store a pointer to QemuOpts in DeviceState, release it when zapping a device.
[armpft.git] / hw / prep_pci.c
blob2d8a0fa95629df5ff04e54c143c6428aedccf46f
1 /*
2 * QEMU PREP PCI host
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pci.h"
28 typedef uint32_t pci_addr_t;
29 #include "pci_host.h"
31 typedef PCIHostState PREPPCIState;
33 static void pci_prep_addr_writel(void* opaque, uint32_t addr, uint32_t val)
35 PREPPCIState *s = opaque;
36 s->config_reg = val;
39 static uint32_t pci_prep_addr_readl(void* opaque, uint32_t addr)
41 PREPPCIState *s = opaque;
42 return s->config_reg;
45 static inline uint32_t PPC_PCIIO_config(target_phys_addr_t addr)
47 int i;
49 for(i = 0; i < 11; i++) {
50 if ((addr & (1 << (11 + i))) != 0)
51 break;
53 return (addr & 0x7ff) | (i << 11);
56 static void PPC_PCIIO_writeb (void *opaque, target_phys_addr_t addr, uint32_t val)
58 PREPPCIState *s = opaque;
59 pci_data_write(s->bus, PPC_PCIIO_config(addr), val, 1);
62 static void PPC_PCIIO_writew (void *opaque, target_phys_addr_t addr, uint32_t val)
64 PREPPCIState *s = opaque;
65 #ifdef TARGET_WORDS_BIGENDIAN
66 val = bswap16(val);
67 #endif
68 pci_data_write(s->bus, PPC_PCIIO_config(addr), val, 2);
71 static void PPC_PCIIO_writel (void *opaque, target_phys_addr_t addr, uint32_t val)
73 PREPPCIState *s = opaque;
74 #ifdef TARGET_WORDS_BIGENDIAN
75 val = bswap32(val);
76 #endif
77 pci_data_write(s->bus, PPC_PCIIO_config(addr), val, 4);
80 static uint32_t PPC_PCIIO_readb (void *opaque, target_phys_addr_t addr)
82 PREPPCIState *s = opaque;
83 uint32_t val;
84 val = pci_data_read(s->bus, PPC_PCIIO_config(addr), 1);
85 return val;
88 static uint32_t PPC_PCIIO_readw (void *opaque, target_phys_addr_t addr)
90 PREPPCIState *s = opaque;
91 uint32_t val;
92 val = pci_data_read(s->bus, PPC_PCIIO_config(addr), 2);
93 #ifdef TARGET_WORDS_BIGENDIAN
94 val = bswap16(val);
95 #endif
96 return val;
99 static uint32_t PPC_PCIIO_readl (void *opaque, target_phys_addr_t addr)
101 PREPPCIState *s = opaque;
102 uint32_t val;
103 val = pci_data_read(s->bus, PPC_PCIIO_config(addr), 4);
104 #ifdef TARGET_WORDS_BIGENDIAN
105 val = bswap32(val);
106 #endif
107 return val;
110 static CPUWriteMemoryFunc * const PPC_PCIIO_write[] = {
111 &PPC_PCIIO_writeb,
112 &PPC_PCIIO_writew,
113 &PPC_PCIIO_writel,
116 static CPUReadMemoryFunc * const PPC_PCIIO_read[] = {
117 &PPC_PCIIO_readb,
118 &PPC_PCIIO_readw,
119 &PPC_PCIIO_readl,
122 static int prep_map_irq(PCIDevice *pci_dev, int irq_num)
124 return (irq_num + (pci_dev->devfn >> 3)) & 1;
127 static void prep_set_irq(void *opaque, int irq_num, int level)
129 qemu_irq *pic = opaque;
131 qemu_set_irq(pic[(irq_num & 1) ? 11 : 9] , level);
134 PCIBus *pci_prep_init(qemu_irq *pic)
136 PREPPCIState *s;
137 PCIDevice *d;
138 int PPC_io_memory;
140 s = qemu_mallocz(sizeof(PREPPCIState));
141 s->bus = pci_register_bus(NULL, "pci",
142 prep_set_irq, prep_map_irq, pic, 0, 4);
144 register_ioport_write(0xcf8, 4, 4, pci_prep_addr_writel, s);
145 register_ioport_read(0xcf8, 4, 4, pci_prep_addr_readl, s);
147 register_ioport_write(0xcfc, 4, 1, pci_host_data_writeb, s);
148 register_ioport_write(0xcfc, 4, 2, pci_host_data_writew, s);
149 register_ioport_write(0xcfc, 4, 4, pci_host_data_writel, s);
150 register_ioport_read(0xcfc, 4, 1, pci_host_data_readb, s);
151 register_ioport_read(0xcfc, 4, 2, pci_host_data_readw, s);
152 register_ioport_read(0xcfc, 4, 4, pci_host_data_readl, s);
154 PPC_io_memory = cpu_register_io_memory(PPC_PCIIO_read,
155 PPC_PCIIO_write, s);
156 cpu_register_physical_memory(0x80800000, 0x00400000, PPC_io_memory);
158 /* PCI host bridge */
159 d = pci_register_device(s->bus, "PREP Host Bridge - Motorola Raven",
160 sizeof(PCIDevice), 0, NULL, NULL);
161 pci_config_set_vendor_id(d->config, PCI_VENDOR_ID_MOTOROLA);
162 pci_config_set_device_id(d->config, PCI_DEVICE_ID_MOTOROLA_RAVEN);
163 d->config[0x08] = 0x00; // revision
164 pci_config_set_class(d->config, PCI_CLASS_BRIDGE_HOST);
165 d->config[0x0C] = 0x08; // cache_line_size
166 d->config[0x0D] = 0x10; // latency_timer
167 d->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
168 d->config[0x34] = 0x00; // capabilities_pointer
170 return s->bus;