eepro100: Clean code which sets the PCI device id
[armpft.git] / hw / fw_cfg.c
blob85f433a7005b99b3d07ace5cb4150f67f79e4c82
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sysemu.h"
26 #include "isa.h"
27 #include "fw_cfg.h"
29 /* debug firmware config */
30 //#define DEBUG_FW_CFG
32 #ifdef DEBUG_FW_CFG
33 #define FW_CFG_DPRINTF(fmt, ...) \
34 do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define FW_CFG_DPRINTF(fmt, ...)
37 #endif
39 #define FW_CFG_SIZE 2
41 typedef struct _FWCfgEntry {
42 uint16_t len;
43 uint8_t *data;
44 void *callback_opaque;
45 FWCfgCallback callback;
46 } FWCfgEntry;
48 typedef struct _FWCfgState {
49 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
50 uint16_t cur_entry;
51 uint16_t cur_offset;
52 } FWCfgState;
54 static void fw_cfg_write(FWCfgState *s, uint8_t value)
56 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
57 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
59 FW_CFG_DPRINTF("write %d\n", value);
61 if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
62 e->data[s->cur_offset++] = value;
63 if (s->cur_offset == e->len) {
64 e->callback(e->callback_opaque, e->data);
65 s->cur_offset = 0;
70 static int fw_cfg_select(FWCfgState *s, uint16_t key)
72 int ret;
74 s->cur_offset = 0;
75 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
76 s->cur_entry = FW_CFG_INVALID;
77 ret = 0;
78 } else {
79 s->cur_entry = key;
80 ret = 1;
83 FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not ");
85 return ret;
88 static uint8_t fw_cfg_read(FWCfgState *s)
90 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
91 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
92 uint8_t ret;
94 if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len)
95 ret = 0;
96 else
97 ret = e->data[s->cur_offset++];
99 FW_CFG_DPRINTF("read %d\n", ret);
101 return ret;
104 static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr)
106 return fw_cfg_read(opaque);
109 static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value)
111 fw_cfg_write(opaque, (uint8_t)value);
114 static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value)
116 fw_cfg_select(opaque, (uint16_t)value);
119 static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
121 return fw_cfg_read(opaque);
124 static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
125 uint32_t value)
127 fw_cfg_write(opaque, (uint8_t)value);
130 static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr,
131 uint32_t value)
133 fw_cfg_select(opaque, (uint16_t)value);
136 static CPUReadMemoryFunc * const fw_cfg_ctl_mem_read[3] = {
137 NULL,
138 NULL,
139 NULL,
142 static CPUWriteMemoryFunc * const fw_cfg_ctl_mem_write[3] = {
143 NULL,
144 fw_cfg_mem_writew,
145 NULL,
148 static CPUReadMemoryFunc * const fw_cfg_data_mem_read[3] = {
149 fw_cfg_mem_readb,
150 NULL,
151 NULL,
154 static CPUWriteMemoryFunc * const fw_cfg_data_mem_write[3] = {
155 fw_cfg_mem_writeb,
156 NULL,
157 NULL,
160 static void fw_cfg_reset(void *opaque)
162 FWCfgState *s = opaque;
164 fw_cfg_select(s, 0);
167 static void fw_cfg_save(QEMUFile *f, void *opaque)
169 FWCfgState *s = opaque;
171 qemu_put_be16s(f, &s->cur_entry);
172 qemu_put_be16s(f, &s->cur_offset);
175 static int fw_cfg_load(QEMUFile *f, void *opaque, int version_id)
177 FWCfgState *s = opaque;
179 if (version_id > 1)
180 return -EINVAL;
182 qemu_get_be16s(f, &s->cur_entry);
183 qemu_get_be16s(f, &s->cur_offset);
185 return 0;
188 int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint16_t len)
190 FWCfgState *s = opaque;
191 int arch = !!(key & FW_CFG_ARCH_LOCAL);
193 key &= FW_CFG_ENTRY_MASK;
195 if (key >= FW_CFG_MAX_ENTRY)
196 return 0;
198 s->entries[arch][key].data = data;
199 s->entries[arch][key].len = len;
201 return 1;
204 int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value)
206 uint16_t *copy;
208 copy = qemu_malloc(sizeof(value));
209 *copy = cpu_to_le16(value);
210 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
213 int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value)
215 uint32_t *copy;
217 copy = qemu_malloc(sizeof(value));
218 *copy = cpu_to_le32(value);
219 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
222 int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value)
224 uint64_t *copy;
226 copy = qemu_malloc(sizeof(value));
227 *copy = cpu_to_le64(value);
228 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
231 int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback,
232 void *callback_opaque, uint8_t *data, size_t len)
234 FWCfgState *s = opaque;
235 int arch = !!(key & FW_CFG_ARCH_LOCAL);
237 if (!(key & FW_CFG_WRITE_CHANNEL))
238 return 0;
240 key &= FW_CFG_ENTRY_MASK;
242 if (key >= FW_CFG_MAX_ENTRY || len > 65535)
243 return 0;
245 s->entries[arch][key].data = data;
246 s->entries[arch][key].len = len;
247 s->entries[arch][key].callback_opaque = callback_opaque;
248 s->entries[arch][key].callback = callback;
250 return 1;
253 void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port,
254 target_phys_addr_t ctl_addr, target_phys_addr_t data_addr)
256 FWCfgState *s;
257 int io_ctl_memory, io_data_memory;
259 s = qemu_mallocz(sizeof(FWCfgState));
261 if (ctl_port) {
262 register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s);
264 if (data_port) {
265 register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s);
266 register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s);
268 if (ctl_addr) {
269 io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read,
270 fw_cfg_ctl_mem_write, s);
271 cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory);
273 if (data_addr) {
274 io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read,
275 fw_cfg_data_mem_write, s);
276 cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory);
278 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4);
279 fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
280 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC));
281 fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
282 fw_cfg_add_i16(s, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
283 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
285 register_savevm("fw_cfg", -1, 1, fw_cfg_save, fw_cfg_load, s);
286 qemu_register_reset(fw_cfg_reset, s);
287 fw_cfg_reset(s);
289 return s;