VNC: Fix memory allocation (wrong structure size).
[armpft.git] / hw / slavio_timer.c
blobb5f9ec32a143960ac67b71d773a3d12bddad131c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "qemu-timer.h"
28 //#define DEBUG_TIMER
30 #ifdef DEBUG_TIMER
31 #define DPRINTF(fmt, ...) \
32 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
33 #else
34 #define DPRINTF(fmt, ...) do {} while (0)
35 #endif
38 * Registers of hardware timer in sun4m.
40 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41 * produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45 * are zero. Bit 31 is 1 when count has been reached.
47 * Per-CPU timers interrupt local CPU, system timer uses normal
48 * interrupt routing.
52 #define MAX_CPUS 16
54 typedef struct SLAVIO_TIMERState {
55 qemu_irq irq;
56 ptimer_state *timer;
57 uint32_t count, counthigh, reached;
58 uint64_t limit;
59 // processor only
60 uint32_t running;
61 struct SLAVIO_TIMERState *master;
62 uint32_t slave_index;
63 // system only
64 uint32_t num_slaves;
65 struct SLAVIO_TIMERState *slave[MAX_CPUS];
66 uint32_t slave_mode;
67 } SLAVIO_TIMERState;
69 #define SYS_TIMER_SIZE 0x14
70 #define CPU_TIMER_SIZE 0x10
72 #define SYS_TIMER_OFFSET 0x10000ULL
73 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
75 #define TIMER_LIMIT 0
76 #define TIMER_COUNTER 1
77 #define TIMER_COUNTER_NORST 2
78 #define TIMER_STATUS 3
79 #define TIMER_MODE 4
81 #define TIMER_COUNT_MASK32 0xfffffe00
82 #define TIMER_LIMIT_MASK32 0x7fffffff
83 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
84 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
85 #define TIMER_REACHED 0x80000000
86 #define TIMER_PERIOD 500ULL // 500ns
87 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
88 #define PERIODS_TO_LIMIT(l) ((l) << 9)
90 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
92 return s->master && (s->master->slave_mode & (1 << s->slave_index));
95 // Update count, set irq, update expire_time
96 // Convert from ptimer countdown units
97 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
99 uint64_t count, limit;
101 if (s->limit == 0) /* free-run processor or system counter */
102 limit = TIMER_MAX_COUNT32;
103 else
104 limit = s->limit;
106 if (s->timer)
107 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
108 else
109 count = 0;
111 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
112 s->counthigh, s->count);
113 s->count = count & TIMER_COUNT_MASK32;
114 s->counthigh = count >> 32;
117 // timer callback
118 static void slavio_timer_irq(void *opaque)
120 SLAVIO_TIMERState *s = opaque;
122 slavio_timer_get_out(s);
123 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
124 s->reached = TIMER_REACHED;
125 if (!slavio_timer_is_user(s))
126 qemu_irq_raise(s->irq);
129 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
131 SLAVIO_TIMERState *s = opaque;
132 uint32_t saddr, ret;
134 saddr = addr >> 2;
135 switch (saddr) {
136 case TIMER_LIMIT:
137 // read limit (system counter mode) or read most signifying
138 // part of counter (user mode)
139 if (slavio_timer_is_user(s)) {
140 // read user timer MSW
141 slavio_timer_get_out(s);
142 ret = s->counthigh | s->reached;
143 } else {
144 // read limit
145 // clear irq
146 qemu_irq_lower(s->irq);
147 s->reached = 0;
148 ret = s->limit & TIMER_LIMIT_MASK32;
150 break;
151 case TIMER_COUNTER:
152 // read counter and reached bit (system mode) or read lsbits
153 // of counter (user mode)
154 slavio_timer_get_out(s);
155 if (slavio_timer_is_user(s)) // read user timer LSW
156 ret = s->count & TIMER_MAX_COUNT64;
157 else // read limit
158 ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
159 break;
160 case TIMER_STATUS:
161 // only available in processor counter/timer
162 // read start/stop status
163 ret = s->running;
164 break;
165 case TIMER_MODE:
166 // only available in system counter
167 // read user/system mode
168 ret = s->slave_mode;
169 break;
170 default:
171 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
172 ret = 0;
173 break;
175 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
177 return ret;
180 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
181 uint32_t val)
183 SLAVIO_TIMERState *s = opaque;
184 uint32_t saddr;
186 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
187 saddr = addr >> 2;
188 switch (saddr) {
189 case TIMER_LIMIT:
190 if (slavio_timer_is_user(s)) {
191 uint64_t count;
193 // set user counter MSW, reset counter
194 s->limit = TIMER_MAX_COUNT64;
195 s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
196 s->reached = 0;
197 count = ((uint64_t)s->counthigh << 32) | s->count;
198 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
199 count);
200 if (s->timer)
201 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
202 } else {
203 // set limit, reset counter
204 qemu_irq_lower(s->irq);
205 s->limit = val & TIMER_MAX_COUNT32;
206 if (s->timer) {
207 if (s->limit == 0) /* free-run */
208 ptimer_set_limit(s->timer,
209 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
210 else
211 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
214 break;
215 case TIMER_COUNTER:
216 if (slavio_timer_is_user(s)) {
217 uint64_t count;
219 // set user counter LSW, reset counter
220 s->limit = TIMER_MAX_COUNT64;
221 s->count = val & TIMER_MAX_COUNT64;
222 s->reached = 0;
223 count = ((uint64_t)s->counthigh) << 32 | s->count;
224 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
225 count);
226 if (s->timer)
227 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
228 } else
229 DPRINTF("not user timer\n");
230 break;
231 case TIMER_COUNTER_NORST:
232 // set limit without resetting counter
233 s->limit = val & TIMER_MAX_COUNT32;
234 if (s->timer) {
235 if (s->limit == 0) /* free-run */
236 ptimer_set_limit(s->timer,
237 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
238 else
239 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
241 break;
242 case TIMER_STATUS:
243 if (slavio_timer_is_user(s)) {
244 // start/stop user counter
245 if ((val & 1) && !s->running) {
246 DPRINTF("processor %d user timer started\n", s->slave_index);
247 if (s->timer)
248 ptimer_run(s->timer, 0);
249 s->running = 1;
250 } else if (!(val & 1) && s->running) {
251 DPRINTF("processor %d user timer stopped\n", s->slave_index);
252 if (s->timer)
253 ptimer_stop(s->timer);
254 s->running = 0;
257 break;
258 case TIMER_MODE:
259 if (s->master == NULL) {
260 unsigned int i;
262 for (i = 0; i < s->num_slaves; i++) {
263 unsigned int processor = 1 << i;
265 // check for a change in timer mode for this processor
266 if ((val & processor) != (s->slave_mode & processor)) {
267 if (val & processor) { // counter -> user timer
268 qemu_irq_lower(s->slave[i]->irq);
269 // counters are always running
270 ptimer_stop(s->slave[i]->timer);
271 s->slave[i]->running = 0;
272 // user timer limit is always the same
273 s->slave[i]->limit = TIMER_MAX_COUNT64;
274 ptimer_set_limit(s->slave[i]->timer,
275 LIMIT_TO_PERIODS(s->slave[i]->limit),
277 // set this processors user timer bit in config
278 // register
279 s->slave_mode |= processor;
280 DPRINTF("processor %d changed from counter to user "
281 "timer\n", s->slave[i]->slave_index);
282 } else { // user timer -> counter
283 // stop the user timer if it is running
284 if (s->slave[i]->running)
285 ptimer_stop(s->slave[i]->timer);
286 // start the counter
287 ptimer_run(s->slave[i]->timer, 0);
288 s->slave[i]->running = 1;
289 // clear this processors user timer bit in config
290 // register
291 s->slave_mode &= ~processor;
292 DPRINTF("processor %d changed from user timer to "
293 "counter\n", s->slave[i]->slave_index);
297 } else
298 DPRINTF("not system timer\n");
299 break;
300 default:
301 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
302 break;
306 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
307 NULL,
308 NULL,
309 slavio_timer_mem_readl,
312 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
313 NULL,
314 NULL,
315 slavio_timer_mem_writel,
318 static void slavio_timer_save(QEMUFile *f, void *opaque)
320 SLAVIO_TIMERState *s = opaque;
322 qemu_put_be64s(f, &s->limit);
323 qemu_put_be32s(f, &s->count);
324 qemu_put_be32s(f, &s->counthigh);
325 qemu_put_be32s(f, &s->reached);
326 qemu_put_be32s(f, &s->running);
327 if (s->timer)
328 qemu_put_ptimer(f, s->timer);
331 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
333 SLAVIO_TIMERState *s = opaque;
335 if (version_id != 3)
336 return -EINVAL;
338 qemu_get_be64s(f, &s->limit);
339 qemu_get_be32s(f, &s->count);
340 qemu_get_be32s(f, &s->counthigh);
341 qemu_get_be32s(f, &s->reached);
342 qemu_get_be32s(f, &s->running);
343 if (s->timer)
344 qemu_get_ptimer(f, s->timer);
346 return 0;
349 static void slavio_timer_reset(void *opaque)
351 SLAVIO_TIMERState *s = opaque;
353 s->limit = 0;
354 s->count = 0;
355 s->reached = 0;
356 s->slave_mode = 0;
357 if (!s->master || s->slave_index < s->master->num_slaves) {
358 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
359 ptimer_run(s->timer, 0);
361 s->running = 1;
362 qemu_irq_lower(s->irq);
365 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
366 qemu_irq irq,
367 SLAVIO_TIMERState *master,
368 uint32_t slave_index)
370 int slavio_timer_io_memory;
371 SLAVIO_TIMERState *s;
372 QEMUBH *bh;
374 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
375 s->irq = irq;
376 s->master = master;
377 s->slave_index = slave_index;
378 if (!master || slave_index < master->num_slaves) {
379 bh = qemu_bh_new(slavio_timer_irq, s);
380 s->timer = ptimer_init(bh);
381 ptimer_set_period(s->timer, TIMER_PERIOD);
384 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
385 slavio_timer_mem_write, s);
386 if (master)
387 cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
388 slavio_timer_io_memory);
389 else
390 cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
391 slavio_timer_io_memory);
392 register_savevm("slavio_timer", addr, 3, slavio_timer_save,
393 slavio_timer_load, s);
394 qemu_register_reset(slavio_timer_reset, 0, s);
395 slavio_timer_reset(s);
397 return s;
400 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
401 qemu_irq *cpu_irqs, unsigned int num_cpus)
403 SLAVIO_TIMERState *master;
404 unsigned int i;
406 master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
408 master->num_slaves = num_cpus;
410 for (i = 0; i < MAX_CPUS; i++) {
411 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
412 CPU_TIMER_OFFSET(i),
413 cpu_irqs[i], master, i);