add roms/pcbios
[armpft.git] / hw / i8254.c
blob5c49e6e0ae9fc9540e65ecd8d252c5c2e5cd4a09
1 /*
2 * QEMU 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
29 //#define DEBUG_PIT
31 #define RW_STATE_LSB 1
32 #define RW_STATE_MSB 2
33 #define RW_STATE_WORD0 3
34 #define RW_STATE_WORD1 4
36 typedef struct PITChannelState {
37 int count; /* can be 65536 */
38 uint16_t latched_count;
39 uint8_t count_latched;
40 uint8_t status_latched;
41 uint8_t status;
42 uint8_t read_state;
43 uint8_t write_state;
44 uint8_t write_latch;
45 uint8_t rw_mode;
46 uint8_t mode;
47 uint8_t bcd; /* not supported */
48 uint8_t gate; /* timer start */
49 int64_t count_load_time;
50 /* irq handling */
51 int64_t next_transition_time;
52 QEMUTimer *irq_timer;
53 qemu_irq irq;
54 } PITChannelState;
56 struct PITState {
57 PITChannelState channels[3];
60 static PITState pit_state;
62 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
64 static int pit_get_count(PITChannelState *s)
66 uint64_t d;
67 int counter;
69 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ,
70 get_ticks_per_sec());
71 switch(s->mode) {
72 case 0:
73 case 1:
74 case 4:
75 case 5:
76 counter = (s->count - d) & 0xffff;
77 break;
78 case 3:
79 /* XXX: may be incorrect for odd counts */
80 counter = s->count - ((2 * d) % s->count);
81 break;
82 default:
83 counter = s->count - (d % s->count);
84 break;
86 return counter;
89 /* get pit output bit */
90 static int pit_get_out1(PITChannelState *s, int64_t current_time)
92 uint64_t d;
93 int out;
95 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
96 get_ticks_per_sec());
97 switch(s->mode) {
98 default:
99 case 0:
100 out = (d >= s->count);
101 break;
102 case 1:
103 out = (d < s->count);
104 break;
105 case 2:
106 if ((d % s->count) == 0 && d != 0)
107 out = 1;
108 else
109 out = 0;
110 break;
111 case 3:
112 out = (d % s->count) < ((s->count + 1) >> 1);
113 break;
114 case 4:
115 case 5:
116 out = (d == s->count);
117 break;
119 return out;
122 int pit_get_out(PITState *pit, int channel, int64_t current_time)
124 PITChannelState *s = &pit->channels[channel];
125 return pit_get_out1(s, current_time);
128 /* return -1 if no transition will occur. */
129 static int64_t pit_get_next_transition_time(PITChannelState *s,
130 int64_t current_time)
132 uint64_t d, next_time, base;
133 int period2;
135 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
136 get_ticks_per_sec());
137 switch(s->mode) {
138 default:
139 case 0:
140 case 1:
141 if (d < s->count)
142 next_time = s->count;
143 else
144 return -1;
145 break;
146 case 2:
147 base = (d / s->count) * s->count;
148 if ((d - base) == 0 && d != 0)
149 next_time = base + s->count;
150 else
151 next_time = base + s->count + 1;
152 break;
153 case 3:
154 base = (d / s->count) * s->count;
155 period2 = ((s->count + 1) >> 1);
156 if ((d - base) < period2)
157 next_time = base + period2;
158 else
159 next_time = base + s->count;
160 break;
161 case 4:
162 case 5:
163 if (d < s->count)
164 next_time = s->count;
165 else if (d == s->count)
166 next_time = s->count + 1;
167 else
168 return -1;
169 break;
171 /* convert to timer units */
172 next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
173 PIT_FREQ);
174 /* fix potential rounding problems */
175 /* XXX: better solution: use a clock at PIT_FREQ Hz */
176 if (next_time <= current_time)
177 next_time = current_time + 1;
178 return next_time;
181 /* val must be 0 or 1 */
182 void pit_set_gate(PITState *pit, int channel, int val)
184 PITChannelState *s = &pit->channels[channel];
186 switch(s->mode) {
187 default:
188 case 0:
189 case 4:
190 /* XXX: just disable/enable counting */
191 break;
192 case 1:
193 case 5:
194 if (s->gate < val) {
195 /* restart counting on rising edge */
196 s->count_load_time = qemu_get_clock(vm_clock);
197 pit_irq_timer_update(s, s->count_load_time);
199 break;
200 case 2:
201 case 3:
202 if (s->gate < val) {
203 /* restart counting on rising edge */
204 s->count_load_time = qemu_get_clock(vm_clock);
205 pit_irq_timer_update(s, s->count_load_time);
207 /* XXX: disable/enable counting */
208 break;
210 s->gate = val;
213 int pit_get_gate(PITState *pit, int channel)
215 PITChannelState *s = &pit->channels[channel];
216 return s->gate;
219 int pit_get_initial_count(PITState *pit, int channel)
221 PITChannelState *s = &pit->channels[channel];
222 return s->count;
225 int pit_get_mode(PITState *pit, int channel)
227 PITChannelState *s = &pit->channels[channel];
228 return s->mode;
231 static inline void pit_load_count(PITChannelState *s, int val)
233 if (val == 0)
234 val = 0x10000;
235 s->count_load_time = qemu_get_clock(vm_clock);
236 s->count = val;
237 pit_irq_timer_update(s, s->count_load_time);
240 /* if already latched, do not latch again */
241 static void pit_latch_count(PITChannelState *s)
243 if (!s->count_latched) {
244 s->latched_count = pit_get_count(s);
245 s->count_latched = s->rw_mode;
249 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
251 PITState *pit = opaque;
252 int channel, access;
253 PITChannelState *s;
255 addr &= 3;
256 if (addr == 3) {
257 channel = val >> 6;
258 if (channel == 3) {
259 /* read back command */
260 for(channel = 0; channel < 3; channel++) {
261 s = &pit->channels[channel];
262 if (val & (2 << channel)) {
263 if (!(val & 0x20)) {
264 pit_latch_count(s);
266 if (!(val & 0x10) && !s->status_latched) {
267 /* status latch */
268 /* XXX: add BCD and null count */
269 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
270 (s->rw_mode << 4) |
271 (s->mode << 1) |
272 s->bcd;
273 s->status_latched = 1;
277 } else {
278 s = &pit->channels[channel];
279 access = (val >> 4) & 3;
280 if (access == 0) {
281 pit_latch_count(s);
282 } else {
283 s->rw_mode = access;
284 s->read_state = access;
285 s->write_state = access;
287 s->mode = (val >> 1) & 7;
288 s->bcd = val & 1;
289 /* XXX: update irq timer ? */
292 } else {
293 s = &pit->channels[addr];
294 switch(s->write_state) {
295 default:
296 case RW_STATE_LSB:
297 pit_load_count(s, val);
298 break;
299 case RW_STATE_MSB:
300 pit_load_count(s, val << 8);
301 break;
302 case RW_STATE_WORD0:
303 s->write_latch = val;
304 s->write_state = RW_STATE_WORD1;
305 break;
306 case RW_STATE_WORD1:
307 pit_load_count(s, s->write_latch | (val << 8));
308 s->write_state = RW_STATE_WORD0;
309 break;
314 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
316 PITState *pit = opaque;
317 int ret, count;
318 PITChannelState *s;
320 addr &= 3;
321 s = &pit->channels[addr];
322 if (s->status_latched) {
323 s->status_latched = 0;
324 ret = s->status;
325 } else if (s->count_latched) {
326 switch(s->count_latched) {
327 default:
328 case RW_STATE_LSB:
329 ret = s->latched_count & 0xff;
330 s->count_latched = 0;
331 break;
332 case RW_STATE_MSB:
333 ret = s->latched_count >> 8;
334 s->count_latched = 0;
335 break;
336 case RW_STATE_WORD0:
337 ret = s->latched_count & 0xff;
338 s->count_latched = RW_STATE_MSB;
339 break;
341 } else {
342 switch(s->read_state) {
343 default:
344 case RW_STATE_LSB:
345 count = pit_get_count(s);
346 ret = count & 0xff;
347 break;
348 case RW_STATE_MSB:
349 count = pit_get_count(s);
350 ret = (count >> 8) & 0xff;
351 break;
352 case RW_STATE_WORD0:
353 count = pit_get_count(s);
354 ret = count & 0xff;
355 s->read_state = RW_STATE_WORD1;
356 break;
357 case RW_STATE_WORD1:
358 count = pit_get_count(s);
359 ret = (count >> 8) & 0xff;
360 s->read_state = RW_STATE_WORD0;
361 break;
364 return ret;
367 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
369 int64_t expire_time;
370 int irq_level;
372 if (!s->irq_timer)
373 return;
374 expire_time = pit_get_next_transition_time(s, current_time);
375 irq_level = pit_get_out1(s, current_time);
376 qemu_set_irq(s->irq, irq_level);
377 #ifdef DEBUG_PIT
378 printf("irq_level=%d next_delay=%f\n",
379 irq_level,
380 (double)(expire_time - current_time) / get_ticks_per_sec());
381 #endif
382 s->next_transition_time = expire_time;
383 if (expire_time != -1)
384 qemu_mod_timer(s->irq_timer, expire_time);
385 else
386 qemu_del_timer(s->irq_timer);
389 static void pit_irq_timer(void *opaque)
391 PITChannelState *s = opaque;
393 pit_irq_timer_update(s, s->next_transition_time);
396 static const VMStateDescription vmstate_pit_channel = {
397 .name = "pit channel",
398 .version_id = 2,
399 .minimum_version_id = 2,
400 .minimum_version_id_old = 2,
401 .fields = (VMStateField []) {
402 VMSTATE_INT32(count, PITChannelState),
403 VMSTATE_UINT16(latched_count, PITChannelState),
404 VMSTATE_UINT8(count_latched, PITChannelState),
405 VMSTATE_UINT8(status_latched, PITChannelState),
406 VMSTATE_UINT8(status, PITChannelState),
407 VMSTATE_UINT8(read_state, PITChannelState),
408 VMSTATE_UINT8(write_state, PITChannelState),
409 VMSTATE_UINT8(write_latch, PITChannelState),
410 VMSTATE_UINT8(rw_mode, PITChannelState),
411 VMSTATE_UINT8(mode, PITChannelState),
412 VMSTATE_UINT8(bcd, PITChannelState),
413 VMSTATE_UINT8(gate, PITChannelState),
414 VMSTATE_INT64(count_load_time, PITChannelState),
415 VMSTATE_INT64(next_transition_time, PITChannelState),
416 VMSTATE_END_OF_LIST()
420 static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
422 PITState *pit = opaque;
423 PITChannelState *s;
424 int i;
426 if (version_id != 1)
427 return -EINVAL;
429 for(i = 0; i < 3; i++) {
430 s = &pit->channels[i];
431 s->count=qemu_get_be32(f);
432 qemu_get_be16s(f, &s->latched_count);
433 qemu_get_8s(f, &s->count_latched);
434 qemu_get_8s(f, &s->status_latched);
435 qemu_get_8s(f, &s->status);
436 qemu_get_8s(f, &s->read_state);
437 qemu_get_8s(f, &s->write_state);
438 qemu_get_8s(f, &s->write_latch);
439 qemu_get_8s(f, &s->rw_mode);
440 qemu_get_8s(f, &s->mode);
441 qemu_get_8s(f, &s->bcd);
442 qemu_get_8s(f, &s->gate);
443 s->count_load_time=qemu_get_be64(f);
444 if (s->irq_timer) {
445 s->next_transition_time=qemu_get_be64(f);
446 qemu_get_timer(f, s->irq_timer);
449 return 0;
452 static const VMStateDescription vmstate_pit = {
453 .name = "i8254",
454 .version_id = 2,
455 .minimum_version_id = 2,
456 .minimum_version_id_old = 1,
457 .load_state_old = pit_load_old,
458 .fields = (VMStateField []) {
459 VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
460 VMSTATE_TIMER(channels[0].irq_timer, PITState),
461 VMSTATE_END_OF_LIST()
465 static void pit_reset(void *opaque)
467 PITState *pit = opaque;
468 PITChannelState *s;
469 int i;
471 for(i = 0;i < 3; i++) {
472 s = &pit->channels[i];
473 s->mode = 3;
474 s->gate = (i != 2);
475 pit_load_count(s, 0);
479 /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
480 void hpet_pit_disable(void) {
481 PITChannelState *s;
482 s = &pit_state.channels[0];
483 if (s->irq_timer)
484 qemu_del_timer(s->irq_timer);
487 /* When HPET is reset or leaving legacy mode, it must reenable i8254
488 * timer 0
491 void hpet_pit_enable(void)
493 PITState *pit = &pit_state;
494 PITChannelState *s;
495 s = &pit->channels[0];
496 s->mode = 3;
497 s->gate = 1;
498 pit_load_count(s, 0);
501 PITState *pit_init(int base, qemu_irq irq)
503 PITState *pit = &pit_state;
504 PITChannelState *s;
506 s = &pit->channels[0];
507 /* the timer 0 is connected to an IRQ */
508 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
509 s->irq = irq;
511 vmstate_register(base, &vmstate_pit, pit);
512 qemu_register_reset(pit_reset, pit);
513 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
514 register_ioport_read(base, 3, 1, pit_ioport_read, pit);
516 pit_reset(pit);
518 return pit;