
2905 value_multiply(tmp, min, M->p[j][1+P->Dimension]);
2906 value_substract(M->p[j][1+i], M->p[j][1+i], tmp);
2909 if (T)
2910 Polyhedron_Free(T);
2911 T = Rays2Polyhedron(M, MaxRays);
2912 Matrix_Free(M);
2913 } else if (neg) {
2914 /* negating a parameter requires that we substitute in the
2915 * sign again afterwards.
2916 * Disallow for now.
2918 assert(i < nvar+exist);
2919 if (!T)
2920 T = Polyhedron_Copy(P);
2921 for (int j = 0; j < T->NbRays; ++j)
2922 value_oppose(T->Ray[j][1+i], T->Ray[j][1+i]);
2923 for (int j = 0; j < T->NbConstraints; ++j)
2924 value_oppose(T->Constraint[j][1+i], T->Constraint[j][1+i]);
2927 value_clear(min);
2928 value_clear(tmp);
2930 Polyhedron *D = pip_lexmin(T ? T : P, exist, nparam);
2931 for (Q = D; Q; Q = N) {
2932 N = Q->next;
2933 Q->next = 0;
2934 evalue *E;
2935 exist = Q->Dimension - nvar - nparam;
2936 E = barvinok_enumerate_e(Q, exist, nparam, MaxRays);
2937 Polyhedron_Free(Q);
2938 eadd(E, EP);
2939 free_evalue_refs(E);
2940 free(E);
2943 if (T)
2944 Polyhedron_Free(T);
2946 return EP;
2948 #endif
2951 static bool is_single(Value *row, int pos, int len)
2953 return First_Non_Zero(row, pos) == -1 &&
2954 First_Non_Zero(row+pos+1, len-pos-1) == -1;
2957 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2958 unsigned exist, unsigned nparam, unsigned MaxRays);
2960 #ifdef DEBUG_ER
2961 static int er_level = 0;
2963 evalue* barvinok_enumerate_e(Polyhedron *P,
2964 unsigned exist, unsigned nparam, unsigned MaxRays)
2966 fprintf(stderr, "\nER: level %i\n", er_level);
2967 int nvar = P->Dimension - exist - nparam;
2968 fprintf(stderr, "%d %d %d\n", nvar, exist, nparam);
2970 Polyhedron_Print(stderr, P_VALUE_FMT, P);
2971 ++er_level;
2972 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2973 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2974 Polyhedron_Free(P);
2975 --er_level;
2976 return EP;
2978 #else
2979 evalue* barvinok_enumerate_e(Polyhedron *P,
2980 unsigned exist, unsigned nparam, unsigned MaxRays)
2982 P = DomainConstraintSimplify(Polyhedron_Copy(P), MaxRays);
2983 evalue *EP = barvinok_enumerate_e_r(P, exist, nparam, MaxRays);
2984 Polyhedron_Free(P);
2985 return EP;
2987 #endif
2989 static evalue* barvinok_enumerate_e_r(Polyhedron *P,
2990 unsigned exist, unsigned nparam, unsigned MaxRays)
2992 if (exist == 0) {
2993 Polyhedron *U = Universe_Polyhedron(nparam);
2994 evalue *EP = barvinok_enumerate_ev(P, U, MaxRays);
2995 //char *param_name[] = {"P", "Q", "R", "S", "T" };
2996 //print_evalue(stdout, EP, param_name);
2997 Polyhedron_Free(U);
2998 return EP;
3001 int nvar = P->Dimension - exist - nparam;
3002 int len = P->Dimension + 2;
3004 if (emptyQ(P))
3005 return new_zero_ep();
3007 if (nvar == 0 && nparam == 0) {
3008 evalue *EP = new_zero_ep();
3009 barvinok_count(P, &EP->x.n, MaxRays);
3010 if (value_pos_p(EP->x.n))
3011 value_set_si(EP->x.n, 1);
3012 return EP;
3015 int r;
3016 for (r = 0; r < P->NbRays; ++r)
3017 if (value_zero_p(P->Ray[r][0]) ||
3018 value_zero_p(P->Ray[r][P->Dimension+1])) {
3019 int i;
3020 for (i = 0; i < nvar; ++i)
3021 if (value_notzero_p(P->Ray[r][i+1]))
3022 break;
3023 if (i >= nvar)
3024 continue;
3025 for (i = nvar + exist; i < nvar + exist + nparam; ++i)
3026 if (value_notzero_p(P->Ray[r][i+1]))
3027 break;
3028 if (i >= nvar + exist + nparam)
3029 break;
3031 if (r < P->NbRays) {
3032 evalue *EP = new_zero_ep();
3033 value_set_si(EP->x.n, -1);
3034 return EP;
3037 int first;
3038 for (r = 0; r < P->NbEq; ++r)
3039 if ((first = First_Non_Zero(P->Constraint[r]+1+nvar, exist)) != -1)
3040 break;
3041 if (r < P->NbEq) {
3042 if (First_Non_Zero(P->Constraint[r]+1+nvar+first+1,
3043 exist-first-1) != -1) {
3044 Polyhedron *T = rotate_along(P, r, nvar, exist, MaxRays);
3045 #ifdef DEBUG_ER
3046 fprintf(stderr, "\nER: Equality\n");
3047 #endif /* DEBUG_ER */
3048 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
3049 Polyhedron_Free(T);
3050 return EP;
3051 } else {
3052 #ifdef DEBUG_ER
3053 fprintf(stderr, "\nER: Fixed\n");
3054 #endif /* DEBUG_ER */
3055 if (first == 0)
3056 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
3057 else {
3058 Polyhedron *T = Polyhedron_Copy(P);
3059 SwapColumns(T, nvar+1, nvar+1+first);
3060 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
3061 Polyhedron_Free(T);
3062 return EP;
3067 Vector *row = Vector_Alloc(len);
3068 value_set_si(row->p[0], 1);
3070 Value f;
3071 value_init(f);
3073 enum constraint* info = new constraint[exist];
3074 for (int i = 0; i < exist; ++i) {
3075 info[i] = ALL_POS;
3076 for (int l = P->NbEq; l < P->NbConstraints; ++l) {
3077 if (value_negz_p(P->Constraint[l][nvar+i+1]))
3078 continue;
3079 bool l_parallel = is_single(P->Constraint[l]+nvar+1, i, exist);
3080 for (int u = P->NbEq; u < P->NbConstraints; ++u) {
3081 if (value_posz_p(P->Constraint[u][nvar+i+1]))
3082 continue;
3083 bool lu_parallel = l_parallel ||
3084 is_single(P->Constraint[u]+nvar+1, i, exist);
3085 value_oppose(f, P->Constraint[u][nvar+i+1]);
3086 Vector_Combine(P->Constraint[l]+1, P->Constraint[u]+1, row->p+1,
3087 f, P->Constraint[l][nvar+i+1], len-1);
3088 if (!(info[i] & INDEPENDENT)) {
3089 int j;
3090 for (j = 0; j < exist; ++j)
3091 if (j != i && value_notzero_p(row->p[nvar+j+1]))
3092 break;
3093 if (j == exist) {
3094 //printf("independent: i: %d, l: %d, u: %d\n", i, l, u);
3095 info[i] = (constraint)(info[i] | INDEPENDENT);
3098 if (info[i] & ALL_POS) {
3099 value_addto(row->p[len-1], row->p[len-1],
3100 P->Constraint[l][nvar+i+1]);
3101 value_addto(row->p[len-1], row->p[len-1], f);
3102 value_multiply(f, f, P->Constraint[l][nvar+i+1]);
3103 value_substract(row->p[len-1], row->p[len-1], f);
3104 value_decrement(row->p[len-1], row->p[len-1]);
3105 ConstraintSimplify(row->p, row->p, len, &f);
3106 value_set_si(f, -1);
3107 Vector_Scale(row->p+1, row->p+1, f, len-1);
3108 value_decrement(row->p[len-1], row->p[len-1]);
3109 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
3110 if (!emptyQ(T)) {
3111 //printf("not all_pos: i: %d, l: %d, u: %d\n", i, l, u);
3112 info[i] = (constraint)(info[i] ^ ALL_POS);
3114 //puts("pos remainder");
3115 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
3116 Polyhedron_Free(T);
3118 if (!(info[i] & ONE_NEG)) {
3119 if (lu_parallel) {
3120 negative_test_constraint(P->Constraint[l],
3121 P->Constraint[u],
3122 row->p, nvar+i, len, &f);
3123 oppose_constraint(row->p, len, &f);
3124 Polyhedron *T = AddConstraints(row->p, 1, P, MaxRays);
3125 if (emptyQ(T)) {
3126 //printf("one_neg i: %d, l: %d, u: %d\n", i, l, u);
3127 info[i] = (constraint)(info[i] | ONE_NEG);
3129 //puts("neg remainder");
3130 //Polyhedron_Print(stdout, P_VALUE_FMT, T);
3131 Polyhedron_Free(T);
3134 if (!(info[i] & ALL_POS) && (info[i] & ONE_NEG))
3135 goto next;
3138 if (info[i] & ALL_POS)
3139 break;
3140 next:
3145 for (int i = 0; i < exist; ++i)
3146 printf("%i: %i\n", i, info[i]);
3148 for (int i = 0; i < exist; ++i)
3149 if (info[i] & ALL_POS) {
3150 #ifdef DEBUG_ER
3151 fprintf(stderr, "\nER: Positive\n");
3152 #endif /* DEBUG_ER */
3153 // Eliminate
3154 // Maybe we should chew off some of the fat here
3155 Matrix *M = Matrix_Alloc(P->Dimension, P->Dimension+1);
3156 for (int j = 0; j < P->Dimension; ++j)
3157 value_set_si(M->p[j][j + (j >= i+nvar)], 1);
3158 Polyhedron *T = Polyhedron_Image(P, M, MaxRays);
3159 Matrix_Free(M);
3160 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
3161 Polyhedron_Free(T);
3162 value_clear(f);
3163 Vector_Free(row);
3164 delete [] info;
3165 return EP;
3167 for (int i = 0; i < exist; ++i)
3168 if (info[i] & ONE_NEG) {
3169 #ifdef DEBUG_ER
3170 fprintf(stderr, "\nER: Negative\n");
3171 #endif /* DEBUG_ER */
3172 Vector_Free(row);
3173 value_clear(f);
3174 delete [] info;
3175 if (i == 0)
3176 return barvinok_enumerate_e(P, exist-1, nparam, MaxRays);
3177 else {
3178 Polyhedron *T = Polyhedron_Copy(P);
3179 SwapColumns(T, nvar+1, nvar+1+i);
3180 evalue *EP = barvinok_enumerate_e(T, exist-1, nparam, MaxRays);
3181 Polyhedron_Free(T);
3182 return EP;
3185 for (int i = 0; i < exist; ++i)
3186 if (info[i] & INDEPENDENT) {
3187 Polyhedron *pos, *neg;
3189 /* Find constraint again and split off negative part */
3191 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
3192 row, f, true, &pos, &neg)) {
3193 #ifdef DEBUG_ER
3194 fprintf(stderr, "\nER: Split\n");
3195 #endif /* DEBUG_ER */
3197 evalue *EP =
3198 barvinok_enumerate_e(neg, exist-1, nparam, MaxRays);
3199 evalue *E =
3200 barvinok_enumerate_e(pos, exist, nparam, MaxRays);
3201 eadd(E, EP);
3202 free_evalue_refs(E);
3203 free(E);
3204 Polyhedron_Free(neg);
3205 Polyhedron_Free(pos);
3206 value_clear(f);
3207 Vector_Free(row);
3208 delete [] info;
3209 return EP;
3212 delete [] info;
3214 Polyhedron *O = P;
3215 Polyhedron *F;
3217 evalue *EP;
3219 EP = enumerate_line(P, exist, nparam, MaxRays);
3220 if (EP)
3221 goto out;
3223 EP = barvinok_enumerate_pip(P, exist, nparam, MaxRays);
3224 if (EP)
3225 goto out;
3227 EP = enumerate_redundant_ray(P, exist, nparam, MaxRays);
3228 if (EP)
3229 goto out;
3231 EP = enumerate_sure(P, exist, nparam, MaxRays);
3232 if (EP)
3233 goto out;
3235 EP = enumerate_ray(P, exist, nparam, MaxRays);
3236 if (EP)
3237 goto out;
3239 EP = enumerate_sure2(P, exist, nparam, MaxRays);
3240 if (EP)
3241 goto out;
3243 F = unfringe(P, MaxRays);
3244 if (!PolyhedronIncludes(F, P)) {
3245 #ifdef DEBUG_ER
3246 fprintf(stderr, "\nER: Fringed\n");
3247 #endif /* DEBUG_ER */
3248 EP = barvinok_enumerate_e(F, exist, nparam, MaxRays);
3249 Polyhedron_Free(F);
3250 goto out;
3252 Polyhedron_Free(F);
3254 if (nparam)
3255 EP = enumerate_vd(&P, exist, nparam, MaxRays);
3256 if (EP)
3257 goto out2;
3259 if (nvar != 0) {
3260 EP = enumerate_sum(P, exist, nparam, MaxRays);
3261 goto out2;
3264 assert(nvar == 0);
3266 int i;
3267 Polyhedron *pos, *neg;
3268 for (i = 0; i < exist; ++i)
3269 if (SplitOnVar(P, i, nvar, len, exist, MaxRays,
3270 row, f, false, &pos, &neg))
3271 break;
3273 assert (i < exist);
3275 pos->next = neg;
3276 EP = enumerate_or(pos, exist, nparam, MaxRays);
3278 out2:
3279 if (O != P)
3280 Polyhedron_Free(P);
3282 out:
3283 value_clear(f);
3284 Vector_Free(row);
3285 return EP;
3288 static void normalize(Polyhedron *i, vec_ZZ& lambda, ZZ& sign,
3289 ZZ& num_s, vec_ZZ& num_p, vec_ZZ& den_s, vec_ZZ& den_p,
3290 mat_ZZ& f)
3292 unsigned dim = i->Dimension;
3293 unsigned nparam = num_p.length();
3294 unsigned nvar = dim - nparam;
3296 int r = 0;
3297 mat_ZZ rays;
3298 rays.SetDims(dim, nvar);
3299 add_rays(rays, i, &r, nvar, true);
3300 den_s = rays * lambda;
3301 int change = 0;
3304 for (int j = 0; j < den_s.length(); ++j) {
3305 values2zz(i->Ray[j]+1+nvar, f[j], nparam);
3306 if (den_s[j] == 0) {
3307 den_p[j] = 1;
3308 continue;
3310 if (First_Non_Zero(i->Ray[j]+1+nvar, nparam) != -1) {
3311 if (den_s[j] > 0) {
3312 den_p[j] = -1;
3313 num_p -= f[j];
3314 } else
3315 den_p[j] = 1;
3316 } else
3317 den_p[j] = 0;
3318 if (den_s[j] > 0)
3319 change ^= 1;
3320 else {
3321 den_s[j] = abs(den_s[j]);
3322 num_s += den_s[j];
3326 if (change)
3327 sign = -sign;
3330 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C, unsigned MaxRays)
3332 Polyhedron ** vcone;
3333 Polyhedron *CA;
3334 unsigned nparam = C->Dimension;
3335 unsigned dim, nvar;
3336 vec_ZZ sign;
3337 int ncone = 0;
3338 sign.SetLength(ncone);
3340 CA = align_context(C, P->Dimension, MaxRays);
3341 P = DomainIntersection(P, CA, MaxRays);
3342 Polyhedron_Free(CA);
3344 assert(!Polyhedron_is_infinite(P, nparam));
3345 assert(P->NbBid == 0);
3346 assert(P->NbEq == 0);
3348 dim = P->Dimension;
3349 nvar = dim - nparam;
3350 vcone = new Polyhedron_p[P->NbRays];
3352 for (int j = 0; j < P->NbRays; ++j) {
3353 if (!value_pos_p(P->Ray[j][dim+1]))
3354 continue;
3356 int npos, nneg;
3357 Polyhedron *C = supporting_cone(P, j);
3358 decompose(C, &vcone[j], &npos, &nneg, MaxRays);
3359 ncone += npos + nneg;
3360 sign.SetLength(ncone);
3361 for (int k = 0; k < npos; ++k)
3362 sign[ncone-nneg-k-1] = 1;
3363 for (int k = 0; k < nneg; ++k)
3364 sign[ncone-k-1] = -1;
3367 mat_ZZ rays;
3368 rays.SetDims(ncone * dim, nvar);
3369 int r = 0;
3370 for (int j = 0; j < P->NbRays; ++j) {
3371 if (!value_pos_p(P->Ray[j][dim+1]))
3372 continue;
3374 for (Polyhedron *i = vcone[j]; i; i = i->next) {
3375 add_rays(rays, i, &r, nvar);
3378 rays.SetDims(r, nvar);
3379 vec_ZZ lambda;
3380 nonorthog(rays, lambda);
3383 cout << "rays: " << rays;
3384 cout << "lambda: " << lambda;
3387 int f = 0;
3388 ZZ num_s;
3389 vec_ZZ num_p;
3390 num_p.SetLength(nparam);
3391 vec_ZZ vertex;
3392 vec_ZZ den_s;
3393 den_s.SetLength(dim);
3394 vec_ZZ den_p;
3395 den_p.SetLength(dim);
3396 mat_ZZ den;
3397 den.SetDims(dim, nparam);
3398 ZZ one;
3399 one = 1;
3400 mpq_t count;
3401 mpq_init(count);
3403 gen_fun * gf = new gen_fun;
3405 for (int j = 0; j < P->NbRays; ++j) {
3406 if (!value_pos_p(P->Ray[j][dim+1]))
3407 continue;
3409 for (Polyhedron *i = vcone[j]; i; i = i->next, ++f) {
3410 lattice_point(P->Ray[j]+1, i, vertex);
3411 int k = 0;
3412 num_s = 0;
3413 for ( ; k < nvar; ++k)
3414 num_s += vertex[k] * lambda[k];
3415 for ( ; k < dim; ++k)
3416 num_p[k-nvar] = vertex[k];
3417 normalize(i, lambda, sign[f], num_s, num_p,
3418 den_s, den_p, den);
3420 int only_param = 0;
3421 int no_param = 0;
3422 for (int k = 0; k < dim; ++k) {
3423 if (den_p[k] == 0)
3424 ++no_param;
3425 else if (den_s[k] == 0)
3426 ++only_param;
3428 if (no_param == 0) {
3429 for (int k = 0; k < dim; ++k)
3430 if (den_p[k] == -1)
3431 den[k] = -den[k];
3432 gf->add(sign[f], one, num_p, den);
3433 } else if (no_param + only_param == dim) {
3434 int k, l;
3435 mat_ZZ pden;
3436 pden.SetDims(only_param, nparam);
3438 for (k = 0, l = 0; k < dim; ++k)
3439 if (den_p[k] != 0)
3440 pden[l++] = den[k];
3442 for (k = 0; k < dim; ++k)
3443 if (den_s[k] != 0)
3444 break;
3446 dpoly n(no_param, num_s);
3447 dpoly d(no_param, den_s[k], 1);
3448 for ( ; k < dim; ++k)
3449 if (den_s[k] != 0) {
3450 dpoly fact(no_param, den_s[k], 1);
3451 d *= fact;
3454 mpq_set_si(count, 0, 1);
3455 n.div(d, count, sign[f]);
3457 ZZ qn, qd;
3458 value2zz(mpq_numref(count), qn);
3459 value2zz(mpq_denref(count), qd);
3461 gf->add(qn, qd, num_p, pden);
3462 } else {
3463 int k, l;
3464 dpoly_r * r = 0;
3465 mat_ZZ pden;
3466 pden.SetDims(only_param, nparam);
3468 for (k = 0, l = 0; k < dim; ++k)
3469 if (den_s[k] == 0)
3470 pden[l++] = den[k];
3472 for (k = 0; k < dim; ++k)
3473 if (den_p[k] == 0)
3474 break;
3476 dpoly n(no_param, num_s);
3477 dpoly d(no_param, den_s[k], 1);
3478 for ( ; k < dim; ++k)
3479 if (den_p[k] == 0) {
3480 dpoly fact(no_param, den_s[k], 1);
3481 d *= fact;
3484 for (k = 0; k < dim; ++k) {
3485 if (den_s[k] == 0 || den_p[k] == 0)
3486 continue;
3488 dpoly pd(no_param-1, den_s[k], 1);
3489 int s = den_p[k] < 0 ? -1 : 1;
3491 if (r == 0)
3492 r = new dpoly_r(n, pd, k, s, dim);
3493 else
3494 assert(0); // for now
3497 r->div(d, sign[f], gf, pden, den, num_p);
3501 cout << "sign: " << sign[f];
3502 cout << "num_s: " << num_s;
3503 cout << "num_p: " << num_p;
3504 cout << "den_s: " << den_s;
3505 cout << "den_p: " << den_p;
3506 cout << "den: " << den;
3507 cout << "only_param: " << only_param;
3508 cout << "no_param: " << no_param;
3509 cout << endl;
3515 mpq_clear(count);
3517 return gf;