2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
36 #include "qemu-common.h"
41 #if defined(CONFIG_USER_ONLY)
45 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_UNASSIGNED
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
62 #define SMC_BITMAP_USE_THRESHOLD 10
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 static TranslationBlock
*tbs
;
82 int code_gen_max_blocks
;
83 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 static uint8_t *code_gen_buffer
;
106 static unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size
;
109 uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
113 uint8_t *phys_ram_dirty
;
114 static int in_migration
;
116 typedef struct RAMBlock
{
120 struct RAMBlock
*next
;
123 static RAMBlock
*ram_blocks
;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset
;
131 /* current CPU in the current thread. It is only valid inside
133 CPUState
*cpu_single_env
;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
142 typedef struct PageDesc
{
143 /* list of TBs intersecting this ram page */
144 TranslationBlock
*first_tb
;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count
;
148 uint8_t *code_bitmap
;
149 #if defined(CONFIG_USER_ONLY)
154 typedef struct PhysPageDesc
{
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset
;
157 ram_addr_t region_offset
;
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
174 unsigned long qemu_real_host_page_size
;
175 unsigned long qemu_host_page_bits
;
176 unsigned long qemu_host_page_size
;
177 unsigned long qemu_host_page_mask
;
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc
*l1_map
[L1_SIZE
];
181 static PhysPageDesc
**l1_phys_map
;
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
186 /* io memory support */
187 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
188 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
189 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
190 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
191 static int io_mem_watch
;
195 static const char *logfilename
= "/tmp/qemu.log";
198 static int log_append
= 0;
201 static int tlb_flush_count
;
202 static int tb_flush_count
;
203 static int tb_phys_invalidate_count
;
205 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
206 typedef struct subpage_t
{
207 target_phys_addr_t base
;
208 CPUReadMemoryFunc
* const *mem_read
[TARGET_PAGE_SIZE
][4];
209 CPUWriteMemoryFunc
* const *mem_write
[TARGET_PAGE_SIZE
][4];
210 void *opaque
[TARGET_PAGE_SIZE
][2][4];
211 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
215 static void map_exec(void *addr
, long size
)
218 VirtualProtect(addr
, size
,
219 PAGE_EXECUTE_READWRITE
, &old_protect
);
223 static void map_exec(void *addr
, long size
)
225 unsigned long start
, end
, page_size
;
227 page_size
= getpagesize();
228 start
= (unsigned long)addr
;
229 start
&= ~(page_size
- 1);
231 end
= (unsigned long)addr
+ size
;
232 end
+= page_size
- 1;
233 end
&= ~(page_size
- 1);
235 mprotect((void *)start
, end
- start
,
236 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
240 static void page_init(void)
242 /* NOTE: we can always suppose that qemu_host_page_size >=
246 SYSTEM_INFO system_info
;
248 GetSystemInfo(&system_info
);
249 qemu_real_host_page_size
= system_info
.dwPageSize
;
252 qemu_real_host_page_size
= getpagesize();
254 if (qemu_host_page_size
== 0)
255 qemu_host_page_size
= qemu_real_host_page_size
;
256 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
257 qemu_host_page_size
= TARGET_PAGE_SIZE
;
258 qemu_host_page_bits
= 0;
259 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
260 qemu_host_page_bits
++;
261 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
262 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
263 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
265 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 long long startaddr
, endaddr
;
272 last_brk
= (unsigned long)sbrk(0);
273 f
= fopen("/proc/self/maps", "r");
276 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
278 startaddr
= MIN(startaddr
,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
280 endaddr
= MIN(endaddr
,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
282 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
283 TARGET_PAGE_ALIGN(endaddr
),
294 static inline PageDesc
**page_l1_map(target_ulong index
)
296 #if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
299 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
302 return &l1_map
[index
>> L2_BITS
];
305 static inline PageDesc
*page_find_alloc(target_ulong index
)
308 lp
= page_l1_map(index
);
314 /* allocate if not found */
315 #if defined(CONFIG_USER_ONLY)
316 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
317 /* Don't use qemu_malloc because it may recurse. */
318 p
= mmap(NULL
, len
, PROT_READ
| PROT_WRITE
,
319 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
322 unsigned long addr
= h2g(p
);
323 page_set_flags(addr
& TARGET_PAGE_MASK
,
324 TARGET_PAGE_ALIGN(addr
+ len
),
328 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
332 return p
+ (index
& (L2_SIZE
- 1));
335 static inline PageDesc
*page_find(target_ulong index
)
338 lp
= page_l1_map(index
);
346 return p
+ (index
& (L2_SIZE
- 1));
349 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
354 p
= (void **)l1_phys_map
;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
360 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
363 /* allocate if not found */
366 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
367 memset(p
, 0, sizeof(void *) * L1_SIZE
);
371 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
375 /* allocate if not found */
378 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
380 for (i
= 0; i
< L2_SIZE
; i
++) {
381 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
382 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
385 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
388 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
390 return phys_page_find_alloc(index
, 0);
393 #if !defined(CONFIG_USER_ONLY)
394 static void tlb_protect_code(ram_addr_t ram_addr
);
395 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
397 #define mmap_lock() do { } while(0)
398 #define mmap_unlock() do { } while(0)
401 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403 #if defined(CONFIG_USER_ONLY)
404 /* Currently it is not recommended to allocate big chunks of data in
405 user mode. It will change when a dedicated libc will be used */
406 #define USE_STATIC_CODE_GEN_BUFFER
409 #ifdef USE_STATIC_CODE_GEN_BUFFER
410 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
413 static void code_gen_alloc(unsigned long tb_size
)
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer
= static_code_gen_buffer
;
417 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
418 map_exec(code_gen_buffer
, code_gen_buffer_size
);
420 code_gen_buffer_size
= tb_size
;
421 if (code_gen_buffer_size
== 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
426 /* XXX: needs adjustments */
427 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
430 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
431 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
439 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
440 #if defined(__x86_64__)
442 /* Cannot map more than that */
443 if (code_gen_buffer_size
> (800 * 1024 * 1024))
444 code_gen_buffer_size
= (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
448 start
= (void *) 0x60000000UL
;
449 if (code_gen_buffer_size
> (512 * 1024 * 1024))
450 code_gen_buffer_size
= (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
454 start
= (void *) 0x01000000UL
;
455 if (code_gen_buffer_size
> 16 * 1024 * 1024)
456 code_gen_buffer_size
= 16 * 1024 * 1024;
458 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
459 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
461 if (code_gen_buffer
== MAP_FAILED
) {
462 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
466 #elif defined(__FreeBSD__) || defined(__DragonFly__)
470 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
475 addr
= (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size
> (800 * 1024 * 1024))
478 code_gen_buffer_size
= (800 * 1024 * 1024);
480 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
481 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
483 if (code_gen_buffer
== MAP_FAILED
) {
484 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
489 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
490 map_exec(code_gen_buffer
, code_gen_buffer_size
);
492 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
493 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
494 code_gen_buffer_max_size
= code_gen_buffer_size
-
495 code_gen_max_block_size();
496 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
497 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
500 /* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
503 void cpu_exec_init_all(unsigned long tb_size
)
506 code_gen_alloc(tb_size
);
507 code_gen_ptr
= code_gen_buffer
;
509 #if !defined(CONFIG_USER_ONLY)
514 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516 static void cpu_common_pre_save(const void *opaque
)
518 CPUState
*env
= (void *)opaque
;
520 cpu_synchronize_state(env
);
523 static int cpu_common_pre_load(void *opaque
)
525 CPUState
*env
= opaque
;
527 cpu_synchronize_state(env
);
531 static int cpu_common_post_load(void *opaque
)
533 CPUState
*env
= opaque
;
535 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
536 version_id is increased. */
537 env
->interrupt_request
&= ~0x01;
543 static const VMStateDescription vmstate_cpu_common
= {
544 .name
= "cpu_common",
546 .minimum_version_id
= 1,
547 .minimum_version_id_old
= 1,
548 .pre_save
= cpu_common_pre_save
,
549 .pre_load
= cpu_common_pre_load
,
550 .post_load
= cpu_common_post_load
,
551 .fields
= (VMStateField
[]) {
552 VMSTATE_UINT32(halted
, CPUState
),
553 VMSTATE_UINT32(interrupt_request
, CPUState
),
554 VMSTATE_END_OF_LIST()
559 CPUState
*qemu_get_cpu(int cpu
)
561 CPUState
*env
= first_cpu
;
564 if (env
->cpu_index
== cpu
)
572 void cpu_exec_init(CPUState
*env
)
577 #if defined(CONFIG_USER_ONLY)
580 env
->next_cpu
= NULL
;
583 while (*penv
!= NULL
) {
584 penv
= &(*penv
)->next_cpu
;
587 env
->cpu_index
= cpu_index
;
589 TAILQ_INIT(&env
->breakpoints
);
590 TAILQ_INIT(&env
->watchpoints
);
592 #if defined(CONFIG_USER_ONLY)
595 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
596 vmstate_register(cpu_index
, &vmstate_cpu_common
, env
);
597 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
598 cpu_save
, cpu_load
, env
);
602 static inline void invalidate_page_bitmap(PageDesc
*p
)
604 if (p
->code_bitmap
) {
605 qemu_free(p
->code_bitmap
);
606 p
->code_bitmap
= NULL
;
608 p
->code_write_count
= 0;
611 /* set to NULL all the 'first_tb' fields in all PageDescs */
612 static void page_flush_tb(void)
617 for(i
= 0; i
< L1_SIZE
; i
++) {
620 for(j
= 0; j
< L2_SIZE
; j
++) {
622 invalidate_page_bitmap(p
);
629 /* flush all the translation blocks */
630 /* XXX: tb_flush is currently not thread safe */
631 void tb_flush(CPUState
*env1
)
634 #if defined(DEBUG_FLUSH)
635 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
636 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
638 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
640 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
641 cpu_abort(env1
, "Internal error: code buffer overflow\n");
645 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
646 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
649 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
652 code_gen_ptr
= code_gen_buffer
;
653 /* XXX: flush processor icache at this point if cache flush is
658 #ifdef DEBUG_TB_CHECK
660 static void tb_invalidate_check(target_ulong address
)
662 TranslationBlock
*tb
;
664 address
&= TARGET_PAGE_MASK
;
665 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
666 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
667 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
668 address
>= tb
->pc
+ tb
->size
)) {
669 printf("ERROR invalidate: address=" TARGET_FMT_lx
670 " PC=%08lx size=%04x\n",
671 address
, (long)tb
->pc
, tb
->size
);
677 /* verify that all the pages have correct rights for code */
678 static void tb_page_check(void)
680 TranslationBlock
*tb
;
681 int i
, flags1
, flags2
;
683 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
684 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
685 flags1
= page_get_flags(tb
->pc
);
686 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
687 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
688 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
689 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
697 /* invalidate one TB */
698 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
701 TranslationBlock
*tb1
;
705 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
708 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
712 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
714 TranslationBlock
*tb1
;
720 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
722 *ptb
= tb1
->page_next
[n1
];
725 ptb
= &tb1
->page_next
[n1
];
729 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
731 TranslationBlock
*tb1
, **ptb
;
734 ptb
= &tb
->jmp_next
[n
];
737 /* find tb(n) in circular list */
741 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
742 if (n1
== n
&& tb1
== tb
)
745 ptb
= &tb1
->jmp_first
;
747 ptb
= &tb1
->jmp_next
[n1
];
750 /* now we can suppress tb(n) from the list */
751 *ptb
= tb
->jmp_next
[n
];
753 tb
->jmp_next
[n
] = NULL
;
757 /* reset the jump entry 'n' of a TB so that it is not chained to
759 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
761 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
764 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
769 target_phys_addr_t phys_pc
;
770 TranslationBlock
*tb1
, *tb2
;
772 /* remove the TB from the hash list */
773 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
774 h
= tb_phys_hash_func(phys_pc
);
775 tb_remove(&tb_phys_hash
[h
], tb
,
776 offsetof(TranslationBlock
, phys_hash_next
));
778 /* remove the TB from the page list */
779 if (tb
->page_addr
[0] != page_addr
) {
780 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
781 tb_page_remove(&p
->first_tb
, tb
);
782 invalidate_page_bitmap(p
);
784 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
785 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
786 tb_page_remove(&p
->first_tb
, tb
);
787 invalidate_page_bitmap(p
);
790 tb_invalidated_flag
= 1;
792 /* remove the TB from the hash list */
793 h
= tb_jmp_cache_hash_func(tb
->pc
);
794 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
795 if (env
->tb_jmp_cache
[h
] == tb
)
796 env
->tb_jmp_cache
[h
] = NULL
;
799 /* suppress this TB from the two jump lists */
800 tb_jmp_remove(tb
, 0);
801 tb_jmp_remove(tb
, 1);
803 /* suppress any remaining jumps to this TB */
809 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
810 tb2
= tb1
->jmp_next
[n1
];
811 tb_reset_jump(tb1
, n1
);
812 tb1
->jmp_next
[n1
] = NULL
;
815 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
817 tb_phys_invalidate_count
++;
820 static inline void set_bits(uint8_t *tab
, int start
, int len
)
826 mask
= 0xff << (start
& 7);
827 if ((start
& ~7) == (end
& ~7)) {
829 mask
&= ~(0xff << (end
& 7));
834 start
= (start
+ 8) & ~7;
836 while (start
< end1
) {
841 mask
= ~(0xff << (end
& 7));
847 static void build_page_bitmap(PageDesc
*p
)
849 int n
, tb_start
, tb_end
;
850 TranslationBlock
*tb
;
852 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
857 tb
= (TranslationBlock
*)((long)tb
& ~3);
858 /* NOTE: this is subtle as a TB may span two physical pages */
860 /* NOTE: tb_end may be after the end of the page, but
861 it is not a problem */
862 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
863 tb_end
= tb_start
+ tb
->size
;
864 if (tb_end
> TARGET_PAGE_SIZE
)
865 tb_end
= TARGET_PAGE_SIZE
;
868 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
870 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
871 tb
= tb
->page_next
[n
];
875 TranslationBlock
*tb_gen_code(CPUState
*env
,
876 target_ulong pc
, target_ulong cs_base
,
877 int flags
, int cflags
)
879 TranslationBlock
*tb
;
881 target_ulong phys_pc
, phys_page2
, virt_page2
;
884 phys_pc
= get_phys_addr_code(env
, pc
);
887 /* flush must be done */
889 /* cannot fail at this point */
891 /* Don't forget to invalidate previous TB info. */
892 tb_invalidated_flag
= 1;
894 tc_ptr
= code_gen_ptr
;
896 tb
->cs_base
= cs_base
;
899 cpu_gen_code(env
, tb
, &code_gen_size
);
900 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
902 /* check next page if needed */
903 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
905 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
906 phys_page2
= get_phys_addr_code(env
, virt_page2
);
908 tb_link_phys(tb
, phys_pc
, phys_page2
);
912 /* invalidate all TBs which intersect with the target physical page
913 starting in range [start;end[. NOTE: start and end must refer to
914 the same physical page. 'is_cpu_write_access' should be true if called
915 from a real cpu write access: the virtual CPU will exit the current
916 TB if code is modified inside this TB. */
917 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
918 int is_cpu_write_access
)
920 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
921 CPUState
*env
= cpu_single_env
;
922 target_ulong tb_start
, tb_end
;
925 #ifdef TARGET_HAS_PRECISE_SMC
926 int current_tb_not_found
= is_cpu_write_access
;
927 TranslationBlock
*current_tb
= NULL
;
928 int current_tb_modified
= 0;
929 target_ulong current_pc
= 0;
930 target_ulong current_cs_base
= 0;
931 int current_flags
= 0;
932 #endif /* TARGET_HAS_PRECISE_SMC */
934 p
= page_find(start
>> TARGET_PAGE_BITS
);
937 if (!p
->code_bitmap
&&
938 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
939 is_cpu_write_access
) {
940 /* build code bitmap */
941 build_page_bitmap(p
);
944 /* we remove all the TBs in the range [start, end[ */
945 /* XXX: see if in some cases it could be faster to invalidate all the code */
949 tb
= (TranslationBlock
*)((long)tb
& ~3);
950 tb_next
= tb
->page_next
[n
];
951 /* NOTE: this is subtle as a TB may span two physical pages */
953 /* NOTE: tb_end may be after the end of the page, but
954 it is not a problem */
955 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
956 tb_end
= tb_start
+ tb
->size
;
958 tb_start
= tb
->page_addr
[1];
959 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
961 if (!(tb_end
<= start
|| tb_start
>= end
)) {
962 #ifdef TARGET_HAS_PRECISE_SMC
963 if (current_tb_not_found
) {
964 current_tb_not_found
= 0;
966 if (env
->mem_io_pc
) {
967 /* now we have a real cpu fault */
968 current_tb
= tb_find_pc(env
->mem_io_pc
);
971 if (current_tb
== tb
&&
972 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
973 /* If we are modifying the current TB, we must stop
974 its execution. We could be more precise by checking
975 that the modification is after the current PC, but it
976 would require a specialized function to partially
977 restore the CPU state */
979 current_tb_modified
= 1;
980 cpu_restore_state(current_tb
, env
,
981 env
->mem_io_pc
, NULL
);
982 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
985 #endif /* TARGET_HAS_PRECISE_SMC */
986 /* we need to do that to handle the case where a signal
987 occurs while doing tb_phys_invalidate() */
990 saved_tb
= env
->current_tb
;
991 env
->current_tb
= NULL
;
993 tb_phys_invalidate(tb
, -1);
995 env
->current_tb
= saved_tb
;
996 if (env
->interrupt_request
&& env
->current_tb
)
997 cpu_interrupt(env
, env
->interrupt_request
);
1002 #if !defined(CONFIG_USER_ONLY)
1003 /* if no code remaining, no need to continue to use slow writes */
1005 invalidate_page_bitmap(p
);
1006 if (is_cpu_write_access
) {
1007 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1011 #ifdef TARGET_HAS_PRECISE_SMC
1012 if (current_tb_modified
) {
1013 /* we generate a block containing just the instruction
1014 modifying the memory. It will ensure that it cannot modify
1016 env
->current_tb
= NULL
;
1017 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1018 cpu_resume_from_signal(env
, NULL
);
1023 /* len must be <= 8 and start must be a multiple of len */
1024 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1030 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1031 cpu_single_env
->mem_io_vaddr
, len
,
1032 cpu_single_env
->eip
,
1033 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1036 p
= page_find(start
>> TARGET_PAGE_BITS
);
1039 if (p
->code_bitmap
) {
1040 offset
= start
& ~TARGET_PAGE_MASK
;
1041 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1042 if (b
& ((1 << len
) - 1))
1046 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1050 #if !defined(CONFIG_SOFTMMU)
1051 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1052 unsigned long pc
, void *puc
)
1054 TranslationBlock
*tb
;
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 TranslationBlock
*current_tb
= NULL
;
1059 CPUState
*env
= cpu_single_env
;
1060 int current_tb_modified
= 0;
1061 target_ulong current_pc
= 0;
1062 target_ulong current_cs_base
= 0;
1063 int current_flags
= 0;
1066 addr
&= TARGET_PAGE_MASK
;
1067 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1071 #ifdef TARGET_HAS_PRECISE_SMC
1072 if (tb
&& pc
!= 0) {
1073 current_tb
= tb_find_pc(pc
);
1076 while (tb
!= NULL
) {
1078 tb
= (TranslationBlock
*)((long)tb
& ~3);
1079 #ifdef TARGET_HAS_PRECISE_SMC
1080 if (current_tb
== tb
&&
1081 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1082 /* If we are modifying the current TB, we must stop
1083 its execution. We could be more precise by checking
1084 that the modification is after the current PC, but it
1085 would require a specialized function to partially
1086 restore the CPU state */
1088 current_tb_modified
= 1;
1089 cpu_restore_state(current_tb
, env
, pc
, puc
);
1090 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1093 #endif /* TARGET_HAS_PRECISE_SMC */
1094 tb_phys_invalidate(tb
, addr
);
1095 tb
= tb
->page_next
[n
];
1098 #ifdef TARGET_HAS_PRECISE_SMC
1099 if (current_tb_modified
) {
1100 /* we generate a block containing just the instruction
1101 modifying the memory. It will ensure that it cannot modify
1103 env
->current_tb
= NULL
;
1104 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1105 cpu_resume_from_signal(env
, puc
);
1111 /* add the tb in the target page and protect it if necessary */
1112 static inline void tb_alloc_page(TranslationBlock
*tb
,
1113 unsigned int n
, target_ulong page_addr
)
1116 TranslationBlock
*last_first_tb
;
1118 tb
->page_addr
[n
] = page_addr
;
1119 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1120 tb
->page_next
[n
] = p
->first_tb
;
1121 last_first_tb
= p
->first_tb
;
1122 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1123 invalidate_page_bitmap(p
);
1125 #if defined(TARGET_HAS_SMC) || 1
1127 #if defined(CONFIG_USER_ONLY)
1128 if (p
->flags
& PAGE_WRITE
) {
1133 /* force the host page as non writable (writes will have a
1134 page fault + mprotect overhead) */
1135 page_addr
&= qemu_host_page_mask
;
1137 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1138 addr
+= TARGET_PAGE_SIZE
) {
1140 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1144 p2
->flags
&= ~PAGE_WRITE
;
1145 page_get_flags(addr
);
1147 mprotect(g2h(page_addr
), qemu_host_page_size
,
1148 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1149 #ifdef DEBUG_TB_INVALIDATE
1150 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1155 /* if some code is already present, then the pages are already
1156 protected. So we handle the case where only the first TB is
1157 allocated in a physical page */
1158 if (!last_first_tb
) {
1159 tlb_protect_code(page_addr
);
1163 #endif /* TARGET_HAS_SMC */
1166 /* Allocate a new translation block. Flush the translation buffer if
1167 too many translation blocks or too much generated code. */
1168 TranslationBlock
*tb_alloc(target_ulong pc
)
1170 TranslationBlock
*tb
;
1172 if (nb_tbs
>= code_gen_max_blocks
||
1173 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1175 tb
= &tbs
[nb_tbs
++];
1181 void tb_free(TranslationBlock
*tb
)
1183 /* In practice this is mostly used for single use temporary TB
1184 Ignore the hard cases and just back up if this TB happens to
1185 be the last one generated. */
1186 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1187 code_gen_ptr
= tb
->tc_ptr
;
1192 /* add a new TB and link it to the physical page tables. phys_page2 is
1193 (-1) to indicate that only one page contains the TB. */
1194 void tb_link_phys(TranslationBlock
*tb
,
1195 target_ulong phys_pc
, target_ulong phys_page2
)
1198 TranslationBlock
**ptb
;
1200 /* Grab the mmap lock to stop another thread invalidating this TB
1201 before we are done. */
1203 /* add in the physical hash table */
1204 h
= tb_phys_hash_func(phys_pc
);
1205 ptb
= &tb_phys_hash
[h
];
1206 tb
->phys_hash_next
= *ptb
;
1209 /* add in the page list */
1210 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1211 if (phys_page2
!= -1)
1212 tb_alloc_page(tb
, 1, phys_page2
);
1214 tb
->page_addr
[1] = -1;
1216 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1217 tb
->jmp_next
[0] = NULL
;
1218 tb
->jmp_next
[1] = NULL
;
1220 /* init original jump addresses */
1221 if (tb
->tb_next_offset
[0] != 0xffff)
1222 tb_reset_jump(tb
, 0);
1223 if (tb
->tb_next_offset
[1] != 0xffff)
1224 tb_reset_jump(tb
, 1);
1226 #ifdef DEBUG_TB_CHECK
1232 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1233 tb[1].tc_ptr. Return NULL if not found */
1234 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1236 int m_min
, m_max
, m
;
1238 TranslationBlock
*tb
;
1242 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1243 tc_ptr
>= (unsigned long)code_gen_ptr
)
1245 /* binary search (cf Knuth) */
1248 while (m_min
<= m_max
) {
1249 m
= (m_min
+ m_max
) >> 1;
1251 v
= (unsigned long)tb
->tc_ptr
;
1254 else if (tc_ptr
< v
) {
1263 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1265 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1267 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1270 tb1
= tb
->jmp_next
[n
];
1272 /* find head of list */
1275 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1278 tb1
= tb1
->jmp_next
[n1
];
1280 /* we are now sure now that tb jumps to tb1 */
1283 /* remove tb from the jmp_first list */
1284 ptb
= &tb_next
->jmp_first
;
1288 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1289 if (n1
== n
&& tb1
== tb
)
1291 ptb
= &tb1
->jmp_next
[n1
];
1293 *ptb
= tb
->jmp_next
[n
];
1294 tb
->jmp_next
[n
] = NULL
;
1296 /* suppress the jump to next tb in generated code */
1297 tb_reset_jump(tb
, n
);
1299 /* suppress jumps in the tb on which we could have jumped */
1300 tb_reset_jump_recursive(tb_next
);
1304 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1306 tb_reset_jump_recursive2(tb
, 0);
1307 tb_reset_jump_recursive2(tb
, 1);
1310 #if defined(TARGET_HAS_ICE)
1311 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1313 target_phys_addr_t addr
;
1315 ram_addr_t ram_addr
;
1318 addr
= cpu_get_phys_page_debug(env
, pc
);
1319 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1321 pd
= IO_MEM_UNASSIGNED
;
1323 pd
= p
->phys_offset
;
1325 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1326 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1330 /* Add a watchpoint. */
1331 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1332 int flags
, CPUWatchpoint
**watchpoint
)
1334 target_ulong len_mask
= ~(len
- 1);
1337 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1338 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1339 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1340 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1343 wp
= qemu_malloc(sizeof(*wp
));
1346 wp
->len_mask
= len_mask
;
1349 /* keep all GDB-injected watchpoints in front */
1351 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1353 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1355 tlb_flush_page(env
, addr
);
1362 /* Remove a specific watchpoint. */
1363 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1366 target_ulong len_mask
= ~(len
- 1);
1369 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1370 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1371 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1372 cpu_watchpoint_remove_by_ref(env
, wp
);
1379 /* Remove a specific watchpoint by reference. */
1380 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1382 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1384 tlb_flush_page(env
, watchpoint
->vaddr
);
1386 qemu_free(watchpoint
);
1389 /* Remove all matching watchpoints. */
1390 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1392 CPUWatchpoint
*wp
, *next
;
1394 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1395 if (wp
->flags
& mask
)
1396 cpu_watchpoint_remove_by_ref(env
, wp
);
1400 /* Add a breakpoint. */
1401 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1402 CPUBreakpoint
**breakpoint
)
1404 #if defined(TARGET_HAS_ICE)
1407 bp
= qemu_malloc(sizeof(*bp
));
1412 /* keep all GDB-injected breakpoints in front */
1414 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1416 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1418 breakpoint_invalidate(env
, pc
);
1428 /* Remove a specific breakpoint. */
1429 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1431 #if defined(TARGET_HAS_ICE)
1434 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1435 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1436 cpu_breakpoint_remove_by_ref(env
, bp
);
1446 /* Remove a specific breakpoint by reference. */
1447 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1449 #if defined(TARGET_HAS_ICE)
1450 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1452 breakpoint_invalidate(env
, breakpoint
->pc
);
1454 qemu_free(breakpoint
);
1458 /* Remove all matching breakpoints. */
1459 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1461 #if defined(TARGET_HAS_ICE)
1462 CPUBreakpoint
*bp
, *next
;
1464 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1465 if (bp
->flags
& mask
)
1466 cpu_breakpoint_remove_by_ref(env
, bp
);
1471 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1472 CPU loop after each instruction */
1473 void cpu_single_step(CPUState
*env
, int enabled
)
1475 #if defined(TARGET_HAS_ICE)
1476 if (env
->singlestep_enabled
!= enabled
) {
1477 env
->singlestep_enabled
= enabled
;
1479 kvm_update_guest_debug(env
, 0);
1481 /* must flush all the translated code to avoid inconsistencies */
1482 /* XXX: only flush what is necessary */
1489 /* enable or disable low levels log */
1490 void cpu_set_log(int log_flags
)
1492 loglevel
= log_flags
;
1493 if (loglevel
&& !logfile
) {
1494 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1496 perror(logfilename
);
1499 #if !defined(CONFIG_SOFTMMU)
1500 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1502 static char logfile_buf
[4096];
1503 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1505 #elif !defined(_WIN32)
1506 /* Win32 doesn't support line-buffering and requires size >= 2 */
1507 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1511 if (!loglevel
&& logfile
) {
1517 void cpu_set_log_filename(const char *filename
)
1519 logfilename
= strdup(filename
);
1524 cpu_set_log(loglevel
);
1527 static void cpu_unlink_tb(CPUState
*env
)
1529 #if defined(CONFIG_USE_NPTL)
1530 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1531 problem and hope the cpu will stop of its own accord. For userspace
1532 emulation this often isn't actually as bad as it sounds. Often
1533 signals are used primarily to interrupt blocking syscalls. */
1535 TranslationBlock
*tb
;
1536 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1538 tb
= env
->current_tb
;
1539 /* if the cpu is currently executing code, we must unlink it and
1540 all the potentially executing TB */
1541 if (tb
&& !testandset(&interrupt_lock
)) {
1542 env
->current_tb
= NULL
;
1543 tb_reset_jump_recursive(tb
);
1544 resetlock(&interrupt_lock
);
1549 /* mask must never be zero, except for A20 change call */
1550 void cpu_interrupt(CPUState
*env
, int mask
)
1554 old_mask
= env
->interrupt_request
;
1555 env
->interrupt_request
|= mask
;
1557 #ifndef CONFIG_USER_ONLY
1559 * If called from iothread context, wake the target cpu in
1562 if (!qemu_cpu_self(env
)) {
1569 env
->icount_decr
.u16
.high
= 0xffff;
1570 #ifndef CONFIG_USER_ONLY
1572 && (mask
& ~old_mask
) != 0) {
1573 cpu_abort(env
, "Raised interrupt while not in I/O function");
1581 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1583 env
->interrupt_request
&= ~mask
;
1586 void cpu_exit(CPUState
*env
)
1588 env
->exit_request
= 1;
1592 const CPULogItem cpu_log_items
[] = {
1593 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1594 "show generated host assembly code for each compiled TB" },
1595 { CPU_LOG_TB_IN_ASM
, "in_asm",
1596 "show target assembly code for each compiled TB" },
1597 { CPU_LOG_TB_OP
, "op",
1598 "show micro ops for each compiled TB" },
1599 { CPU_LOG_TB_OP_OPT
, "op_opt",
1602 "before eflags optimization and "
1604 "after liveness analysis" },
1605 { CPU_LOG_INT
, "int",
1606 "show interrupts/exceptions in short format" },
1607 { CPU_LOG_EXEC
, "exec",
1608 "show trace before each executed TB (lots of logs)" },
1609 { CPU_LOG_TB_CPU
, "cpu",
1610 "show CPU state before block translation" },
1612 { CPU_LOG_PCALL
, "pcall",
1613 "show protected mode far calls/returns/exceptions" },
1614 { CPU_LOG_RESET
, "cpu_reset",
1615 "show CPU state before CPU resets" },
1618 { CPU_LOG_IOPORT
, "ioport",
1619 "show all i/o ports accesses" },
1624 static int cmp1(const char *s1
, int n
, const char *s2
)
1626 if (strlen(s2
) != n
)
1628 return memcmp(s1
, s2
, n
) == 0;
1631 /* takes a comma separated list of log masks. Return 0 if error. */
1632 int cpu_str_to_log_mask(const char *str
)
1634 const CPULogItem
*item
;
1641 p1
= strchr(p
, ',');
1644 if(cmp1(p
,p1
-p
,"all")) {
1645 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1649 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1650 if (cmp1(p
, p1
- p
, item
->name
))
1664 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1671 fprintf(stderr
, "qemu: fatal: ");
1672 vfprintf(stderr
, fmt
, ap
);
1673 fprintf(stderr
, "\n");
1675 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1677 cpu_dump_state(env
, stderr
, fprintf
, 0);
1679 if (qemu_log_enabled()) {
1680 qemu_log("qemu: fatal: ");
1681 qemu_log_vprintf(fmt
, ap2
);
1684 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1686 log_cpu_state(env
, 0);
1696 CPUState
*cpu_copy(CPUState
*env
)
1698 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1699 CPUState
*next_cpu
= new_env
->next_cpu
;
1700 int cpu_index
= new_env
->cpu_index
;
1701 #if defined(TARGET_HAS_ICE)
1706 memcpy(new_env
, env
, sizeof(CPUState
));
1708 /* Preserve chaining and index. */
1709 new_env
->next_cpu
= next_cpu
;
1710 new_env
->cpu_index
= cpu_index
;
1712 /* Clone all break/watchpoints.
1713 Note: Once we support ptrace with hw-debug register access, make sure
1714 BP_CPU break/watchpoints are handled correctly on clone. */
1715 TAILQ_INIT(&env
->breakpoints
);
1716 TAILQ_INIT(&env
->watchpoints
);
1717 #if defined(TARGET_HAS_ICE)
1718 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1719 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1721 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1722 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1730 #if !defined(CONFIG_USER_ONLY)
1732 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1736 /* Discard jump cache entries for any tb which might potentially
1737 overlap the flushed page. */
1738 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1739 memset (&env
->tb_jmp_cache
[i
], 0,
1740 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1742 i
= tb_jmp_cache_hash_page(addr
);
1743 memset (&env
->tb_jmp_cache
[i
], 0,
1744 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1747 static CPUTLBEntry s_cputlb_empty_entry
= {
1754 /* NOTE: if flush_global is true, also flush global entries (not
1756 void tlb_flush(CPUState
*env
, int flush_global
)
1760 #if defined(DEBUG_TLB)
1761 printf("tlb_flush:\n");
1763 /* must reset current TB so that interrupts cannot modify the
1764 links while we are modifying them */
1765 env
->current_tb
= NULL
;
1767 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1769 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1770 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1774 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1779 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1781 if (addr
== (tlb_entry
->addr_read
&
1782 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1783 addr
== (tlb_entry
->addr_write
&
1784 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1785 addr
== (tlb_entry
->addr_code
&
1786 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1787 *tlb_entry
= s_cputlb_empty_entry
;
1791 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1796 #if defined(DEBUG_TLB)
1797 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1799 /* must reset current TB so that interrupts cannot modify the
1800 links while we are modifying them */
1801 env
->current_tb
= NULL
;
1803 addr
&= TARGET_PAGE_MASK
;
1804 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1805 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1806 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1808 tlb_flush_jmp_cache(env
, addr
);
1811 /* update the TLBs so that writes to code in the virtual page 'addr'
1813 static void tlb_protect_code(ram_addr_t ram_addr
)
1815 cpu_physical_memory_reset_dirty(ram_addr
,
1816 ram_addr
+ TARGET_PAGE_SIZE
,
1820 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1821 tested for self modifying code */
1822 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1825 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1828 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1829 unsigned long start
, unsigned long length
)
1832 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1833 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1834 if ((addr
- start
) < length
) {
1835 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1840 /* Note: start and end must be within the same ram block. */
1841 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1845 unsigned long length
, start1
;
1849 start
&= TARGET_PAGE_MASK
;
1850 end
= TARGET_PAGE_ALIGN(end
);
1852 length
= end
- start
;
1855 len
= length
>> TARGET_PAGE_BITS
;
1856 mask
= ~dirty_flags
;
1857 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1858 for(i
= 0; i
< len
; i
++)
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
1863 start1
= (unsigned long)qemu_get_ram_ptr(start
);
1864 /* Chek that we don't span multiple blocks - this breaks the
1865 address comparisons below. */
1866 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
1867 != (end
- 1) - start
) {
1871 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1873 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1874 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1875 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
1881 int cpu_physical_memory_set_dirty_tracking(int enable
)
1883 in_migration
= enable
;
1884 if (kvm_enabled()) {
1885 return kvm_set_migration_log(enable
);
1890 int cpu_physical_memory_get_dirty_tracking(void)
1892 return in_migration
;
1895 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
1896 target_phys_addr_t end_addr
)
1901 ret
= kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1905 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1907 ram_addr_t ram_addr
;
1910 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1911 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
1912 + tlb_entry
->addend
);
1913 ram_addr
= qemu_ram_addr_from_host(p
);
1914 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1915 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1920 /* update the TLB according to the current state of the dirty bits */
1921 void cpu_tlb_update_dirty(CPUState
*env
)
1925 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1926 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1927 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
1931 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1933 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1934 tlb_entry
->addr_write
= vaddr
;
1937 /* update the TLB corresponding to virtual page vaddr
1938 so that it is no longer dirty */
1939 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1944 vaddr
&= TARGET_PAGE_MASK
;
1945 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1946 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1947 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
1950 /* add a new TLB entry. At most one entry for a given virtual address
1951 is permitted. Return 0 if OK or 2 if the page could not be mapped
1952 (can only happen in non SOFTMMU mode for I/O pages or pages
1953 conflicting with the host address space). */
1954 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1955 target_phys_addr_t paddr
, int prot
,
1956 int mmu_idx
, int is_softmmu
)
1961 target_ulong address
;
1962 target_ulong code_address
;
1963 target_phys_addr_t addend
;
1967 target_phys_addr_t iotlb
;
1969 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1971 pd
= IO_MEM_UNASSIGNED
;
1973 pd
= p
->phys_offset
;
1975 #if defined(DEBUG_TLB)
1976 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1977 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1982 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1983 /* IO memory case (romd handled later) */
1984 address
|= TLB_MMIO
;
1986 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
1987 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1989 iotlb
= pd
& TARGET_PAGE_MASK
;
1990 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1991 iotlb
|= IO_MEM_NOTDIRTY
;
1993 iotlb
|= IO_MEM_ROM
;
1995 /* IO handlers are currently passed a physical address.
1996 It would be nice to pass an offset from the base address
1997 of that region. This would avoid having to special case RAM,
1998 and avoid full address decoding in every device.
1999 We can't use the high bits of pd for this because
2000 IO_MEM_ROMD uses these as a ram address. */
2001 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2003 iotlb
+= p
->region_offset
;
2009 code_address
= address
;
2010 /* Make accesses to pages with watchpoints go via the
2011 watchpoint trap routines. */
2012 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2013 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2014 iotlb
= io_mem_watch
+ paddr
;
2015 /* TODO: The memory case can be optimized by not trapping
2016 reads of pages with a write breakpoint. */
2017 address
|= TLB_MMIO
;
2021 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2022 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2023 te
= &env
->tlb_table
[mmu_idx
][index
];
2024 te
->addend
= addend
- vaddr
;
2025 if (prot
& PAGE_READ
) {
2026 te
->addr_read
= address
;
2031 if (prot
& PAGE_EXEC
) {
2032 te
->addr_code
= code_address
;
2036 if (prot
& PAGE_WRITE
) {
2037 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2038 (pd
& IO_MEM_ROMD
)) {
2039 /* Write access calls the I/O callback. */
2040 te
->addr_write
= address
| TLB_MMIO
;
2041 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2042 !cpu_physical_memory_is_dirty(pd
)) {
2043 te
->addr_write
= address
| TLB_NOTDIRTY
;
2045 te
->addr_write
= address
;
2048 te
->addr_write
= -1;
2055 void tlb_flush(CPUState
*env
, int flush_global
)
2059 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2063 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2064 target_phys_addr_t paddr
, int prot
,
2065 int mmu_idx
, int is_softmmu
)
2071 * Walks guest process memory "regions" one by one
2072 * and calls callback function 'fn' for each region.
2074 int walk_memory_regions(void *priv
,
2075 int (*fn
)(void *, unsigned long, unsigned long, unsigned long))
2077 unsigned long start
, end
;
2079 int i
, j
, prot
, prot1
;
2085 for (i
= 0; i
<= L1_SIZE
; i
++) {
2086 p
= (i
< L1_SIZE
) ? l1_map
[i
] : NULL
;
2087 for (j
= 0; j
< L2_SIZE
; j
++) {
2088 prot1
= (p
== NULL
) ? 0 : p
[j
].flags
;
2090 * "region" is one continuous chunk of memory
2091 * that has same protection flags set.
2093 if (prot1
!= prot
) {
2094 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2096 rc
= (*fn
)(priv
, start
, end
, prot
);
2097 /* callback can stop iteration by returning != 0 */
2114 static int dump_region(void *priv
, unsigned long start
,
2115 unsigned long end
, unsigned long prot
)
2117 FILE *f
= (FILE *)priv
;
2119 (void) fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2120 start
, end
, end
- start
,
2121 ((prot
& PAGE_READ
) ? 'r' : '-'),
2122 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2123 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2128 /* dump memory mappings */
2129 void page_dump(FILE *f
)
2131 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2132 "start", "end", "size", "prot");
2133 walk_memory_regions(f
, dump_region
);
2136 int page_get_flags(target_ulong address
)
2140 p
= page_find(address
>> TARGET_PAGE_BITS
);
2146 /* modify the flags of a page and invalidate the code if
2147 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2148 depending on PAGE_WRITE */
2149 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2154 /* mmap_lock should already be held. */
2155 start
= start
& TARGET_PAGE_MASK
;
2156 end
= TARGET_PAGE_ALIGN(end
);
2157 if (flags
& PAGE_WRITE
)
2158 flags
|= PAGE_WRITE_ORG
;
2159 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2160 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2161 /* We may be called for host regions that are outside guest
2165 /* if the write protection is set, then we invalidate the code
2167 if (!(p
->flags
& PAGE_WRITE
) &&
2168 (flags
& PAGE_WRITE
) &&
2170 tb_invalidate_phys_page(addr
, 0, NULL
);
2176 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2182 if (start
+ len
< start
)
2183 /* we've wrapped around */
2186 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2187 start
= start
& TARGET_PAGE_MASK
;
2189 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2190 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2193 if( !(p
->flags
& PAGE_VALID
) )
2196 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2198 if (flags
& PAGE_WRITE
) {
2199 if (!(p
->flags
& PAGE_WRITE_ORG
))
2201 /* unprotect the page if it was put read-only because it
2202 contains translated code */
2203 if (!(p
->flags
& PAGE_WRITE
)) {
2204 if (!page_unprotect(addr
, 0, NULL
))
2213 /* called from signal handler: invalidate the code and unprotect the
2214 page. Return TRUE if the fault was successfully handled. */
2215 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2217 unsigned int page_index
, prot
, pindex
;
2219 target_ulong host_start
, host_end
, addr
;
2221 /* Technically this isn't safe inside a signal handler. However we
2222 know this only ever happens in a synchronous SEGV handler, so in
2223 practice it seems to be ok. */
2226 host_start
= address
& qemu_host_page_mask
;
2227 page_index
= host_start
>> TARGET_PAGE_BITS
;
2228 p1
= page_find(page_index
);
2233 host_end
= host_start
+ qemu_host_page_size
;
2236 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2240 /* if the page was really writable, then we change its
2241 protection back to writable */
2242 if (prot
& PAGE_WRITE_ORG
) {
2243 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2244 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2245 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2246 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2247 p1
[pindex
].flags
|= PAGE_WRITE
;
2248 /* and since the content will be modified, we must invalidate
2249 the corresponding translated code. */
2250 tb_invalidate_phys_page(address
, pc
, puc
);
2251 #ifdef DEBUG_TB_CHECK
2252 tb_invalidate_check(address
);
2262 static inline void tlb_set_dirty(CPUState
*env
,
2263 unsigned long addr
, target_ulong vaddr
)
2266 #endif /* defined(CONFIG_USER_ONLY) */
2268 #if !defined(CONFIG_USER_ONLY)
2270 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2271 ram_addr_t memory
, ram_addr_t region_offset
);
2272 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2273 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2274 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2277 if (addr > start_addr) \
2280 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2281 if (start_addr2 > 0) \
2285 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2286 end_addr2 = TARGET_PAGE_SIZE - 1; \
2288 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2289 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2294 /* register physical memory. 'size' must be a multiple of the target
2295 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2296 io memory page. The address used when calling the IO function is
2297 the offset from the start of the region, plus region_offset. Both
2298 start_addr and region_offset are rounded down to a page boundary
2299 before calculating this offset. This should not be a problem unless
2300 the low bits of start_addr and region_offset differ. */
2301 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2303 ram_addr_t phys_offset
,
2304 ram_addr_t region_offset
)
2306 target_phys_addr_t addr
, end_addr
;
2309 ram_addr_t orig_size
= size
;
2313 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2315 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2316 region_offset
= start_addr
;
2318 region_offset
&= TARGET_PAGE_MASK
;
2319 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2320 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2321 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2322 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2323 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2324 ram_addr_t orig_memory
= p
->phys_offset
;
2325 target_phys_addr_t start_addr2
, end_addr2
;
2326 int need_subpage
= 0;
2328 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2330 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2331 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2332 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2333 &p
->phys_offset
, orig_memory
,
2336 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2339 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2341 p
->region_offset
= 0;
2343 p
->phys_offset
= phys_offset
;
2344 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2345 (phys_offset
& IO_MEM_ROMD
))
2346 phys_offset
+= TARGET_PAGE_SIZE
;
2349 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2350 p
->phys_offset
= phys_offset
;
2351 p
->region_offset
= region_offset
;
2352 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2353 (phys_offset
& IO_MEM_ROMD
)) {
2354 phys_offset
+= TARGET_PAGE_SIZE
;
2356 target_phys_addr_t start_addr2
, end_addr2
;
2357 int need_subpage
= 0;
2359 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2360 end_addr2
, need_subpage
);
2362 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2363 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2364 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2365 addr
& TARGET_PAGE_MASK
);
2366 subpage_register(subpage
, start_addr2
, end_addr2
,
2367 phys_offset
, region_offset
);
2368 p
->region_offset
= 0;
2372 region_offset
+= TARGET_PAGE_SIZE
;
2375 /* since each CPU stores ram addresses in its TLB cache, we must
2376 reset the modified entries */
2378 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2383 /* XXX: temporary until new memory mapping API */
2384 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2388 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2390 return IO_MEM_UNASSIGNED
;
2391 return p
->phys_offset
;
2394 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2397 kvm_coalesce_mmio_region(addr
, size
);
2400 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2403 kvm_uncoalesce_mmio_region(addr
, size
);
2406 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2408 RAMBlock
*new_block
;
2410 size
= TARGET_PAGE_ALIGN(size
);
2411 new_block
= qemu_malloc(sizeof(*new_block
));
2413 new_block
->host
= qemu_vmalloc(size
);
2414 new_block
->offset
= last_ram_offset
;
2415 new_block
->length
= size
;
2417 new_block
->next
= ram_blocks
;
2418 ram_blocks
= new_block
;
2420 phys_ram_dirty
= qemu_realloc(phys_ram_dirty
,
2421 (last_ram_offset
+ size
) >> TARGET_PAGE_BITS
);
2422 memset(phys_ram_dirty
+ (last_ram_offset
>> TARGET_PAGE_BITS
),
2423 0xff, size
>> TARGET_PAGE_BITS
);
2425 last_ram_offset
+= size
;
2428 kvm_setup_guest_memory(new_block
->host
, size
);
2430 return new_block
->offset
;
2433 void qemu_ram_free(ram_addr_t addr
)
2435 /* TODO: implement this. */
2438 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2439 With the exception of the softmmu code in this file, this should
2440 only be used for local memory (e.g. video ram) that the device owns,
2441 and knows it isn't going to access beyond the end of the block.
2443 It should not be used for general purpose DMA.
2444 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2446 void *qemu_get_ram_ptr(ram_addr_t addr
)
2453 prevp
= &ram_blocks
;
2455 while (block
&& (block
->offset
> addr
2456 || block
->offset
+ block
->length
<= addr
)) {
2458 prevp
= &prev
->next
;
2460 block
= block
->next
;
2463 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2466 /* Move this entry to to start of the list. */
2468 prev
->next
= block
->next
;
2469 block
->next
= *prevp
;
2472 return block
->host
+ (addr
- block
->offset
);
2475 /* Some of the softmmu routines need to translate from a host pointer
2476 (typically a TLB entry) back to a ram offset. */
2477 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2482 uint8_t *host
= ptr
;
2485 prevp
= &ram_blocks
;
2487 while (block
&& (block
->host
> host
2488 || block
->host
+ block
->length
<= host
)) {
2490 prevp
= &prev
->next
;
2492 block
= block
->next
;
2495 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2498 return block
->offset
+ (host
- block
->host
);
2501 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2503 #ifdef DEBUG_UNASSIGNED
2504 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2506 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2507 do_unassigned_access(addr
, 0, 0, 0, 1);
2512 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2514 #ifdef DEBUG_UNASSIGNED
2515 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2517 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2518 do_unassigned_access(addr
, 0, 0, 0, 2);
2523 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2525 #ifdef DEBUG_UNASSIGNED
2526 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2528 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2529 do_unassigned_access(addr
, 0, 0, 0, 4);
2534 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2536 #ifdef DEBUG_UNASSIGNED
2537 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2539 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2540 do_unassigned_access(addr
, 1, 0, 0, 1);
2544 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2546 #ifdef DEBUG_UNASSIGNED
2547 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2549 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2550 do_unassigned_access(addr
, 1, 0, 0, 2);
2554 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2556 #ifdef DEBUG_UNASSIGNED
2557 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2559 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2560 do_unassigned_access(addr
, 1, 0, 0, 4);
2564 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
2565 unassigned_mem_readb
,
2566 unassigned_mem_readw
,
2567 unassigned_mem_readl
,
2570 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
2571 unassigned_mem_writeb
,
2572 unassigned_mem_writew
,
2573 unassigned_mem_writel
,
2576 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2580 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2581 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2582 #if !defined(CONFIG_USER_ONLY)
2583 tb_invalidate_phys_page_fast(ram_addr
, 1);
2584 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2587 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2588 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2589 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2590 /* we remove the notdirty callback only if the code has been
2592 if (dirty_flags
== 0xff)
2593 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2596 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2600 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2601 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2602 #if !defined(CONFIG_USER_ONLY)
2603 tb_invalidate_phys_page_fast(ram_addr
, 2);
2604 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2607 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2608 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2609 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2610 /* we remove the notdirty callback only if the code has been
2612 if (dirty_flags
== 0xff)
2613 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2616 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2620 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2621 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2622 #if !defined(CONFIG_USER_ONLY)
2623 tb_invalidate_phys_page_fast(ram_addr
, 4);
2624 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2627 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2628 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2629 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2630 /* we remove the notdirty callback only if the code has been
2632 if (dirty_flags
== 0xff)
2633 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2636 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
2637 NULL
, /* never used */
2638 NULL
, /* never used */
2639 NULL
, /* never used */
2642 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
2643 notdirty_mem_writeb
,
2644 notdirty_mem_writew
,
2645 notdirty_mem_writel
,
2648 /* Generate a debug exception if a watchpoint has been hit. */
2649 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2651 CPUState
*env
= cpu_single_env
;
2652 target_ulong pc
, cs_base
;
2653 TranslationBlock
*tb
;
2658 if (env
->watchpoint_hit
) {
2659 /* We re-entered the check after replacing the TB. Now raise
2660 * the debug interrupt so that is will trigger after the
2661 * current instruction. */
2662 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2665 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2666 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2667 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2668 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2669 wp
->flags
|= BP_WATCHPOINT_HIT
;
2670 if (!env
->watchpoint_hit
) {
2671 env
->watchpoint_hit
= wp
;
2672 tb
= tb_find_pc(env
->mem_io_pc
);
2674 cpu_abort(env
, "check_watchpoint: could not find TB for "
2675 "pc=%p", (void *)env
->mem_io_pc
);
2677 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2678 tb_phys_invalidate(tb
, -1);
2679 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2680 env
->exception_index
= EXCP_DEBUG
;
2682 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2683 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2685 cpu_resume_from_signal(env
, NULL
);
2688 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2693 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2694 so these check for a hit then pass through to the normal out-of-line
2696 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2698 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2699 return ldub_phys(addr
);
2702 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2704 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2705 return lduw_phys(addr
);
2708 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2710 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2711 return ldl_phys(addr
);
2714 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2717 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2718 stb_phys(addr
, val
);
2721 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2724 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2725 stw_phys(addr
, val
);
2728 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2731 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2732 stl_phys(addr
, val
);
2735 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
2741 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
2747 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2753 idx
= SUBPAGE_IDX(addr
);
2754 #if defined(DEBUG_SUBPAGE)
2755 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2756 mmio
, len
, addr
, idx
);
2758 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2759 addr
+ mmio
->region_offset
[idx
][0][len
]);
2764 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2765 uint32_t value
, unsigned int len
)
2769 idx
= SUBPAGE_IDX(addr
);
2770 #if defined(DEBUG_SUBPAGE)
2771 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2772 mmio
, len
, addr
, idx
, value
);
2774 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2775 addr
+ mmio
->region_offset
[idx
][1][len
],
2779 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2781 #if defined(DEBUG_SUBPAGE)
2782 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2785 return subpage_readlen(opaque
, addr
, 0);
2788 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2791 #if defined(DEBUG_SUBPAGE)
2792 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2794 subpage_writelen(opaque
, addr
, value
, 0);
2797 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2799 #if defined(DEBUG_SUBPAGE)
2800 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2803 return subpage_readlen(opaque
, addr
, 1);
2806 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2809 #if defined(DEBUG_SUBPAGE)
2810 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2812 subpage_writelen(opaque
, addr
, value
, 1);
2815 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2817 #if defined(DEBUG_SUBPAGE)
2818 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2821 return subpage_readlen(opaque
, addr
, 2);
2824 static void subpage_writel (void *opaque
,
2825 target_phys_addr_t addr
, uint32_t value
)
2827 #if defined(DEBUG_SUBPAGE)
2828 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2830 subpage_writelen(opaque
, addr
, value
, 2);
2833 static CPUReadMemoryFunc
* const subpage_read
[] = {
2839 static CPUWriteMemoryFunc
* const subpage_write
[] = {
2845 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2846 ram_addr_t memory
, ram_addr_t region_offset
)
2851 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2853 idx
= SUBPAGE_IDX(start
);
2854 eidx
= SUBPAGE_IDX(end
);
2855 #if defined(DEBUG_SUBPAGE)
2856 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
2857 mmio
, start
, end
, idx
, eidx
, memory
);
2859 memory
>>= IO_MEM_SHIFT
;
2860 for (; idx
<= eidx
; idx
++) {
2861 for (i
= 0; i
< 4; i
++) {
2862 if (io_mem_read
[memory
][i
]) {
2863 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2864 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2865 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2867 if (io_mem_write
[memory
][i
]) {
2868 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2869 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2870 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2878 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2879 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2884 mmio
= qemu_mallocz(sizeof(subpage_t
));
2887 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
);
2888 #if defined(DEBUG_SUBPAGE)
2889 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2890 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2892 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2893 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2899 static int get_free_io_mem_idx(void)
2903 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2904 if (!io_mem_used
[i
]) {
2912 /* mem_read and mem_write are arrays of functions containing the
2913 function to access byte (index 0), word (index 1) and dword (index
2914 2). Functions can be omitted with a NULL function pointer.
2915 If io_index is non zero, the corresponding io zone is
2916 modified. If it is zero, a new io zone is allocated. The return
2917 value can be used with cpu_register_physical_memory(). (-1) is
2918 returned if error. */
2919 static int cpu_register_io_memory_fixed(int io_index
,
2920 CPUReadMemoryFunc
* const *mem_read
,
2921 CPUWriteMemoryFunc
* const *mem_write
,
2924 int i
, subwidth
= 0;
2926 if (io_index
<= 0) {
2927 io_index
= get_free_io_mem_idx();
2931 io_index
>>= IO_MEM_SHIFT
;
2932 if (io_index
>= IO_MEM_NB_ENTRIES
)
2936 for(i
= 0;i
< 3; i
++) {
2937 if (!mem_read
[i
] || !mem_write
[i
])
2938 subwidth
= IO_MEM_SUBWIDTH
;
2939 io_mem_read
[io_index
][i
] = mem_read
[i
];
2940 io_mem_write
[io_index
][i
] = mem_write
[i
];
2942 io_mem_opaque
[io_index
] = opaque
;
2943 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2946 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
2947 CPUWriteMemoryFunc
* const *mem_write
,
2950 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
);
2953 void cpu_unregister_io_memory(int io_table_address
)
2956 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2958 for (i
=0;i
< 3; i
++) {
2959 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2960 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2962 io_mem_opaque
[io_index
] = NULL
;
2963 io_mem_used
[io_index
] = 0;
2966 static void io_mem_init(void)
2970 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
, unassigned_mem_write
, NULL
);
2971 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2972 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
, notdirty_mem_write
, NULL
);
2976 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
2977 watch_mem_write
, NULL
);
2980 #endif /* !defined(CONFIG_USER_ONLY) */
2982 /* physical memory access (slow version, mainly for debug) */
2983 #if defined(CONFIG_USER_ONLY)
2984 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2985 int len
, int is_write
)
2992 page
= addr
& TARGET_PAGE_MASK
;
2993 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2996 flags
= page_get_flags(page
);
2997 if (!(flags
& PAGE_VALID
))
3000 if (!(flags
& PAGE_WRITE
))
3002 /* XXX: this code should not depend on lock_user */
3003 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3004 /* FIXME - should this return an error rather than just fail? */
3007 unlock_user(p
, addr
, l
);
3009 if (!(flags
& PAGE_READ
))
3011 /* XXX: this code should not depend on lock_user */
3012 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3013 /* FIXME - should this return an error rather than just fail? */
3016 unlock_user(p
, addr
, 0);
3025 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3026 int len
, int is_write
)
3031 target_phys_addr_t page
;
3036 page
= addr
& TARGET_PAGE_MASK
;
3037 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3040 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3042 pd
= IO_MEM_UNASSIGNED
;
3044 pd
= p
->phys_offset
;
3048 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3049 target_phys_addr_t addr1
= addr
;
3050 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3052 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3053 /* XXX: could force cpu_single_env to NULL to avoid
3055 if (l
>= 4 && ((addr1
& 3) == 0)) {
3056 /* 32 bit write access */
3058 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3060 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3061 /* 16 bit write access */
3063 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3066 /* 8 bit write access */
3068 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3072 unsigned long addr1
;
3073 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3075 ptr
= qemu_get_ram_ptr(addr1
);
3076 memcpy(ptr
, buf
, l
);
3077 if (!cpu_physical_memory_is_dirty(addr1
)) {
3078 /* invalidate code */
3079 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3081 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3082 (0xff & ~CODE_DIRTY_FLAG
);
3086 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3087 !(pd
& IO_MEM_ROMD
)) {
3088 target_phys_addr_t addr1
= addr
;
3090 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3092 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3093 if (l
>= 4 && ((addr1
& 3) == 0)) {
3094 /* 32 bit read access */
3095 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3098 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3099 /* 16 bit read access */
3100 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3104 /* 8 bit read access */
3105 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3111 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3112 (addr
& ~TARGET_PAGE_MASK
);
3113 memcpy(buf
, ptr
, l
);
3122 /* used for ROM loading : can write in RAM and ROM */
3123 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3124 const uint8_t *buf
, int len
)
3128 target_phys_addr_t page
;
3133 page
= addr
& TARGET_PAGE_MASK
;
3134 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3137 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3139 pd
= IO_MEM_UNASSIGNED
;
3141 pd
= p
->phys_offset
;
3144 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3145 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3146 !(pd
& IO_MEM_ROMD
)) {
3149 unsigned long addr1
;
3150 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3152 ptr
= qemu_get_ram_ptr(addr1
);
3153 memcpy(ptr
, buf
, l
);
3163 target_phys_addr_t addr
;
3164 target_phys_addr_t len
;
3167 static BounceBuffer bounce
;
3169 typedef struct MapClient
{
3171 void (*callback
)(void *opaque
);
3172 LIST_ENTRY(MapClient
) link
;
3175 static LIST_HEAD(map_client_list
, MapClient
) map_client_list
3176 = LIST_HEAD_INITIALIZER(map_client_list
);
3178 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3180 MapClient
*client
= qemu_malloc(sizeof(*client
));
3182 client
->opaque
= opaque
;
3183 client
->callback
= callback
;
3184 LIST_INSERT_HEAD(&map_client_list
, client
, link
);
3188 void cpu_unregister_map_client(void *_client
)
3190 MapClient
*client
= (MapClient
*)_client
;
3192 LIST_REMOVE(client
, link
);
3196 static void cpu_notify_map_clients(void)
3200 while (!LIST_EMPTY(&map_client_list
)) {
3201 client
= LIST_FIRST(&map_client_list
);
3202 client
->callback(client
->opaque
);
3203 cpu_unregister_map_client(client
);
3207 /* Map a physical memory region into a host virtual address.
3208 * May map a subset of the requested range, given by and returned in *plen.
3209 * May return NULL if resources needed to perform the mapping are exhausted.
3210 * Use only for reads OR writes - not for read-modify-write operations.
3211 * Use cpu_register_map_client() to know when retrying the map operation is
3212 * likely to succeed.
3214 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3215 target_phys_addr_t
*plen
,
3218 target_phys_addr_t len
= *plen
;
3219 target_phys_addr_t done
= 0;
3221 uint8_t *ret
= NULL
;
3223 target_phys_addr_t page
;
3226 unsigned long addr1
;
3229 page
= addr
& TARGET_PAGE_MASK
;
3230 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3233 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3235 pd
= IO_MEM_UNASSIGNED
;
3237 pd
= p
->phys_offset
;
3240 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3241 if (done
|| bounce
.buffer
) {
3244 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3248 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3250 ptr
= bounce
.buffer
;
3252 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3253 ptr
= qemu_get_ram_ptr(addr1
);
3257 } else if (ret
+ done
!= ptr
) {
3269 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3270 * Will also mark the memory as dirty if is_write == 1. access_len gives
3271 * the amount of memory that was actually read or written by the caller.
3273 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3274 int is_write
, target_phys_addr_t access_len
)
3276 if (buffer
!= bounce
.buffer
) {
3278 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3279 while (access_len
) {
3281 l
= TARGET_PAGE_SIZE
;
3284 if (!cpu_physical_memory_is_dirty(addr1
)) {
3285 /* invalidate code */
3286 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3288 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3289 (0xff & ~CODE_DIRTY_FLAG
);
3298 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3300 qemu_free(bounce
.buffer
);
3301 bounce
.buffer
= NULL
;
3302 cpu_notify_map_clients();
3305 /* warning: addr must be aligned */
3306 uint32_t ldl_phys(target_phys_addr_t addr
)
3314 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3316 pd
= IO_MEM_UNASSIGNED
;
3318 pd
= p
->phys_offset
;
3321 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3322 !(pd
& IO_MEM_ROMD
)) {
3324 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3326 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3327 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3330 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3331 (addr
& ~TARGET_PAGE_MASK
);
3337 /* warning: addr must be aligned */
3338 uint64_t ldq_phys(target_phys_addr_t addr
)
3346 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3348 pd
= IO_MEM_UNASSIGNED
;
3350 pd
= p
->phys_offset
;
3353 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3354 !(pd
& IO_MEM_ROMD
)) {
3356 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3358 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3359 #ifdef TARGET_WORDS_BIGENDIAN
3360 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3361 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3363 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3364 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3368 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3369 (addr
& ~TARGET_PAGE_MASK
);
3376 uint32_t ldub_phys(target_phys_addr_t addr
)
3379 cpu_physical_memory_read(addr
, &val
, 1);
3384 uint32_t lduw_phys(target_phys_addr_t addr
)
3387 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3388 return tswap16(val
);
3391 /* warning: addr must be aligned. The ram page is not masked as dirty
3392 and the code inside is not invalidated. It is useful if the dirty
3393 bits are used to track modified PTEs */
3394 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3401 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3403 pd
= IO_MEM_UNASSIGNED
;
3405 pd
= p
->phys_offset
;
3408 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3409 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3411 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3412 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3414 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3415 ptr
= qemu_get_ram_ptr(addr1
);
3418 if (unlikely(in_migration
)) {
3419 if (!cpu_physical_memory_is_dirty(addr1
)) {
3420 /* invalidate code */
3421 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3423 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3424 (0xff & ~CODE_DIRTY_FLAG
);
3430 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3437 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3439 pd
= IO_MEM_UNASSIGNED
;
3441 pd
= p
->phys_offset
;
3444 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3445 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3447 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3448 #ifdef TARGET_WORDS_BIGENDIAN
3449 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3450 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3452 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3453 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3456 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3457 (addr
& ~TARGET_PAGE_MASK
);
3462 /* warning: addr must be aligned */
3463 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3470 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3472 pd
= IO_MEM_UNASSIGNED
;
3474 pd
= p
->phys_offset
;
3477 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3478 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3480 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3481 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3483 unsigned long addr1
;
3484 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3486 ptr
= qemu_get_ram_ptr(addr1
);
3488 if (!cpu_physical_memory_is_dirty(addr1
)) {
3489 /* invalidate code */
3490 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3492 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3493 (0xff & ~CODE_DIRTY_FLAG
);
3499 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3502 cpu_physical_memory_write(addr
, &v
, 1);
3506 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3508 uint16_t v
= tswap16(val
);
3509 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3513 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3516 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3521 /* virtual memory access for debug (includes writing to ROM) */
3522 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3523 uint8_t *buf
, int len
, int is_write
)
3526 target_phys_addr_t phys_addr
;
3530 page
= addr
& TARGET_PAGE_MASK
;
3531 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3532 /* if no physical page mapped, return an error */
3533 if (phys_addr
== -1)
3535 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3538 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3539 #if !defined(CONFIG_USER_ONLY)
3541 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3544 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3552 /* in deterministic execution mode, instructions doing device I/Os
3553 must be at the end of the TB */
3554 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3556 TranslationBlock
*tb
;
3558 target_ulong pc
, cs_base
;
3561 tb
= tb_find_pc((unsigned long)retaddr
);
3563 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3566 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3567 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3568 /* Calculate how many instructions had been executed before the fault
3570 n
= n
- env
->icount_decr
.u16
.low
;
3571 /* Generate a new TB ending on the I/O insn. */
3573 /* On MIPS and SH, delay slot instructions can only be restarted if
3574 they were already the first instruction in the TB. If this is not
3575 the first instruction in a TB then re-execute the preceding
3577 #if defined(TARGET_MIPS)
3578 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3579 env
->active_tc
.PC
-= 4;
3580 env
->icount_decr
.u16
.low
++;
3581 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3583 #elif defined(TARGET_SH4)
3584 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3587 env
->icount_decr
.u16
.low
++;
3588 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3591 /* This should never happen. */
3592 if (n
> CF_COUNT_MASK
)
3593 cpu_abort(env
, "TB too big during recompile");
3595 cflags
= n
| CF_LAST_IO
;
3597 cs_base
= tb
->cs_base
;
3599 tb_phys_invalidate(tb
, -1);
3600 /* FIXME: In theory this could raise an exception. In practice
3601 we have already translated the block once so it's probably ok. */
3602 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3603 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3604 the first in the TB) then we end up generating a whole new TB and
3605 repeating the fault, which is horribly inefficient.
3606 Better would be to execute just this insn uncached, or generate a
3608 cpu_resume_from_signal(env
, NULL
);
3611 void dump_exec_info(FILE *f
,
3612 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3614 int i
, target_code_size
, max_target_code_size
;
3615 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3616 TranslationBlock
*tb
;
3618 target_code_size
= 0;
3619 max_target_code_size
= 0;
3621 direct_jmp_count
= 0;
3622 direct_jmp2_count
= 0;
3623 for(i
= 0; i
< nb_tbs
; i
++) {
3625 target_code_size
+= tb
->size
;
3626 if (tb
->size
> max_target_code_size
)
3627 max_target_code_size
= tb
->size
;
3628 if (tb
->page_addr
[1] != -1)
3630 if (tb
->tb_next_offset
[0] != 0xffff) {
3632 if (tb
->tb_next_offset
[1] != 0xffff) {
3633 direct_jmp2_count
++;
3637 /* XXX: avoid using doubles ? */
3638 cpu_fprintf(f
, "Translation buffer state:\n");
3639 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3640 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3641 cpu_fprintf(f
, "TB count %d/%d\n",
3642 nb_tbs
, code_gen_max_blocks
);
3643 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3644 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3645 max_target_code_size
);
3646 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3647 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3648 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3649 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3651 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3652 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3654 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3656 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3657 cpu_fprintf(f
, "\nStatistics:\n");
3658 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3659 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3660 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3661 tcg_dump_info(f
, cpu_fprintf
);
3664 #if !defined(CONFIG_USER_ONLY)
3666 #define MMUSUFFIX _cmmu
3667 #define GETPC() NULL
3668 #define env cpu_single_env
3669 #define SOFTMMU_CODE_ACCESS
3672 #include "softmmu_template.h"
3675 #include "softmmu_template.h"
3678 #include "softmmu_template.h"
3681 #include "softmmu_template.h"