2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
15 #include "scsi-disk.h"
16 #include "block_int.h"
19 //#define DEBUG_LSI_REG
22 #define DPRINTF(fmt, ...) \
23 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
24 #define BADF(fmt, ...) \
25 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
27 #define DPRINTF(fmt, ...) do {} while(0)
28 #define BADF(fmt, ...) \
29 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #define LSI_SCNTL0_TRG 0x01
33 #define LSI_SCNTL0_AAP 0x02
34 #define LSI_SCNTL0_EPC 0x08
35 #define LSI_SCNTL0_WATN 0x10
36 #define LSI_SCNTL0_START 0x20
38 #define LSI_SCNTL1_SST 0x01
39 #define LSI_SCNTL1_IARB 0x02
40 #define LSI_SCNTL1_AESP 0x04
41 #define LSI_SCNTL1_RST 0x08
42 #define LSI_SCNTL1_CON 0x10
43 #define LSI_SCNTL1_DHP 0x20
44 #define LSI_SCNTL1_ADB 0x40
45 #define LSI_SCNTL1_EXC 0x80
47 #define LSI_SCNTL2_WSR 0x01
48 #define LSI_SCNTL2_VUE0 0x02
49 #define LSI_SCNTL2_VUE1 0x04
50 #define LSI_SCNTL2_WSS 0x08
51 #define LSI_SCNTL2_SLPHBEN 0x10
52 #define LSI_SCNTL2_SLPMD 0x20
53 #define LSI_SCNTL2_CHM 0x40
54 #define LSI_SCNTL2_SDU 0x80
56 #define LSI_ISTAT0_DIP 0x01
57 #define LSI_ISTAT0_SIP 0x02
58 #define LSI_ISTAT0_INTF 0x04
59 #define LSI_ISTAT0_CON 0x08
60 #define LSI_ISTAT0_SEM 0x10
61 #define LSI_ISTAT0_SIGP 0x20
62 #define LSI_ISTAT0_SRST 0x40
63 #define LSI_ISTAT0_ABRT 0x80
65 #define LSI_ISTAT1_SI 0x01
66 #define LSI_ISTAT1_SRUN 0x02
67 #define LSI_ISTAT1_FLSH 0x04
69 #define LSI_SSTAT0_SDP0 0x01
70 #define LSI_SSTAT0_RST 0x02
71 #define LSI_SSTAT0_WOA 0x04
72 #define LSI_SSTAT0_LOA 0x08
73 #define LSI_SSTAT0_AIP 0x10
74 #define LSI_SSTAT0_OLF 0x20
75 #define LSI_SSTAT0_ORF 0x40
76 #define LSI_SSTAT0_ILF 0x80
78 #define LSI_SIST0_PAR 0x01
79 #define LSI_SIST0_RST 0x02
80 #define LSI_SIST0_UDC 0x04
81 #define LSI_SIST0_SGE 0x08
82 #define LSI_SIST0_RSL 0x10
83 #define LSI_SIST0_SEL 0x20
84 #define LSI_SIST0_CMP 0x40
85 #define LSI_SIST0_MA 0x80
87 #define LSI_SIST1_HTH 0x01
88 #define LSI_SIST1_GEN 0x02
89 #define LSI_SIST1_STO 0x04
90 #define LSI_SIST1_SBMC 0x10
92 #define LSI_SOCL_IO 0x01
93 #define LSI_SOCL_CD 0x02
94 #define LSI_SOCL_MSG 0x04
95 #define LSI_SOCL_ATN 0x08
96 #define LSI_SOCL_SEL 0x10
97 #define LSI_SOCL_BSY 0x20
98 #define LSI_SOCL_ACK 0x40
99 #define LSI_SOCL_REQ 0x80
101 #define LSI_DSTAT_IID 0x01
102 #define LSI_DSTAT_SIR 0x04
103 #define LSI_DSTAT_SSI 0x08
104 #define LSI_DSTAT_ABRT 0x10
105 #define LSI_DSTAT_BF 0x20
106 #define LSI_DSTAT_MDPE 0x40
107 #define LSI_DSTAT_DFE 0x80
109 #define LSI_DCNTL_COM 0x01
110 #define LSI_DCNTL_IRQD 0x02
111 #define LSI_DCNTL_STD 0x04
112 #define LSI_DCNTL_IRQM 0x08
113 #define LSI_DCNTL_SSM 0x10
114 #define LSI_DCNTL_PFEN 0x20
115 #define LSI_DCNTL_PFF 0x40
116 #define LSI_DCNTL_CLSE 0x80
118 #define LSI_DMODE_MAN 0x01
119 #define LSI_DMODE_BOF 0x02
120 #define LSI_DMODE_ERMP 0x04
121 #define LSI_DMODE_ERL 0x08
122 #define LSI_DMODE_DIOM 0x10
123 #define LSI_DMODE_SIOM 0x20
125 #define LSI_CTEST2_DACK 0x01
126 #define LSI_CTEST2_DREQ 0x02
127 #define LSI_CTEST2_TEOP 0x04
128 #define LSI_CTEST2_PCICIE 0x08
129 #define LSI_CTEST2_CM 0x10
130 #define LSI_CTEST2_CIO 0x20
131 #define LSI_CTEST2_SIGP 0x40
132 #define LSI_CTEST2_DDIR 0x80
134 #define LSI_CTEST5_BL2 0x04
135 #define LSI_CTEST5_DDIR 0x08
136 #define LSI_CTEST5_MASR 0x10
137 #define LSI_CTEST5_DFSN 0x20
138 #define LSI_CTEST5_BBCK 0x40
139 #define LSI_CTEST5_ADCK 0x80
141 #define LSI_CCNTL0_DILS 0x01
142 #define LSI_CCNTL0_DISFC 0x10
143 #define LSI_CCNTL0_ENNDJ 0x20
144 #define LSI_CCNTL0_PMJCTL 0x40
145 #define LSI_CCNTL0_ENPMJ 0x80
147 #define LSI_CCNTL1_EN64DBMV 0x01
148 #define LSI_CCNTL1_EN64TIBMV 0x02
149 #define LSI_CCNTL1_64TIMOD 0x04
150 #define LSI_CCNTL1_DDAC 0x08
151 #define LSI_CCNTL1_ZMOD 0x80
153 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
163 /* Maximum length of MSG IN data. */
164 #define LSI_MAX_MSGIN_LEN 8
166 /* Flag set if this is a tagged command. */
167 #define LSI_TAG_VALID (1 << 16)
179 uint32_t script_ram_base
;
181 int carry
; /* ??? Should this be an a visible register somewhere? */
183 /* Action to take at the end of a MSG IN phase.
184 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
187 uint8_t msg
[LSI_MAX_MSGIN_LEN
];
188 /* 0 if SCRIPTS are running or stopped.
189 * 1 if a Wait Reselect instruction has been issued.
190 * 2 if processing DMA from lsi_execute_script.
191 * 3 if a DMA operation is in progress. */
193 SCSIDevice
*scsi_dev
[LSI_MAX_DEVS
];
194 SCSIDevice
*current_dev
;
196 /* The tag is a combination of the device ID and the SCSI tag. */
197 uint32_t current_tag
;
198 uint32_t current_dma_len
;
199 int command_complete
;
264 uint32_t scratch
[18]; /* SCRATCHA-SCRATCHR */
267 /* Script ram is stored as 32-bit words in host byteorder. */
268 uint32_t script_ram
[2048];
271 static void lsi_soft_reset(LSIState
*s
)
281 memset(s
->scratch
, 0, sizeof(s
->scratch
));
337 static int lsi_dma_40bit(LSIState
*s
)
339 if ((s
->ccntl1
& LSI_CCNTL1_40BIT
) == LSI_CCNTL1_40BIT
)
344 static int lsi_dma_ti64bit(LSIState
*s
)
346 if ((s
->ccntl1
& LSI_CCNTL1_EN64TIBMV
) == LSI_CCNTL1_EN64TIBMV
)
351 static int lsi_dma_64bit(LSIState
*s
)
353 if ((s
->ccntl1
& LSI_CCNTL1_EN64DBMV
) == LSI_CCNTL1_EN64DBMV
)
358 static uint8_t lsi_reg_readb(LSIState
*s
, int offset
);
359 static void lsi_reg_writeb(LSIState
*s
, int offset
, uint8_t val
);
360 static void lsi_execute_script(LSIState
*s
);
362 static inline uint32_t read_dword(LSIState
*s
, uint32_t addr
)
366 /* Optimize reading from SCRIPTS RAM. */
367 if ((addr
& 0xffffe000) == s
->script_ram_base
) {
368 return s
->script_ram
[(addr
& 0x1fff) >> 2];
370 cpu_physical_memory_read(addr
, (uint8_t *)&buf
, 4);
371 return cpu_to_le32(buf
);
374 static void lsi_stop_script(LSIState
*s
)
376 s
->istat1
&= ~LSI_ISTAT1_SRUN
;
379 static void lsi_update_irq(LSIState
*s
)
382 static int last_level
;
384 /* It's unclear whether the DIP/SIP bits should be cleared when the
385 Interrupt Status Registers are cleared or when istat0 is read.
386 We currently do the formwer, which seems to work. */
389 if (s
->dstat
& s
->dien
)
391 s
->istat0
|= LSI_ISTAT0_DIP
;
393 s
->istat0
&= ~LSI_ISTAT0_DIP
;
396 if (s
->sist0
|| s
->sist1
) {
397 if ((s
->sist0
& s
->sien0
) || (s
->sist1
& s
->sien1
))
399 s
->istat0
|= LSI_ISTAT0_SIP
;
401 s
->istat0
&= ~LSI_ISTAT0_SIP
;
403 if (s
->istat0
& LSI_ISTAT0_INTF
)
406 if (level
!= last_level
) {
407 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
408 level
, s
->dstat
, s
->sist1
, s
->sist0
);
411 qemu_set_irq(s
->pci_dev
.irq
[0], level
);
414 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
415 static void lsi_script_scsi_interrupt(LSIState
*s
, int stat0
, int stat1
)
420 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
421 stat1
, stat0
, s
->sist1
, s
->sist0
);
424 /* Stop processor on fatal or unmasked interrupt. As a special hack
425 we don't stop processing when raising STO. Instead continue
426 execution and stop at the next insn that accesses the SCSI bus. */
427 mask0
= s
->sien0
| ~(LSI_SIST0_CMP
| LSI_SIST0_SEL
| LSI_SIST0_RSL
);
428 mask1
= s
->sien1
| ~(LSI_SIST1_GEN
| LSI_SIST1_HTH
);
429 mask1
&= ~LSI_SIST1_STO
;
430 if (s
->sist0
& mask0
|| s
->sist1
& mask1
) {
436 /* Stop SCRIPTS execution and raise a DMA interrupt. */
437 static void lsi_script_dma_interrupt(LSIState
*s
, int stat
)
439 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat
, s
->dstat
);
445 static inline void lsi_set_phase(LSIState
*s
, int phase
)
447 s
->sstat1
= (s
->sstat1
& ~PHASE_MASK
) | phase
;
450 static void lsi_bad_phase(LSIState
*s
, int out
, int new_phase
)
452 /* Trigger a phase mismatch. */
453 if (s
->ccntl0
& LSI_CCNTL0_ENPMJ
) {
454 if ((s
->ccntl0
& LSI_CCNTL0_PMJCTL
) || out
) {
459 DPRINTF("Data phase mismatch jump to %08x\n", s
->dsp
);
461 DPRINTF("Phase mismatch interrupt\n");
462 lsi_script_scsi_interrupt(s
, LSI_SIST0_MA
, 0);
465 lsi_set_phase(s
, new_phase
);
469 /* Resume SCRIPTS execution after a DMA operation. */
470 static void lsi_resume_script(LSIState
*s
)
472 if (s
->waiting
!= 2) {
474 lsi_execute_script(s
);
480 /* Initiate a SCSI layer data transfer. */
481 static void lsi_do_dma(LSIState
*s
, int out
)
484 target_phys_addr_t addr
;
486 if (!s
->current_dma_len
) {
487 /* Wait until data is available. */
488 DPRINTF("DMA no data available\n");
493 if (count
> s
->current_dma_len
)
494 count
= s
->current_dma_len
;
497 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
498 if (lsi_dma_40bit(s
) || lsi_dma_ti64bit(s
))
499 addr
|= ((uint64_t)s
->dnad64
<< 32);
501 addr
|= ((uint64_t)s
->dbms
<< 32);
503 addr
|= ((uint64_t)s
->sbms
<< 32);
505 DPRINTF("DMA addr=0x" TARGET_FMT_plx
" len=%d\n", addr
, count
);
510 if (s
->dma_buf
== NULL
) {
511 s
->dma_buf
= s
->current_dev
->get_buf(s
->current_dev
,
515 /* ??? Set SFBR to first data byte. */
517 cpu_physical_memory_read(addr
, s
->dma_buf
, count
);
519 cpu_physical_memory_write(addr
, s
->dma_buf
, count
);
521 s
->current_dma_len
-= count
;
522 if (s
->current_dma_len
== 0) {
525 /* Write the data. */
526 s
->current_dev
->write_data(s
->current_dev
, s
->current_tag
);
528 /* Request any remaining data. */
529 s
->current_dev
->read_data(s
->current_dev
, s
->current_tag
);
533 lsi_resume_script(s
);
538 /* Add a command to the queue. */
539 static void lsi_queue_command(LSIState
*s
)
543 DPRINTF("Queueing tag=0x%x\n", s
->current_tag
);
544 if (s
->queue_len
== s
->active_commands
) {
546 s
->queue
= qemu_realloc(s
->queue
, s
->queue_len
* sizeof(lsi_queue
));
548 p
= &s
->queue
[s
->active_commands
++];
549 p
->tag
= s
->current_tag
;
551 p
->out
= (s
->sstat1
& PHASE_MASK
) == PHASE_DO
;
554 /* Queue a byte for a MSG IN phase. */
555 static void lsi_add_msg_byte(LSIState
*s
, uint8_t data
)
557 if (s
->msg_len
>= LSI_MAX_MSGIN_LEN
) {
558 BADF("MSG IN data too long\n");
560 DPRINTF("MSG IN 0x%02x\n", data
);
561 s
->msg
[s
->msg_len
++] = data
;
565 /* Perform reselection to continue a command. */
566 static void lsi_reselect(LSIState
*s
, uint32_t tag
)
573 for (n
= 0; n
< s
->active_commands
; n
++) {
578 if (n
== s
->active_commands
) {
579 BADF("Reselected non-existant command tag=0x%x\n", tag
);
582 id
= (tag
>> 8) & 0xf;
584 DPRINTF("Reselected target %d\n", id
);
585 s
->current_dev
= s
->scsi_dev
[id
];
586 s
->current_tag
= tag
;
587 s
->scntl1
|= LSI_SCNTL1_CON
;
588 lsi_set_phase(s
, PHASE_MI
);
589 s
->msg_action
= p
->out
? 2 : 3;
590 s
->current_dma_len
= p
->pending
;
592 lsi_add_msg_byte(s
, 0x80);
593 if (s
->current_tag
& LSI_TAG_VALID
) {
594 lsi_add_msg_byte(s
, 0x20);
595 lsi_add_msg_byte(s
, tag
& 0xff);
598 s
->active_commands
--;
599 if (n
!= s
->active_commands
) {
600 s
->queue
[n
] = s
->queue
[s
->active_commands
];
604 /* Record that data is available for a queued command. Returns zero if
605 the device was reselected, nonzero if the IO is deferred. */
606 static int lsi_queue_tag(LSIState
*s
, uint32_t tag
, uint32_t arg
)
610 for (i
= 0; i
< s
->active_commands
; i
++) {
614 BADF("Multiple IO pending for tag %d\n", tag
);
617 if (s
->waiting
== 1) {
618 /* Reselect device. */
619 lsi_reselect(s
, tag
);
622 DPRINTF("Queueing IO tag=0x%x\n", tag
);
628 BADF("IO with unknown tag %d\n", tag
);
632 /* Callback to indicate that the SCSI layer has completed a transfer. */
633 static void lsi_command_complete(void *opaque
, int reason
, uint32_t tag
,
636 LSIState
*s
= (LSIState
*)opaque
;
639 out
= (s
->sstat1
& PHASE_MASK
) == PHASE_DO
;
640 if (reason
== SCSI_REASON_DONE
) {
641 DPRINTF("Command complete sense=%d\n", (int)arg
);
643 s
->command_complete
= 2;
644 if (s
->waiting
&& s
->dbc
!= 0) {
645 /* Raise phase mismatch for short transfers. */
646 lsi_bad_phase(s
, out
, PHASE_ST
);
648 lsi_set_phase(s
, PHASE_ST
);
650 lsi_resume_script(s
);
654 if (s
->waiting
== 1 || tag
!= s
->current_tag
) {
655 if (lsi_queue_tag(s
, tag
, arg
))
658 DPRINTF("Data ready tag=0x%x len=%d\n", tag
, arg
);
659 s
->current_dma_len
= arg
;
660 s
->command_complete
= 1;
663 if (s
->waiting
== 1 || s
->dbc
== 0) {
664 lsi_resume_script(s
);
670 static void lsi_do_command(LSIState
*s
)
675 DPRINTF("Send command len=%d\n", s
->dbc
);
678 cpu_physical_memory_read(s
->dnad
, buf
, s
->dbc
);
680 s
->command_complete
= 0;
681 n
= s
->current_dev
->send_command(s
->current_dev
, s
->current_tag
, buf
,
684 lsi_set_phase(s
, PHASE_DI
);
685 s
->current_dev
->read_data(s
->current_dev
, s
->current_tag
);
687 lsi_set_phase(s
, PHASE_DO
);
688 s
->current_dev
->write_data(s
->current_dev
, s
->current_tag
);
691 if (!s
->command_complete
) {
693 /* Command did not complete immediately so disconnect. */
694 lsi_add_msg_byte(s
, 2); /* SAVE DATA POINTER */
695 lsi_add_msg_byte(s
, 4); /* DISCONNECT */
697 lsi_set_phase(s
, PHASE_MI
);
699 lsi_queue_command(s
);
701 /* wait command complete */
702 lsi_set_phase(s
, PHASE_DI
);
707 static void lsi_do_status(LSIState
*s
)
710 DPRINTF("Get status len=%d sense=%d\n", s
->dbc
, s
->sense
);
712 BADF("Bad Status move\n");
716 cpu_physical_memory_write(s
->dnad
, &sense
, 1);
717 lsi_set_phase(s
, PHASE_MI
);
719 lsi_add_msg_byte(s
, 0); /* COMMAND COMPLETE */
722 static void lsi_disconnect(LSIState
*s
)
724 s
->scntl1
&= ~LSI_SCNTL1_CON
;
725 s
->sstat1
&= ~PHASE_MASK
;
728 static void lsi_do_msgin(LSIState
*s
)
731 DPRINTF("Message in len=%d/%d\n", s
->dbc
, s
->msg_len
);
736 cpu_physical_memory_write(s
->dnad
, s
->msg
, len
);
737 /* Linux drivers rely on the last byte being in the SIDL. */
738 s
->sidl
= s
->msg
[len
- 1];
741 memmove(s
->msg
, s
->msg
+ len
, s
->msg_len
);
743 /* ??? Check if ATN (not yet implemented) is asserted and maybe
744 switch to PHASE_MO. */
745 switch (s
->msg_action
) {
747 lsi_set_phase(s
, PHASE_CMD
);
753 lsi_set_phase(s
, PHASE_DO
);
756 lsi_set_phase(s
, PHASE_DI
);
764 /* Read the next byte during a MSGOUT phase. */
765 static uint8_t lsi_get_msgbyte(LSIState
*s
)
768 cpu_physical_memory_read(s
->dnad
, &data
, 1);
774 static void lsi_do_msgout(LSIState
*s
)
779 DPRINTF("MSG out len=%d\n", s
->dbc
);
781 msg
= lsi_get_msgbyte(s
);
786 DPRINTF("MSG: Disconnect\n");
790 DPRINTF("MSG: No Operation\n");
791 lsi_set_phase(s
, PHASE_CMD
);
794 len
= lsi_get_msgbyte(s
);
795 msg
= lsi_get_msgbyte(s
);
796 DPRINTF("Extended message 0x%x (len %d)\n", msg
, len
);
799 DPRINTF("SDTR (ignored)\n");
803 DPRINTF("WDTR (ignored)\n");
810 case 0x20: /* SIMPLE queue */
811 s
->current_tag
|= lsi_get_msgbyte(s
) | LSI_TAG_VALID
;
812 DPRINTF("SIMPLE queue tag=0x%x\n", s
->current_tag
& 0xff);
814 case 0x21: /* HEAD of queue */
815 BADF("HEAD queue not implemented\n");
816 s
->current_tag
|= lsi_get_msgbyte(s
) | LSI_TAG_VALID
;
818 case 0x22: /* ORDERED queue */
819 BADF("ORDERED queue not implemented\n");
820 s
->current_tag
|= lsi_get_msgbyte(s
) | LSI_TAG_VALID
;
823 if ((msg
& 0x80) == 0) {
826 s
->current_lun
= msg
& 7;
827 DPRINTF("Select LUN %d\n", s
->current_lun
);
828 lsi_set_phase(s
, PHASE_CMD
);
834 BADF("Unimplemented message 0x%02x\n", msg
);
835 lsi_set_phase(s
, PHASE_MI
);
836 lsi_add_msg_byte(s
, 7); /* MESSAGE REJECT */
840 /* Sign extend a 24-bit value. */
841 static inline int32_t sxt24(int32_t n
)
843 return (n
<< 8) >> 8;
846 #define LSI_BUF_SIZE 4096
847 static void lsi_memcpy(LSIState
*s
, uint32_t dest
, uint32_t src
, int count
)
850 uint8_t buf
[LSI_BUF_SIZE
];
852 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest
, src
, count
);
854 n
= (count
> LSI_BUF_SIZE
) ? LSI_BUF_SIZE
: count
;
855 cpu_physical_memory_read(src
, buf
, n
);
856 cpu_physical_memory_write(dest
, buf
, n
);
863 static void lsi_wait_reselect(LSIState
*s
)
866 DPRINTF("Wait Reselect\n");
867 if (s
->current_dma_len
)
868 BADF("Reselect with pending DMA\n");
869 for (i
= 0; i
< s
->active_commands
; i
++) {
870 if (s
->queue
[i
].pending
) {
871 lsi_reselect(s
, s
->queue
[i
].tag
);
875 if (s
->current_dma_len
== 0) {
880 static void lsi_execute_script(LSIState
*s
)
883 uint32_t addr
, addr_high
;
885 int insn_processed
= 0;
887 s
->istat1
|= LSI_ISTAT1_SRUN
;
890 insn
= read_dword(s
, s
->dsp
);
892 /* If we receive an empty opcode increment the DSP by 4 bytes
893 instead of 8 and execute the next opcode at that location */
897 addr
= read_dword(s
, s
->dsp
+ 4);
899 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s
->dsp
, insn
, addr
);
901 s
->dcmd
= insn
>> 24;
903 switch (insn
>> 30) {
904 case 0: /* Block move. */
905 if (s
->sist1
& LSI_SIST1_STO
) {
906 DPRINTF("Delayed select timeout\n");
910 s
->dbc
= insn
& 0xffffff;
914 if (insn
& (1 << 29)) {
915 /* Indirect addressing. */
916 addr
= read_dword(s
, addr
);
917 } else if (insn
& (1 << 28)) {
920 /* Table indirect addressing. */
922 /* 32-bit Table indirect */
923 offset
= sxt24(addr
);
924 cpu_physical_memory_read(s
->dsa
+ offset
, (uint8_t *)buf
, 8);
925 /* byte count is stored in bits 0:23 only */
926 s
->dbc
= cpu_to_le32(buf
[0]) & 0xffffff;
928 addr
= cpu_to_le32(buf
[1]);
930 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
931 * table, bits [31:24] */
932 if (lsi_dma_40bit(s
))
933 addr_high
= cpu_to_le32(buf
[0]) >> 24;
934 else if (lsi_dma_ti64bit(s
)) {
935 int selector
= (cpu_to_le32(buf
[0]) >> 24) & 0x1f;
938 /* offset index into scratch registers since
939 * TI64 mode can use registers C to R */
940 addr_high
= s
->scratch
[2 + selector
];
961 BADF("Illegal selector specified (0x%x > 0x15)"
962 " for 64-bit DMA block move", selector
);
966 } else if (lsi_dma_64bit(s
)) {
967 /* fetch a 3rd dword if 64-bit direct move is enabled and
968 only if we're not doing table indirect or indirect addressing */
969 s
->dbms
= read_dword(s
, s
->dsp
);
973 if ((s
->sstat1
& PHASE_MASK
) != ((insn
>> 24) & 7)) {
974 DPRINTF("Wrong phase got %d expected %d\n",
975 s
->sstat1
& PHASE_MASK
, (insn
>> 24) & 7);
976 lsi_script_scsi_interrupt(s
, LSI_SIST0_MA
, 0);
980 s
->dnad64
= addr_high
;
981 switch (s
->sstat1
& 0x7) {
1007 BADF("Unimplemented phase %d\n", s
->sstat1
& PHASE_MASK
);
1010 s
->dfifo
= s
->dbc
& 0xff;
1011 s
->ctest5
= (s
->ctest5
& 0xfc) | ((s
->dbc
>> 8) & 3);
1014 s
->ua
= addr
+ s
->dbc
;
1017 case 1: /* IO or Read/Write instruction. */
1018 opcode
= (insn
>> 27) & 7;
1022 if (insn
& (1 << 25)) {
1023 id
= read_dword(s
, s
->dsa
+ sxt24(insn
));
1027 id
= (id
>> 16) & 0xf;
1028 if (insn
& (1 << 26)) {
1029 addr
= s
->dsp
+ sxt24(addr
);
1033 case 0: /* Select */
1035 if (s
->current_dma_len
&& (s
->ssid
& 0xf) == id
) {
1036 DPRINTF("Already reselected by target %d\n", id
);
1039 s
->sstat0
|= LSI_SSTAT0_WOA
;
1040 s
->scntl1
&= ~LSI_SCNTL1_IARB
;
1041 if (id
>= LSI_MAX_DEVS
|| !s
->scsi_dev
[id
]) {
1042 DPRINTF("Selected absent target %d\n", id
);
1043 lsi_script_scsi_interrupt(s
, 0, LSI_SIST1_STO
);
1047 DPRINTF("Selected target %d%s\n",
1048 id
, insn
& (1 << 3) ? " ATN" : "");
1049 /* ??? Linux drivers compain when this is set. Maybe
1050 it only applies in low-level mode (unimplemented).
1051 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1052 s
->current_dev
= s
->scsi_dev
[id
];
1053 s
->current_tag
= id
<< 8;
1054 s
->scntl1
|= LSI_SCNTL1_CON
;
1055 if (insn
& (1 << 3)) {
1056 s
->socl
|= LSI_SOCL_ATN
;
1058 lsi_set_phase(s
, PHASE_MO
);
1060 case 1: /* Disconnect */
1061 DPRINTF("Wait Disconect\n");
1062 s
->scntl1
&= ~LSI_SCNTL1_CON
;
1064 case 2: /* Wait Reselect */
1065 lsi_wait_reselect(s
);
1068 DPRINTF("Set%s%s%s%s\n",
1069 insn
& (1 << 3) ? " ATN" : "",
1070 insn
& (1 << 6) ? " ACK" : "",
1071 insn
& (1 << 9) ? " TM" : "",
1072 insn
& (1 << 10) ? " CC" : "");
1073 if (insn
& (1 << 3)) {
1074 s
->socl
|= LSI_SOCL_ATN
;
1075 lsi_set_phase(s
, PHASE_MO
);
1077 if (insn
& (1 << 9)) {
1078 BADF("Target mode not implemented\n");
1081 if (insn
& (1 << 10))
1085 DPRINTF("Clear%s%s%s%s\n",
1086 insn
& (1 << 3) ? " ATN" : "",
1087 insn
& (1 << 6) ? " ACK" : "",
1088 insn
& (1 << 9) ? " TM" : "",
1089 insn
& (1 << 10) ? " CC" : "");
1090 if (insn
& (1 << 3)) {
1091 s
->socl
&= ~LSI_SOCL_ATN
;
1093 if (insn
& (1 << 10))
1104 static const char *opcode_names
[3] =
1105 {"Write", "Read", "Read-Modify-Write"};
1106 static const char *operator_names
[8] =
1107 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1110 reg
= ((insn
>> 16) & 0x7f) | (insn
& 0x80);
1111 data8
= (insn
>> 8) & 0xff;
1112 opcode
= (insn
>> 27) & 7;
1113 operator = (insn
>> 24) & 7;
1114 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1115 opcode_names
[opcode
- 5], reg
,
1116 operator_names
[operator], data8
, s
->sfbr
,
1117 (insn
& (1 << 23)) ? " SFBR" : "");
1120 case 5: /* From SFBR */
1124 case 6: /* To SFBR */
1126 op0
= lsi_reg_readb(s
, reg
);
1129 case 7: /* Read-modify-write */
1131 op0
= lsi_reg_readb(s
, reg
);
1132 if (insn
& (1 << 23)) {
1144 case 1: /* Shift left */
1146 op0
= (op0
<< 1) | s
->carry
;
1160 op0
= (op0
>> 1) | (s
->carry
<< 7);
1165 s
->carry
= op0
< op1
;
1168 op0
+= op1
+ s
->carry
;
1170 s
->carry
= op0
<= op1
;
1172 s
->carry
= op0
< op1
;
1177 case 5: /* From SFBR */
1178 case 7: /* Read-modify-write */
1179 lsi_reg_writeb(s
, reg
, op0
);
1181 case 6: /* To SFBR */
1188 case 2: /* Transfer Control. */
1193 if ((insn
& 0x002e0000) == 0) {
1197 if (s
->sist1
& LSI_SIST1_STO
) {
1198 DPRINTF("Delayed select timeout\n");
1202 cond
= jmp
= (insn
& (1 << 19)) != 0;
1203 if (cond
== jmp
&& (insn
& (1 << 21))) {
1204 DPRINTF("Compare carry %d\n", s
->carry
== jmp
);
1205 cond
= s
->carry
!= 0;
1207 if (cond
== jmp
&& (insn
& (1 << 17))) {
1208 DPRINTF("Compare phase %d %c= %d\n",
1209 (s
->sstat1
& PHASE_MASK
),
1211 ((insn
>> 24) & 7));
1212 cond
= (s
->sstat1
& PHASE_MASK
) == ((insn
>> 24) & 7);
1214 if (cond
== jmp
&& (insn
& (1 << 18))) {
1217 mask
= (~insn
>> 8) & 0xff;
1218 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1219 s
->sfbr
, mask
, jmp
? '=' : '!', insn
& mask
);
1220 cond
= (s
->sfbr
& mask
) == (insn
& mask
);
1223 if (insn
& (1 << 23)) {
1224 /* Relative address. */
1225 addr
= s
->dsp
+ sxt24(addr
);
1227 switch ((insn
>> 27) & 7) {
1229 DPRINTF("Jump to 0x%08x\n", addr
);
1233 DPRINTF("Call 0x%08x\n", addr
);
1237 case 2: /* Return */
1238 DPRINTF("Return to 0x%08x\n", s
->temp
);
1241 case 3: /* Interrupt */
1242 DPRINTF("Interrupt 0x%08x\n", s
->dsps
);
1243 if ((insn
& (1 << 20)) != 0) {
1244 s
->istat0
|= LSI_ISTAT0_INTF
;
1247 lsi_script_dma_interrupt(s
, LSI_DSTAT_SIR
);
1251 DPRINTF("Illegal transfer control\n");
1252 lsi_script_dma_interrupt(s
, LSI_DSTAT_IID
);
1256 DPRINTF("Control condition failed\n");
1262 if ((insn
& (1 << 29)) == 0) {
1265 /* ??? The docs imply the destination address is loaded into
1266 the TEMP register. However the Linux drivers rely on
1267 the value being presrved. */
1268 dest
= read_dword(s
, s
->dsp
);
1270 lsi_memcpy(s
, dest
, addr
, insn
& 0xffffff);
1277 if (insn
& (1 << 28)) {
1278 addr
= s
->dsa
+ sxt24(addr
);
1281 reg
= (insn
>> 16) & 0xff;
1282 if (insn
& (1 << 24)) {
1283 cpu_physical_memory_read(addr
, data
, n
);
1284 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg
, n
,
1285 addr
, *(int *)data
);
1286 for (i
= 0; i
< n
; i
++) {
1287 lsi_reg_writeb(s
, reg
+ i
, data
[i
]);
1290 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg
, n
, addr
);
1291 for (i
= 0; i
< n
; i
++) {
1292 data
[i
] = lsi_reg_readb(s
, reg
+ i
);
1294 cpu_physical_memory_write(addr
, data
, n
);
1298 if (insn_processed
> 10000 && !s
->waiting
) {
1299 /* Some windows drivers make the device spin waiting for a memory
1300 location to change. If we have been executed a lot of code then
1301 assume this is the case and force an unexpected device disconnect.
1302 This is apparently sufficient to beat the drivers into submission.
1304 if (!(s
->sien0
& LSI_SIST0_UDC
))
1305 fprintf(stderr
, "inf. loop with UDC masked\n");
1306 lsi_script_scsi_interrupt(s
, LSI_SIST0_UDC
, 0);
1308 } else if (s
->istat1
& LSI_ISTAT1_SRUN
&& !s
->waiting
) {
1309 if (s
->dcntl
& LSI_DCNTL_SSM
) {
1310 lsi_script_dma_interrupt(s
, LSI_DSTAT_SSI
);
1315 DPRINTF("SCRIPTS execution stopped\n");
1318 static uint8_t lsi_reg_readb(LSIState
*s
, int offset
)
1321 #define CASE_GET_REG24(name, addr) \
1322 case addr: return s->name & 0xff; \
1323 case addr + 1: return (s->name >> 8) & 0xff; \
1324 case addr + 2: return (s->name >> 16) & 0xff;
1326 #define CASE_GET_REG32(name, addr) \
1327 case addr: return s->name & 0xff; \
1328 case addr + 1: return (s->name >> 8) & 0xff; \
1329 case addr + 2: return (s->name >> 16) & 0xff; \
1330 case addr + 3: return (s->name >> 24) & 0xff;
1332 #ifdef DEBUG_LSI_REG
1333 DPRINTF("Read reg %x\n", offset
);
1336 case 0x00: /* SCNTL0 */
1338 case 0x01: /* SCNTL1 */
1340 case 0x02: /* SCNTL2 */
1342 case 0x03: /* SCNTL3 */
1344 case 0x04: /* SCID */
1346 case 0x05: /* SXFER */
1348 case 0x06: /* SDID */
1350 case 0x07: /* GPREG0 */
1352 case 0x08: /* Revision ID */
1354 case 0xa: /* SSID */
1356 case 0xb: /* SBCL */
1357 /* ??? This is not correct. However it's (hopefully) only
1358 used for diagnostics, so should be ok. */
1360 case 0xc: /* DSTAT */
1361 tmp
= s
->dstat
| 0x80;
1362 if ((s
->istat0
& LSI_ISTAT0_INTF
) == 0)
1366 case 0x0d: /* SSTAT0 */
1368 case 0x0e: /* SSTAT1 */
1370 case 0x0f: /* SSTAT2 */
1371 return s
->scntl1
& LSI_SCNTL1_CON
? 0 : 2;
1372 CASE_GET_REG32(dsa
, 0x10)
1373 case 0x14: /* ISTAT0 */
1375 case 0x15: /* ISTAT1 */
1377 case 0x16: /* MBOX0 */
1379 case 0x17: /* MBOX1 */
1381 case 0x18: /* CTEST0 */
1383 case 0x19: /* CTEST1 */
1385 case 0x1a: /* CTEST2 */
1386 tmp
= s
->ctest2
| LSI_CTEST2_DACK
| LSI_CTEST2_CM
;
1387 if (s
->istat0
& LSI_ISTAT0_SIGP
) {
1388 s
->istat0
&= ~LSI_ISTAT0_SIGP
;
1389 tmp
|= LSI_CTEST2_SIGP
;
1392 case 0x1b: /* CTEST3 */
1394 CASE_GET_REG32(temp
, 0x1c)
1395 case 0x20: /* DFIFO */
1397 case 0x21: /* CTEST4 */
1399 case 0x22: /* CTEST5 */
1401 case 0x23: /* CTEST6 */
1403 CASE_GET_REG24(dbc
, 0x24)
1404 case 0x27: /* DCMD */
1406 CASE_GET_REG32(dnad
, 0x28)
1407 CASE_GET_REG32(dsp
, 0x2c)
1408 CASE_GET_REG32(dsps
, 0x30)
1409 CASE_GET_REG32(scratch
[0], 0x34)
1410 case 0x38: /* DMODE */
1412 case 0x39: /* DIEN */
1414 case 0x3a: /* SBR */
1416 case 0x3b: /* DCNTL */
1418 case 0x40: /* SIEN0 */
1420 case 0x41: /* SIEN1 */
1422 case 0x42: /* SIST0 */
1427 case 0x43: /* SIST1 */
1432 case 0x46: /* MACNTL */
1434 case 0x47: /* GPCNTL0 */
1436 case 0x48: /* STIME0 */
1438 case 0x4a: /* RESPID0 */
1440 case 0x4b: /* RESPID1 */
1442 case 0x4d: /* STEST1 */
1444 case 0x4e: /* STEST2 */
1446 case 0x4f: /* STEST3 */
1448 case 0x50: /* SIDL */
1449 /* This is needed by the linux drivers. We currently only update it
1450 during the MSG IN phase. */
1452 case 0x52: /* STEST4 */
1454 case 0x56: /* CCNTL0 */
1456 case 0x57: /* CCNTL1 */
1458 case 0x58: /* SBDL */
1459 /* Some drivers peek at the data bus during the MSG IN phase. */
1460 if ((s
->sstat1
& PHASE_MASK
) == PHASE_MI
)
1463 case 0x59: /* SBDL high */
1465 CASE_GET_REG32(mmrs
, 0xa0)
1466 CASE_GET_REG32(mmws
, 0xa4)
1467 CASE_GET_REG32(sfs
, 0xa8)
1468 CASE_GET_REG32(drs
, 0xac)
1469 CASE_GET_REG32(sbms
, 0xb0)
1470 CASE_GET_REG32(dbms
, 0xb4)
1471 CASE_GET_REG32(dnad64
, 0xb8)
1472 CASE_GET_REG32(pmjad1
, 0xc0)
1473 CASE_GET_REG32(pmjad2
, 0xc4)
1474 CASE_GET_REG32(rbc
, 0xc8)
1475 CASE_GET_REG32(ua
, 0xcc)
1476 CASE_GET_REG32(ia
, 0xd4)
1477 CASE_GET_REG32(sbc
, 0xd8)
1478 CASE_GET_REG32(csbc
, 0xdc)
1480 if (offset
>= 0x5c && offset
< 0xa0) {
1483 n
= (offset
- 0x58) >> 2;
1484 shift
= (offset
& 3) * 8;
1485 return (s
->scratch
[n
] >> shift
) & 0xff;
1487 BADF("readb 0x%x\n", offset
);
1489 #undef CASE_GET_REG24
1490 #undef CASE_GET_REG32
1493 static void lsi_reg_writeb(LSIState
*s
, int offset
, uint8_t val
)
1495 #define CASE_SET_REG24(name, addr) \
1496 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1497 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1498 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1500 #define CASE_SET_REG32(name, addr) \
1501 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1502 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1503 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1504 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1506 #ifdef DEBUG_LSI_REG
1507 DPRINTF("Write reg %x = %02x\n", offset
, val
);
1510 case 0x00: /* SCNTL0 */
1512 if (val
& LSI_SCNTL0_START
) {
1513 BADF("Start sequence not implemented\n");
1516 case 0x01: /* SCNTL1 */
1517 s
->scntl1
= val
& ~LSI_SCNTL1_SST
;
1518 if (val
& LSI_SCNTL1_IARB
) {
1519 BADF("Immediate Arbritration not implemented\n");
1521 if (val
& LSI_SCNTL1_RST
) {
1522 s
->sstat0
|= LSI_SSTAT0_RST
;
1523 lsi_script_scsi_interrupt(s
, LSI_SIST0_RST
, 0);
1525 s
->sstat0
&= ~LSI_SSTAT0_RST
;
1528 case 0x02: /* SCNTL2 */
1529 val
&= ~(LSI_SCNTL2_WSR
| LSI_SCNTL2_WSS
);
1532 case 0x03: /* SCNTL3 */
1535 case 0x04: /* SCID */
1538 case 0x05: /* SXFER */
1541 case 0x06: /* SDID */
1542 if ((val
& 0xf) != (s
->ssid
& 0xf))
1543 BADF("Destination ID does not match SSID\n");
1544 s
->sdid
= val
& 0xf;
1546 case 0x07: /* GPREG0 */
1548 case 0x08: /* SFBR */
1549 /* The CPU is not allowed to write to this register. However the
1550 SCRIPTS register move instructions are. */
1553 case 0x0a: case 0x0b:
1554 /* Openserver writes to these readonly registers on startup */
1556 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1557 /* Linux writes to these readonly registers on startup. */
1559 CASE_SET_REG32(dsa
, 0x10)
1560 case 0x14: /* ISTAT0 */
1561 s
->istat0
= (s
->istat0
& 0x0f) | (val
& 0xf0);
1562 if (val
& LSI_ISTAT0_ABRT
) {
1563 lsi_script_dma_interrupt(s
, LSI_DSTAT_ABRT
);
1565 if (val
& LSI_ISTAT0_INTF
) {
1566 s
->istat0
&= ~LSI_ISTAT0_INTF
;
1569 if (s
->waiting
== 1 && val
& LSI_ISTAT0_SIGP
) {
1570 DPRINTF("Woken by SIGP\n");
1573 lsi_execute_script(s
);
1575 if (val
& LSI_ISTAT0_SRST
) {
1579 case 0x16: /* MBOX0 */
1582 case 0x17: /* MBOX1 */
1585 case 0x1a: /* CTEST2 */
1586 s
->ctest2
= val
& LSI_CTEST2_PCICIE
;
1588 case 0x1b: /* CTEST3 */
1589 s
->ctest3
= val
& 0x0f;
1591 CASE_SET_REG32(temp
, 0x1c)
1592 case 0x21: /* CTEST4 */
1594 BADF("Unimplemented CTEST4-FBL 0x%x\n", val
);
1598 case 0x22: /* CTEST5 */
1599 if (val
& (LSI_CTEST5_ADCK
| LSI_CTEST5_BBCK
)) {
1600 BADF("CTEST5 DMA increment not implemented\n");
1604 CASE_SET_REG24(dbc
, 0x24)
1605 CASE_SET_REG32(dnad
, 0x28)
1606 case 0x2c: /* DSP[0:7] */
1607 s
->dsp
&= 0xffffff00;
1610 case 0x2d: /* DSP[8:15] */
1611 s
->dsp
&= 0xffff00ff;
1614 case 0x2e: /* DSP[16:23] */
1615 s
->dsp
&= 0xff00ffff;
1616 s
->dsp
|= val
<< 16;
1618 case 0x2f: /* DSP[24:31] */
1619 s
->dsp
&= 0x00ffffff;
1620 s
->dsp
|= val
<< 24;
1621 if ((s
->dmode
& LSI_DMODE_MAN
) == 0
1622 && (s
->istat1
& LSI_ISTAT1_SRUN
) == 0)
1623 lsi_execute_script(s
);
1625 CASE_SET_REG32(dsps
, 0x30)
1626 CASE_SET_REG32(scratch
[0], 0x34)
1627 case 0x38: /* DMODE */
1628 if (val
& (LSI_DMODE_SIOM
| LSI_DMODE_DIOM
)) {
1629 BADF("IO mappings not implemented\n");
1633 case 0x39: /* DIEN */
1637 case 0x3a: /* SBR */
1640 case 0x3b: /* DCNTL */
1641 s
->dcntl
= val
& ~(LSI_DCNTL_PFF
| LSI_DCNTL_STD
);
1642 if ((val
& LSI_DCNTL_STD
) && (s
->istat1
& LSI_ISTAT1_SRUN
) == 0)
1643 lsi_execute_script(s
);
1645 case 0x40: /* SIEN0 */
1649 case 0x41: /* SIEN1 */
1653 case 0x47: /* GPCNTL0 */
1655 case 0x48: /* STIME0 */
1658 case 0x49: /* STIME1 */
1660 DPRINTF("General purpose timer not implemented\n");
1661 /* ??? Raising the interrupt immediately seems to be sufficient
1662 to keep the FreeBSD driver happy. */
1663 lsi_script_scsi_interrupt(s
, 0, LSI_SIST1_GEN
);
1666 case 0x4a: /* RESPID0 */
1669 case 0x4b: /* RESPID1 */
1672 case 0x4d: /* STEST1 */
1675 case 0x4e: /* STEST2 */
1677 BADF("Low level mode not implemented\n");
1681 case 0x4f: /* STEST3 */
1683 BADF("SCSI FIFO test mode not implemented\n");
1687 case 0x56: /* CCNTL0 */
1690 case 0x57: /* CCNTL1 */
1693 CASE_SET_REG32(mmrs
, 0xa0)
1694 CASE_SET_REG32(mmws
, 0xa4)
1695 CASE_SET_REG32(sfs
, 0xa8)
1696 CASE_SET_REG32(drs
, 0xac)
1697 CASE_SET_REG32(sbms
, 0xb0)
1698 CASE_SET_REG32(dbms
, 0xb4)
1699 CASE_SET_REG32(dnad64
, 0xb8)
1700 CASE_SET_REG32(pmjad1
, 0xc0)
1701 CASE_SET_REG32(pmjad2
, 0xc4)
1702 CASE_SET_REG32(rbc
, 0xc8)
1703 CASE_SET_REG32(ua
, 0xcc)
1704 CASE_SET_REG32(ia
, 0xd4)
1705 CASE_SET_REG32(sbc
, 0xd8)
1706 CASE_SET_REG32(csbc
, 0xdc)
1708 if (offset
>= 0x5c && offset
< 0xa0) {
1711 n
= (offset
- 0x58) >> 2;
1712 shift
= (offset
& 3) * 8;
1713 s
->scratch
[n
] &= ~(0xff << shift
);
1714 s
->scratch
[n
] |= (val
& 0xff) << shift
;
1716 BADF("Unhandled writeb 0x%x = 0x%x\n", offset
, val
);
1719 #undef CASE_SET_REG24
1720 #undef CASE_SET_REG32
1723 static void lsi_mmio_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1725 LSIState
*s
= (LSIState
*)opaque
;
1727 lsi_reg_writeb(s
, addr
& 0xff, val
);
1730 static void lsi_mmio_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1732 LSIState
*s
= (LSIState
*)opaque
;
1735 lsi_reg_writeb(s
, addr
, val
& 0xff);
1736 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1739 static void lsi_mmio_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1741 LSIState
*s
= (LSIState
*)opaque
;
1744 lsi_reg_writeb(s
, addr
, val
& 0xff);
1745 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1746 lsi_reg_writeb(s
, addr
+ 2, (val
>> 16) & 0xff);
1747 lsi_reg_writeb(s
, addr
+ 3, (val
>> 24) & 0xff);
1750 static uint32_t lsi_mmio_readb(void *opaque
, target_phys_addr_t addr
)
1752 LSIState
*s
= (LSIState
*)opaque
;
1754 return lsi_reg_readb(s
, addr
& 0xff);
1757 static uint32_t lsi_mmio_readw(void *opaque
, target_phys_addr_t addr
)
1759 LSIState
*s
= (LSIState
*)opaque
;
1763 val
= lsi_reg_readb(s
, addr
);
1764 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1768 static uint32_t lsi_mmio_readl(void *opaque
, target_phys_addr_t addr
)
1770 LSIState
*s
= (LSIState
*)opaque
;
1773 val
= lsi_reg_readb(s
, addr
);
1774 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1775 val
|= lsi_reg_readb(s
, addr
+ 2) << 16;
1776 val
|= lsi_reg_readb(s
, addr
+ 3) << 24;
1780 static CPUReadMemoryFunc
*lsi_mmio_readfn
[3] = {
1786 static CPUWriteMemoryFunc
*lsi_mmio_writefn
[3] = {
1792 static void lsi_ram_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1794 LSIState
*s
= (LSIState
*)opaque
;
1799 newval
= s
->script_ram
[addr
>> 2];
1800 shift
= (addr
& 3) * 8;
1801 newval
&= ~(0xff << shift
);
1802 newval
|= val
<< shift
;
1803 s
->script_ram
[addr
>> 2] = newval
;
1806 static void lsi_ram_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1808 LSIState
*s
= (LSIState
*)opaque
;
1812 newval
= s
->script_ram
[addr
>> 2];
1814 newval
= (newval
& 0xffff) | (val
<< 16);
1816 newval
= (newval
& 0xffff0000) | val
;
1818 s
->script_ram
[addr
>> 2] = newval
;
1822 static void lsi_ram_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1824 LSIState
*s
= (LSIState
*)opaque
;
1827 s
->script_ram
[addr
>> 2] = val
;
1830 static uint32_t lsi_ram_readb(void *opaque
, target_phys_addr_t addr
)
1832 LSIState
*s
= (LSIState
*)opaque
;
1836 val
= s
->script_ram
[addr
>> 2];
1837 val
>>= (addr
& 3) * 8;
1841 static uint32_t lsi_ram_readw(void *opaque
, target_phys_addr_t addr
)
1843 LSIState
*s
= (LSIState
*)opaque
;
1847 val
= s
->script_ram
[addr
>> 2];
1850 return le16_to_cpu(val
);
1853 static uint32_t lsi_ram_readl(void *opaque
, target_phys_addr_t addr
)
1855 LSIState
*s
= (LSIState
*)opaque
;
1858 return le32_to_cpu(s
->script_ram
[addr
>> 2]);
1861 static CPUReadMemoryFunc
*lsi_ram_readfn
[3] = {
1867 static CPUWriteMemoryFunc
*lsi_ram_writefn
[3] = {
1873 static uint32_t lsi_io_readb(void *opaque
, uint32_t addr
)
1875 LSIState
*s
= (LSIState
*)opaque
;
1876 return lsi_reg_readb(s
, addr
& 0xff);
1879 static uint32_t lsi_io_readw(void *opaque
, uint32_t addr
)
1881 LSIState
*s
= (LSIState
*)opaque
;
1884 val
= lsi_reg_readb(s
, addr
);
1885 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1889 static uint32_t lsi_io_readl(void *opaque
, uint32_t addr
)
1891 LSIState
*s
= (LSIState
*)opaque
;
1894 val
= lsi_reg_readb(s
, addr
);
1895 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1896 val
|= lsi_reg_readb(s
, addr
+ 2) << 16;
1897 val
|= lsi_reg_readb(s
, addr
+ 3) << 24;
1901 static void lsi_io_writeb(void *opaque
, uint32_t addr
, uint32_t val
)
1903 LSIState
*s
= (LSIState
*)opaque
;
1904 lsi_reg_writeb(s
, addr
& 0xff, val
);
1907 static void lsi_io_writew(void *opaque
, uint32_t addr
, uint32_t val
)
1909 LSIState
*s
= (LSIState
*)opaque
;
1911 lsi_reg_writeb(s
, addr
, val
& 0xff);
1912 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1915 static void lsi_io_writel(void *opaque
, uint32_t addr
, uint32_t val
)
1917 LSIState
*s
= (LSIState
*)opaque
;
1919 lsi_reg_writeb(s
, addr
, val
& 0xff);
1920 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1921 lsi_reg_writeb(s
, addr
+ 2, (val
>> 16) & 0xff);
1922 lsi_reg_writeb(s
, addr
+ 3, (val
>> 24) & 0xff);
1925 static void lsi_io_mapfunc(PCIDevice
*pci_dev
, int region_num
,
1926 uint32_t addr
, uint32_t size
, int type
)
1928 LSIState
*s
= (LSIState
*)pci_dev
;
1930 DPRINTF("Mapping IO at %08x\n", addr
);
1932 register_ioport_write(addr
, 256, 1, lsi_io_writeb
, s
);
1933 register_ioport_read(addr
, 256, 1, lsi_io_readb
, s
);
1934 register_ioport_write(addr
, 256, 2, lsi_io_writew
, s
);
1935 register_ioport_read(addr
, 256, 2, lsi_io_readw
, s
);
1936 register_ioport_write(addr
, 256, 4, lsi_io_writel
, s
);
1937 register_ioport_read(addr
, 256, 4, lsi_io_readl
, s
);
1940 static void lsi_ram_mapfunc(PCIDevice
*pci_dev
, int region_num
,
1941 uint32_t addr
, uint32_t size
, int type
)
1943 LSIState
*s
= (LSIState
*)pci_dev
;
1945 DPRINTF("Mapping ram at %08x\n", addr
);
1946 s
->script_ram_base
= addr
;
1947 cpu_register_physical_memory(addr
+ 0, 0x2000, s
->ram_io_addr
);
1950 static void lsi_mmio_mapfunc(PCIDevice
*pci_dev
, int region_num
,
1951 uint32_t addr
, uint32_t size
, int type
)
1953 LSIState
*s
= (LSIState
*)pci_dev
;
1955 DPRINTF("Mapping registers at %08x\n", addr
);
1956 cpu_register_physical_memory(addr
+ 0, 0x400, s
->mmio_io_addr
);
1959 void lsi_scsi_attach(DeviceState
*host
, BlockDriverState
*bd
, int id
)
1961 LSIState
*s
= (LSIState
*)host
;
1964 for (id
= 0; id
< LSI_MAX_DEVS
; id
++) {
1965 if (s
->scsi_dev
[id
] == NULL
)
1969 if (id
>= LSI_MAX_DEVS
) {
1970 BADF("Bad Device ID %d\n", id
);
1973 if (s
->scsi_dev
[id
]) {
1974 DPRINTF("Destroying device %d\n", id
);
1975 s
->scsi_dev
[id
]->destroy(s
->scsi_dev
[id
]);
1977 DPRINTF("Attaching block device %d\n", id
);
1978 s
->scsi_dev
[id
] = scsi_generic_init(bd
, 1, lsi_command_complete
, s
);
1979 if (s
->scsi_dev
[id
] == NULL
)
1980 s
->scsi_dev
[id
] = scsi_disk_init(bd
, 1, lsi_command_complete
, s
);
1981 bd
->private = &s
->pci_dev
;
1984 static int lsi_scsi_uninit(PCIDevice
*d
)
1986 LSIState
*s
= (LSIState
*) d
;
1988 cpu_unregister_io_memory(s
->mmio_io_addr
);
1989 cpu_unregister_io_memory(s
->ram_io_addr
);
1991 qemu_free(s
->queue
);
1996 static void lsi_scsi_init(PCIDevice
*dev
)
1998 LSIState
*s
= (LSIState
*)dev
;
2001 pci_conf
= s
->pci_dev
.config
;
2003 /* PCI Vendor ID (word) */
2004 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_LSI_LOGIC
);
2005 /* PCI device ID (word) */
2006 pci_config_set_device_id(pci_conf
, PCI_DEVICE_ID_LSI_53C895A
);
2007 /* PCI base class code */
2008 pci_config_set_class(pci_conf
, PCI_CLASS_STORAGE_SCSI
);
2009 /* PCI subsystem ID */
2010 pci_conf
[0x2e] = 0x00;
2011 pci_conf
[0x2f] = 0x10;
2012 /* PCI latency timer = 255 */
2013 pci_conf
[0x0d] = 0xff;
2014 /* Interrupt pin 1 */
2015 pci_conf
[0x3d] = 0x01;
2017 s
->mmio_io_addr
= cpu_register_io_memory(lsi_mmio_readfn
,
2018 lsi_mmio_writefn
, s
);
2019 s
->ram_io_addr
= cpu_register_io_memory(lsi_ram_readfn
,
2020 lsi_ram_writefn
, s
);
2022 pci_register_bar((struct PCIDevice
*)s
, 0, 256,
2023 PCI_ADDRESS_SPACE_IO
, lsi_io_mapfunc
);
2024 pci_register_bar((struct PCIDevice
*)s
, 1, 0x400,
2025 PCI_ADDRESS_SPACE_MEM
, lsi_mmio_mapfunc
);
2026 pci_register_bar((struct PCIDevice
*)s
, 2, 0x2000,
2027 PCI_ADDRESS_SPACE_MEM
, lsi_ram_mapfunc
);
2028 s
->queue
= qemu_malloc(sizeof(lsi_queue
));
2030 s
->active_commands
= 0;
2031 s
->pci_dev
.unregister
= lsi_scsi_uninit
;
2035 scsi_bus_new(&dev
->qdev
, lsi_scsi_attach
);
2038 static PCIDeviceInfo lsi_info
= {
2039 .qdev
.name
= "lsi53c895a",
2040 .qdev
.size
= sizeof(LSIState
),
2041 .init
= lsi_scsi_init
,
2044 static void lsi53c895a_register_devices(void)
2046 pci_qdev_register(&lsi_info
);
2049 device_init(lsi53c895a_register_devices
);