Unexport ticks_per_sec variable. Create get_ticks_per_sec() function
[armpft.git] / vl.c
bloba7ad78414438d5578ec9ec1b4a03a112cdd05711
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 return qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
163 #include "disas.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 /* Maximum number of monitor devices */
177 #define MAX_MONITOR_DEVICES 10
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 static int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int vga_interface_type = VGA_CIRRUS;
198 #ifdef TARGET_SPARC
199 int graphic_width = 1024;
200 int graphic_height = 768;
201 int graphic_depth = 8;
202 #else
203 int graphic_width = 800;
204 int graphic_height = 600;
205 int graphic_depth = 15;
206 #endif
207 static int full_screen = 0;
208 #ifdef CONFIG_SDL
209 static int no_frame = 0;
210 #endif
211 int no_quit = 0;
212 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
213 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
214 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
215 #ifdef TARGET_I386
216 int win2k_install_hack = 0;
217 int rtc_td_hack = 0;
218 #endif
219 int usb_enabled = 0;
220 int singlestep = 0;
221 int smp_cpus = 1;
222 int max_cpus = 0;
223 int smp_cores = 1;
224 int smp_threads = 1;
225 const char *vnc_display;
226 int acpi_enabled = 1;
227 int no_hpet = 0;
228 int fd_bootchk = 1;
229 int no_reboot = 0;
230 int no_shutdown = 0;
231 int cursor_hide = 1;
232 int graphic_rotate = 0;
233 uint8_t irq0override = 1;
234 #ifndef _WIN32
235 int daemonize = 0;
236 #endif
237 const char *watchdog;
238 const char *option_rom[MAX_OPTION_ROMS];
239 int nb_option_roms;
240 int semihosting_enabled = 0;
241 #ifdef TARGET_ARM
242 int old_param = 0;
243 #endif
244 const char *qemu_name;
245 int alt_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
269 uint8_t qemu_uuid[16];
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
283 va_list ap;
284 CPUState *env;
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
298 va_end(ap);
299 abort();
302 static void set_proc_name(const char *s)
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
316 /***************/
317 /* ballooning */
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
328 void qemu_balloon(ram_addr_t target)
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
334 ram_addr_t qemu_balloon_status(void)
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
341 /***********************************************************/
342 /* keyboard/mouse */
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
359 QEMUPutMouseEntry *s, *cursor;
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
381 return s;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
386 QEMUPutMouseEntry *prev = NULL, *cursor;
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
408 prev->next = entry->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
417 void kbd_put_keycode(int keycode)
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
430 if (!qemu_put_mouse_event_current) {
431 return;
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current)
456 return 0;
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
461 void do_info_mice(Monitor *mon)
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
529 /***********************************************************/
530 /* real time host monotonic timer */
532 #define QEMU_TIMER_BASE 1000000000LL
534 #ifdef WIN32
536 static int64_t clock_freq;
538 static void init_get_clock(void)
540 LARGE_INTEGER freq;
541 int ret;
542 ret = QueryPerformanceFrequency(&freq);
543 if (ret == 0) {
544 fprintf(stderr, "Could not calibrate ticks\n");
545 exit(1);
547 clock_freq = freq.QuadPart;
550 static int64_t get_clock(void)
552 LARGE_INTEGER ti;
553 QueryPerformanceCounter(&ti);
554 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
557 #else
559 static int use_rt_clock;
561 static void init_get_clock(void)
563 use_rt_clock = 0;
564 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
565 || defined(__DragonFly__)
567 struct timespec ts;
568 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
569 use_rt_clock = 1;
572 #endif
575 static int64_t get_clock(void)
577 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
578 || defined(__DragonFly__)
579 if (use_rt_clock) {
580 struct timespec ts;
581 clock_gettime(CLOCK_MONOTONIC, &ts);
582 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
583 } else
584 #endif
586 /* XXX: using gettimeofday leads to problems if the date
587 changes, so it should be avoided. */
588 struct timeval tv;
589 gettimeofday(&tv, NULL);
590 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
593 #endif
595 /* Return the virtual CPU time, based on the instruction counter. */
596 static int64_t cpu_get_icount(void)
598 int64_t icount;
599 CPUState *env = cpu_single_env;;
600 icount = qemu_icount;
601 if (env) {
602 if (!can_do_io(env))
603 fprintf(stderr, "Bad clock read\n");
604 icount -= (env->icount_decr.u16.low + env->icount_extra);
606 return qemu_icount_bias + (icount << icount_time_shift);
609 /***********************************************************/
610 /* guest cycle counter */
612 static int64_t cpu_ticks_prev;
613 static int64_t cpu_ticks_offset;
614 static int64_t cpu_clock_offset;
615 static int cpu_ticks_enabled;
617 /* return the host CPU cycle counter and handle stop/restart */
618 int64_t cpu_get_ticks(void)
620 if (use_icount) {
621 return cpu_get_icount();
623 if (!cpu_ticks_enabled) {
624 return cpu_ticks_offset;
625 } else {
626 int64_t ticks;
627 ticks = cpu_get_real_ticks();
628 if (cpu_ticks_prev > ticks) {
629 /* Note: non increasing ticks may happen if the host uses
630 software suspend */
631 cpu_ticks_offset += cpu_ticks_prev - ticks;
633 cpu_ticks_prev = ticks;
634 return ticks + cpu_ticks_offset;
638 /* return the host CPU monotonic timer and handle stop/restart */
639 static int64_t cpu_get_clock(void)
641 int64_t ti;
642 if (!cpu_ticks_enabled) {
643 return cpu_clock_offset;
644 } else {
645 ti = get_clock();
646 return ti + cpu_clock_offset;
650 /* enable cpu_get_ticks() */
651 void cpu_enable_ticks(void)
653 if (!cpu_ticks_enabled) {
654 cpu_ticks_offset -= cpu_get_real_ticks();
655 cpu_clock_offset -= get_clock();
656 cpu_ticks_enabled = 1;
660 /* disable cpu_get_ticks() : the clock is stopped. You must not call
661 cpu_get_ticks() after that. */
662 void cpu_disable_ticks(void)
664 if (cpu_ticks_enabled) {
665 cpu_ticks_offset = cpu_get_ticks();
666 cpu_clock_offset = cpu_get_clock();
667 cpu_ticks_enabled = 0;
671 /***********************************************************/
672 /* timers */
674 #define QEMU_TIMER_REALTIME 0
675 #define QEMU_TIMER_VIRTUAL 1
677 struct QEMUClock {
678 int type;
679 /* XXX: add frequency */
682 struct QEMUTimer {
683 QEMUClock *clock;
684 int64_t expire_time;
685 QEMUTimerCB *cb;
686 void *opaque;
687 struct QEMUTimer *next;
690 struct qemu_alarm_timer {
691 char const *name;
692 unsigned int flags;
694 int (*start)(struct qemu_alarm_timer *t);
695 void (*stop)(struct qemu_alarm_timer *t);
696 void (*rearm)(struct qemu_alarm_timer *t);
697 void *priv;
700 #define ALARM_FLAG_DYNTICKS 0x1
701 #define ALARM_FLAG_EXPIRED 0x2
703 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
705 return t && (t->flags & ALARM_FLAG_DYNTICKS);
708 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
710 if (!alarm_has_dynticks(t))
711 return;
713 t->rearm(t);
716 /* TODO: MIN_TIMER_REARM_US should be optimized */
717 #define MIN_TIMER_REARM_US 250
719 static struct qemu_alarm_timer *alarm_timer;
721 #ifdef _WIN32
723 struct qemu_alarm_win32 {
724 MMRESULT timerId;
725 unsigned int period;
726 } alarm_win32_data = {0, -1};
728 static int win32_start_timer(struct qemu_alarm_timer *t);
729 static void win32_stop_timer(struct qemu_alarm_timer *t);
730 static void win32_rearm_timer(struct qemu_alarm_timer *t);
732 #else
734 static int unix_start_timer(struct qemu_alarm_timer *t);
735 static void unix_stop_timer(struct qemu_alarm_timer *t);
737 #ifdef __linux__
739 static int dynticks_start_timer(struct qemu_alarm_timer *t);
740 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
741 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
743 static int hpet_start_timer(struct qemu_alarm_timer *t);
744 static void hpet_stop_timer(struct qemu_alarm_timer *t);
746 static int rtc_start_timer(struct qemu_alarm_timer *t);
747 static void rtc_stop_timer(struct qemu_alarm_timer *t);
749 #endif /* __linux__ */
751 #endif /* _WIN32 */
753 /* Correlation between real and virtual time is always going to be
754 fairly approximate, so ignore small variation.
755 When the guest is idle real and virtual time will be aligned in
756 the IO wait loop. */
757 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
759 static void icount_adjust(void)
761 int64_t cur_time;
762 int64_t cur_icount;
763 int64_t delta;
764 static int64_t last_delta;
765 /* If the VM is not running, then do nothing. */
766 if (!vm_running)
767 return;
769 cur_time = cpu_get_clock();
770 cur_icount = qemu_get_clock(vm_clock);
771 delta = cur_icount - cur_time;
772 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
773 if (delta > 0
774 && last_delta + ICOUNT_WOBBLE < delta * 2
775 && icount_time_shift > 0) {
776 /* The guest is getting too far ahead. Slow time down. */
777 icount_time_shift--;
779 if (delta < 0
780 && last_delta - ICOUNT_WOBBLE > delta * 2
781 && icount_time_shift < MAX_ICOUNT_SHIFT) {
782 /* The guest is getting too far behind. Speed time up. */
783 icount_time_shift++;
785 last_delta = delta;
786 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
789 static void icount_adjust_rt(void * opaque)
791 qemu_mod_timer(icount_rt_timer,
792 qemu_get_clock(rt_clock) + 1000);
793 icount_adjust();
796 static void icount_adjust_vm(void * opaque)
798 qemu_mod_timer(icount_vm_timer,
799 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
800 icount_adjust();
803 static void init_icount_adjust(void)
805 /* Have both realtime and virtual time triggers for speed adjustment.
806 The realtime trigger catches emulated time passing too slowly,
807 the virtual time trigger catches emulated time passing too fast.
808 Realtime triggers occur even when idle, so use them less frequently
809 than VM triggers. */
810 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
811 qemu_mod_timer(icount_rt_timer,
812 qemu_get_clock(rt_clock) + 1000);
813 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
814 qemu_mod_timer(icount_vm_timer,
815 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
818 static struct qemu_alarm_timer alarm_timers[] = {
819 #ifndef _WIN32
820 #ifdef __linux__
821 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
822 dynticks_stop_timer, dynticks_rearm_timer, NULL},
823 /* HPET - if available - is preferred */
824 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
825 /* ...otherwise try RTC */
826 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
827 #endif
828 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
829 #else
830 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
831 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
832 {"win32", 0, win32_start_timer,
833 win32_stop_timer, NULL, &alarm_win32_data},
834 #endif
835 {NULL, }
838 static void show_available_alarms(void)
840 int i;
842 printf("Available alarm timers, in order of precedence:\n");
843 for (i = 0; alarm_timers[i].name; i++)
844 printf("%s\n", alarm_timers[i].name);
847 static void configure_alarms(char const *opt)
849 int i;
850 int cur = 0;
851 int count = ARRAY_SIZE(alarm_timers) - 1;
852 char *arg;
853 char *name;
854 struct qemu_alarm_timer tmp;
856 if (!strcmp(opt, "?")) {
857 show_available_alarms();
858 exit(0);
861 arg = qemu_strdup(opt);
863 /* Reorder the array */
864 name = strtok(arg, ",");
865 while (name) {
866 for (i = 0; i < count && alarm_timers[i].name; i++) {
867 if (!strcmp(alarm_timers[i].name, name))
868 break;
871 if (i == count) {
872 fprintf(stderr, "Unknown clock %s\n", name);
873 goto next;
876 if (i < cur)
877 /* Ignore */
878 goto next;
880 /* Swap */
881 tmp = alarm_timers[i];
882 alarm_timers[i] = alarm_timers[cur];
883 alarm_timers[cur] = tmp;
885 cur++;
886 next:
887 name = strtok(NULL, ",");
890 qemu_free(arg);
892 if (cur) {
893 /* Disable remaining timers */
894 for (i = cur; i < count; i++)
895 alarm_timers[i].name = NULL;
896 } else {
897 show_available_alarms();
898 exit(1);
902 QEMUClock *rt_clock;
903 QEMUClock *vm_clock;
905 static QEMUTimer *active_timers[2];
907 static QEMUClock *qemu_new_clock(int type)
909 QEMUClock *clock;
910 clock = qemu_mallocz(sizeof(QEMUClock));
911 clock->type = type;
912 return clock;
915 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
917 QEMUTimer *ts;
919 ts = qemu_mallocz(sizeof(QEMUTimer));
920 ts->clock = clock;
921 ts->cb = cb;
922 ts->opaque = opaque;
923 return ts;
926 void qemu_free_timer(QEMUTimer *ts)
928 qemu_free(ts);
931 /* stop a timer, but do not dealloc it */
932 void qemu_del_timer(QEMUTimer *ts)
934 QEMUTimer **pt, *t;
936 /* NOTE: this code must be signal safe because
937 qemu_timer_expired() can be called from a signal. */
938 pt = &active_timers[ts->clock->type];
939 for(;;) {
940 t = *pt;
941 if (!t)
942 break;
943 if (t == ts) {
944 *pt = t->next;
945 break;
947 pt = &t->next;
951 /* modify the current timer so that it will be fired when current_time
952 >= expire_time. The corresponding callback will be called. */
953 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
955 QEMUTimer **pt, *t;
957 qemu_del_timer(ts);
959 /* add the timer in the sorted list */
960 /* NOTE: this code must be signal safe because
961 qemu_timer_expired() can be called from a signal. */
962 pt = &active_timers[ts->clock->type];
963 for(;;) {
964 t = *pt;
965 if (!t)
966 break;
967 if (t->expire_time > expire_time)
968 break;
969 pt = &t->next;
971 ts->expire_time = expire_time;
972 ts->next = *pt;
973 *pt = ts;
975 /* Rearm if necessary */
976 if (pt == &active_timers[ts->clock->type]) {
977 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
978 qemu_rearm_alarm_timer(alarm_timer);
980 /* Interrupt execution to force deadline recalculation. */
981 if (use_icount)
982 qemu_notify_event();
986 int qemu_timer_pending(QEMUTimer *ts)
988 QEMUTimer *t;
989 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
990 if (t == ts)
991 return 1;
993 return 0;
996 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
998 if (!timer_head)
999 return 0;
1000 return (timer_head->expire_time <= current_time);
1003 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1005 QEMUTimer *ts;
1007 for(;;) {
1008 ts = *ptimer_head;
1009 if (!ts || ts->expire_time > current_time)
1010 break;
1011 /* remove timer from the list before calling the callback */
1012 *ptimer_head = ts->next;
1013 ts->next = NULL;
1015 /* run the callback (the timer list can be modified) */
1016 ts->cb(ts->opaque);
1020 int64_t qemu_get_clock(QEMUClock *clock)
1022 switch(clock->type) {
1023 case QEMU_TIMER_REALTIME:
1024 return get_clock() / 1000000;
1025 default:
1026 case QEMU_TIMER_VIRTUAL:
1027 if (use_icount) {
1028 return cpu_get_icount();
1029 } else {
1030 return cpu_get_clock();
1035 int64_t get_ticks_per_sec(void)
1037 return ticks_per_sec;
1040 static void init_timers(void)
1042 init_get_clock();
1043 ticks_per_sec = QEMU_TIMER_BASE;
1044 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1045 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1048 /* save a timer */
1049 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1051 uint64_t expire_time;
1053 if (qemu_timer_pending(ts)) {
1054 expire_time = ts->expire_time;
1055 } else {
1056 expire_time = -1;
1058 qemu_put_be64(f, expire_time);
1061 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1063 uint64_t expire_time;
1065 expire_time = qemu_get_be64(f);
1066 if (expire_time != -1) {
1067 qemu_mod_timer(ts, expire_time);
1068 } else {
1069 qemu_del_timer(ts);
1073 static void timer_save(QEMUFile *f, void *opaque)
1075 qemu_put_be64(f, cpu_ticks_offset);
1076 qemu_put_be64(f, ticks_per_sec);
1077 qemu_put_be64(f, cpu_clock_offset);
1080 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1082 if (version_id != 1 && version_id != 2)
1083 return -EINVAL;
1084 cpu_ticks_offset=qemu_get_be64(f);
1085 ticks_per_sec=qemu_get_be64(f);
1086 if (version_id == 2) {
1087 cpu_clock_offset=qemu_get_be64(f);
1089 return 0;
1092 static void qemu_event_increment(void);
1094 #ifdef _WIN32
1095 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1096 DWORD_PTR dwUser, DWORD_PTR dw1,
1097 DWORD_PTR dw2)
1098 #else
1099 static void host_alarm_handler(int host_signum)
1100 #endif
1102 #if 0
1103 #define DISP_FREQ 1000
1105 static int64_t delta_min = INT64_MAX;
1106 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1107 static int count;
1108 ti = qemu_get_clock(vm_clock);
1109 if (last_clock != 0) {
1110 delta = ti - last_clock;
1111 if (delta < delta_min)
1112 delta_min = delta;
1113 if (delta > delta_max)
1114 delta_max = delta;
1115 delta_cum += delta;
1116 if (++count == DISP_FREQ) {
1117 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1118 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1119 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1120 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1121 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1122 count = 0;
1123 delta_min = INT64_MAX;
1124 delta_max = 0;
1125 delta_cum = 0;
1128 last_clock = ti;
1130 #endif
1131 if (alarm_has_dynticks(alarm_timer) ||
1132 (!use_icount &&
1133 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1134 qemu_get_clock(vm_clock))) ||
1135 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1136 qemu_get_clock(rt_clock))) {
1137 qemu_event_increment();
1138 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1140 #ifndef CONFIG_IOTHREAD
1141 if (next_cpu) {
1142 /* stop the currently executing cpu because a timer occured */
1143 cpu_exit(next_cpu);
1145 #endif
1146 timer_alarm_pending = 1;
1147 qemu_notify_event();
1151 static int64_t qemu_next_deadline(void)
1153 int64_t delta;
1155 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1156 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1157 qemu_get_clock(vm_clock);
1158 } else {
1159 /* To avoid problems with overflow limit this to 2^32. */
1160 delta = INT32_MAX;
1163 if (delta < 0)
1164 delta = 0;
1166 return delta;
1169 #if defined(__linux__) || defined(_WIN32)
1170 static uint64_t qemu_next_deadline_dyntick(void)
1172 int64_t delta;
1173 int64_t rtdelta;
1175 if (use_icount)
1176 delta = INT32_MAX;
1177 else
1178 delta = (qemu_next_deadline() + 999) / 1000;
1180 if (active_timers[QEMU_TIMER_REALTIME]) {
1181 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1182 qemu_get_clock(rt_clock))*1000;
1183 if (rtdelta < delta)
1184 delta = rtdelta;
1187 if (delta < MIN_TIMER_REARM_US)
1188 delta = MIN_TIMER_REARM_US;
1190 return delta;
1192 #endif
1194 #ifndef _WIN32
1196 /* Sets a specific flag */
1197 static int fcntl_setfl(int fd, int flag)
1199 int flags;
1201 flags = fcntl(fd, F_GETFL);
1202 if (flags == -1)
1203 return -errno;
1205 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1206 return -errno;
1208 return 0;
1211 #if defined(__linux__)
1213 #define RTC_FREQ 1024
1215 static void enable_sigio_timer(int fd)
1217 struct sigaction act;
1219 /* timer signal */
1220 sigfillset(&act.sa_mask);
1221 act.sa_flags = 0;
1222 act.sa_handler = host_alarm_handler;
1224 sigaction(SIGIO, &act, NULL);
1225 fcntl_setfl(fd, O_ASYNC);
1226 fcntl(fd, F_SETOWN, getpid());
1229 static int hpet_start_timer(struct qemu_alarm_timer *t)
1231 struct hpet_info info;
1232 int r, fd;
1234 fd = open("/dev/hpet", O_RDONLY);
1235 if (fd < 0)
1236 return -1;
1238 /* Set frequency */
1239 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1240 if (r < 0) {
1241 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1242 "error, but for better emulation accuracy type:\n"
1243 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1244 goto fail;
1247 /* Check capabilities */
1248 r = ioctl(fd, HPET_INFO, &info);
1249 if (r < 0)
1250 goto fail;
1252 /* Enable periodic mode */
1253 r = ioctl(fd, HPET_EPI, 0);
1254 if (info.hi_flags && (r < 0))
1255 goto fail;
1257 /* Enable interrupt */
1258 r = ioctl(fd, HPET_IE_ON, 0);
1259 if (r < 0)
1260 goto fail;
1262 enable_sigio_timer(fd);
1263 t->priv = (void *)(long)fd;
1265 return 0;
1266 fail:
1267 close(fd);
1268 return -1;
1271 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1273 int fd = (long)t->priv;
1275 close(fd);
1278 static int rtc_start_timer(struct qemu_alarm_timer *t)
1280 int rtc_fd;
1281 unsigned long current_rtc_freq = 0;
1283 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1284 if (rtc_fd < 0)
1285 return -1;
1286 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1287 if (current_rtc_freq != RTC_FREQ &&
1288 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1289 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1290 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1291 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1292 goto fail;
1294 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1295 fail:
1296 close(rtc_fd);
1297 return -1;
1300 enable_sigio_timer(rtc_fd);
1302 t->priv = (void *)(long)rtc_fd;
1304 return 0;
1307 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1309 int rtc_fd = (long)t->priv;
1311 close(rtc_fd);
1314 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1316 struct sigevent ev;
1317 timer_t host_timer;
1318 struct sigaction act;
1320 sigfillset(&act.sa_mask);
1321 act.sa_flags = 0;
1322 act.sa_handler = host_alarm_handler;
1324 sigaction(SIGALRM, &act, NULL);
1327 * Initialize ev struct to 0 to avoid valgrind complaining
1328 * about uninitialized data in timer_create call
1330 memset(&ev, 0, sizeof(ev));
1331 ev.sigev_value.sival_int = 0;
1332 ev.sigev_notify = SIGEV_SIGNAL;
1333 ev.sigev_signo = SIGALRM;
1335 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1336 perror("timer_create");
1338 /* disable dynticks */
1339 fprintf(stderr, "Dynamic Ticks disabled\n");
1341 return -1;
1344 t->priv = (void *)(long)host_timer;
1346 return 0;
1349 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1351 timer_t host_timer = (timer_t)(long)t->priv;
1353 timer_delete(host_timer);
1356 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1358 timer_t host_timer = (timer_t)(long)t->priv;
1359 struct itimerspec timeout;
1360 int64_t nearest_delta_us = INT64_MAX;
1361 int64_t current_us;
1363 if (!active_timers[QEMU_TIMER_REALTIME] &&
1364 !active_timers[QEMU_TIMER_VIRTUAL])
1365 return;
1367 nearest_delta_us = qemu_next_deadline_dyntick();
1369 /* check whether a timer is already running */
1370 if (timer_gettime(host_timer, &timeout)) {
1371 perror("gettime");
1372 fprintf(stderr, "Internal timer error: aborting\n");
1373 exit(1);
1375 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1376 if (current_us && current_us <= nearest_delta_us)
1377 return;
1379 timeout.it_interval.tv_sec = 0;
1380 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1381 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1382 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1383 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1384 perror("settime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1390 #endif /* defined(__linux__) */
1392 static int unix_start_timer(struct qemu_alarm_timer *t)
1394 struct sigaction act;
1395 struct itimerval itv;
1396 int err;
1398 /* timer signal */
1399 sigfillset(&act.sa_mask);
1400 act.sa_flags = 0;
1401 act.sa_handler = host_alarm_handler;
1403 sigaction(SIGALRM, &act, NULL);
1405 itv.it_interval.tv_sec = 0;
1406 /* for i386 kernel 2.6 to get 1 ms */
1407 itv.it_interval.tv_usec = 999;
1408 itv.it_value.tv_sec = 0;
1409 itv.it_value.tv_usec = 10 * 1000;
1411 err = setitimer(ITIMER_REAL, &itv, NULL);
1412 if (err)
1413 return -1;
1415 return 0;
1418 static void unix_stop_timer(struct qemu_alarm_timer *t)
1420 struct itimerval itv;
1422 memset(&itv, 0, sizeof(itv));
1423 setitimer(ITIMER_REAL, &itv, NULL);
1426 #endif /* !defined(_WIN32) */
1429 #ifdef _WIN32
1431 static int win32_start_timer(struct qemu_alarm_timer *t)
1433 TIMECAPS tc;
1434 struct qemu_alarm_win32 *data = t->priv;
1435 UINT flags;
1437 memset(&tc, 0, sizeof(tc));
1438 timeGetDevCaps(&tc, sizeof(tc));
1440 if (data->period < tc.wPeriodMin)
1441 data->period = tc.wPeriodMin;
1443 timeBeginPeriod(data->period);
1445 flags = TIME_CALLBACK_FUNCTION;
1446 if (alarm_has_dynticks(t))
1447 flags |= TIME_ONESHOT;
1448 else
1449 flags |= TIME_PERIODIC;
1451 data->timerId = timeSetEvent(1, // interval (ms)
1452 data->period, // resolution
1453 host_alarm_handler, // function
1454 (DWORD)t, // parameter
1455 flags);
1457 if (!data->timerId) {
1458 perror("Failed to initialize win32 alarm timer");
1459 timeEndPeriod(data->period);
1460 return -1;
1463 return 0;
1466 static void win32_stop_timer(struct qemu_alarm_timer *t)
1468 struct qemu_alarm_win32 *data = t->priv;
1470 timeKillEvent(data->timerId);
1471 timeEndPeriod(data->period);
1474 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1476 struct qemu_alarm_win32 *data = t->priv;
1477 uint64_t nearest_delta_us;
1479 if (!active_timers[QEMU_TIMER_REALTIME] &&
1480 !active_timers[QEMU_TIMER_VIRTUAL])
1481 return;
1483 nearest_delta_us = qemu_next_deadline_dyntick();
1484 nearest_delta_us /= 1000;
1486 timeKillEvent(data->timerId);
1488 data->timerId = timeSetEvent(1,
1489 data->period,
1490 host_alarm_handler,
1491 (DWORD)t,
1492 TIME_ONESHOT | TIME_PERIODIC);
1494 if (!data->timerId) {
1495 perror("Failed to re-arm win32 alarm timer");
1497 timeEndPeriod(data->period);
1498 exit(1);
1502 #endif /* _WIN32 */
1504 static int init_timer_alarm(void)
1506 struct qemu_alarm_timer *t = NULL;
1507 int i, err = -1;
1509 for (i = 0; alarm_timers[i].name; i++) {
1510 t = &alarm_timers[i];
1512 err = t->start(t);
1513 if (!err)
1514 break;
1517 if (err) {
1518 err = -ENOENT;
1519 goto fail;
1522 alarm_timer = t;
1524 return 0;
1526 fail:
1527 return err;
1530 static void quit_timers(void)
1532 alarm_timer->stop(alarm_timer);
1533 alarm_timer = NULL;
1536 /***********************************************************/
1537 /* host time/date access */
1538 void qemu_get_timedate(struct tm *tm, int offset)
1540 time_t ti;
1541 struct tm *ret;
1543 time(&ti);
1544 ti += offset;
1545 if (rtc_date_offset == -1) {
1546 if (rtc_utc)
1547 ret = gmtime(&ti);
1548 else
1549 ret = localtime(&ti);
1550 } else {
1551 ti -= rtc_date_offset;
1552 ret = gmtime(&ti);
1555 memcpy(tm, ret, sizeof(struct tm));
1558 int qemu_timedate_diff(struct tm *tm)
1560 time_t seconds;
1562 if (rtc_date_offset == -1)
1563 if (rtc_utc)
1564 seconds = mktimegm(tm);
1565 else
1566 seconds = mktime(tm);
1567 else
1568 seconds = mktimegm(tm) + rtc_date_offset;
1570 return seconds - time(NULL);
1573 #ifdef _WIN32
1574 static void socket_cleanup(void)
1576 WSACleanup();
1579 static int socket_init(void)
1581 WSADATA Data;
1582 int ret, err;
1584 ret = WSAStartup(MAKEWORD(2,2), &Data);
1585 if (ret != 0) {
1586 err = WSAGetLastError();
1587 fprintf(stderr, "WSAStartup: %d\n", err);
1588 return -1;
1590 atexit(socket_cleanup);
1591 return 0;
1593 #endif
1595 /***********************************************************/
1596 /* Bluetooth support */
1597 static int nb_hcis;
1598 static int cur_hci;
1599 static struct HCIInfo *hci_table[MAX_NICS];
1601 static struct bt_vlan_s {
1602 struct bt_scatternet_s net;
1603 int id;
1604 struct bt_vlan_s *next;
1605 } *first_bt_vlan;
1607 /* find or alloc a new bluetooth "VLAN" */
1608 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1610 struct bt_vlan_s **pvlan, *vlan;
1611 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1612 if (vlan->id == id)
1613 return &vlan->net;
1615 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1616 vlan->id = id;
1617 pvlan = &first_bt_vlan;
1618 while (*pvlan != NULL)
1619 pvlan = &(*pvlan)->next;
1620 *pvlan = vlan;
1621 return &vlan->net;
1624 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1628 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1630 return -ENOTSUP;
1633 static struct HCIInfo null_hci = {
1634 .cmd_send = null_hci_send,
1635 .sco_send = null_hci_send,
1636 .acl_send = null_hci_send,
1637 .bdaddr_set = null_hci_addr_set,
1640 struct HCIInfo *qemu_next_hci(void)
1642 if (cur_hci == nb_hcis)
1643 return &null_hci;
1645 return hci_table[cur_hci++];
1648 static struct HCIInfo *hci_init(const char *str)
1650 char *endp;
1651 struct bt_scatternet_s *vlan = 0;
1653 if (!strcmp(str, "null"))
1654 /* null */
1655 return &null_hci;
1656 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1657 /* host[:hciN] */
1658 return bt_host_hci(str[4] ? str + 5 : "hci0");
1659 else if (!strncmp(str, "hci", 3)) {
1660 /* hci[,vlan=n] */
1661 if (str[3]) {
1662 if (!strncmp(str + 3, ",vlan=", 6)) {
1663 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1664 if (*endp)
1665 vlan = 0;
1667 } else
1668 vlan = qemu_find_bt_vlan(0);
1669 if (vlan)
1670 return bt_new_hci(vlan);
1673 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1675 return 0;
1678 static int bt_hci_parse(const char *str)
1680 struct HCIInfo *hci;
1681 bdaddr_t bdaddr;
1683 if (nb_hcis >= MAX_NICS) {
1684 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1685 return -1;
1688 hci = hci_init(str);
1689 if (!hci)
1690 return -1;
1692 bdaddr.b[0] = 0x52;
1693 bdaddr.b[1] = 0x54;
1694 bdaddr.b[2] = 0x00;
1695 bdaddr.b[3] = 0x12;
1696 bdaddr.b[4] = 0x34;
1697 bdaddr.b[5] = 0x56 + nb_hcis;
1698 hci->bdaddr_set(hci, bdaddr.b);
1700 hci_table[nb_hcis++] = hci;
1702 return 0;
1705 static void bt_vhci_add(int vlan_id)
1707 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1709 if (!vlan->slave)
1710 fprintf(stderr, "qemu: warning: adding a VHCI to "
1711 "an empty scatternet %i\n", vlan_id);
1713 bt_vhci_init(bt_new_hci(vlan));
1716 static struct bt_device_s *bt_device_add(const char *opt)
1718 struct bt_scatternet_s *vlan;
1719 int vlan_id = 0;
1720 char *endp = strstr(opt, ",vlan=");
1721 int len = (endp ? endp - opt : strlen(opt)) + 1;
1722 char devname[10];
1724 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1726 if (endp) {
1727 vlan_id = strtol(endp + 6, &endp, 0);
1728 if (*endp) {
1729 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1730 return 0;
1734 vlan = qemu_find_bt_vlan(vlan_id);
1736 if (!vlan->slave)
1737 fprintf(stderr, "qemu: warning: adding a slave device to "
1738 "an empty scatternet %i\n", vlan_id);
1740 if (!strcmp(devname, "keyboard"))
1741 return bt_keyboard_init(vlan);
1743 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1744 return 0;
1747 static int bt_parse(const char *opt)
1749 const char *endp, *p;
1750 int vlan;
1752 if (strstart(opt, "hci", &endp)) {
1753 if (!*endp || *endp == ',') {
1754 if (*endp)
1755 if (!strstart(endp, ",vlan=", 0))
1756 opt = endp + 1;
1758 return bt_hci_parse(opt);
1760 } else if (strstart(opt, "vhci", &endp)) {
1761 if (!*endp || *endp == ',') {
1762 if (*endp) {
1763 if (strstart(endp, ",vlan=", &p)) {
1764 vlan = strtol(p, (char **) &endp, 0);
1765 if (*endp) {
1766 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1767 return 1;
1769 } else {
1770 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1771 return 1;
1773 } else
1774 vlan = 0;
1776 bt_vhci_add(vlan);
1777 return 0;
1779 } else if (strstart(opt, "device:", &endp))
1780 return !bt_device_add(endp);
1782 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1783 return 1;
1786 /***********************************************************/
1787 /* QEMU Block devices */
1789 #define HD_ALIAS "index=%d,media=disk"
1790 #define CDROM_ALIAS "index=2,media=cdrom"
1791 #define FD_ALIAS "index=%d,if=floppy"
1792 #define PFLASH_ALIAS "if=pflash"
1793 #define MTD_ALIAS "if=mtd"
1794 #define SD_ALIAS "index=0,if=sd"
1796 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1798 va_list ap;
1799 char optstr[1024];
1800 QemuOpts *opts;
1802 va_start(ap, fmt);
1803 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1804 va_end(ap);
1806 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1807 if (!opts) {
1808 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1809 __FUNCTION__, optstr);
1810 return NULL;
1812 if (file)
1813 qemu_opt_set(opts, "file", file);
1814 return opts;
1817 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1819 DriveInfo *dinfo;
1821 /* seek interface, bus and unit */
1823 TAILQ_FOREACH(dinfo, &drives, next) {
1824 if (dinfo->type == type &&
1825 dinfo->bus == bus &&
1826 dinfo->unit == unit)
1827 return dinfo;
1830 return NULL;
1833 DriveInfo *drive_get_by_id(const char *id)
1835 DriveInfo *dinfo;
1837 TAILQ_FOREACH(dinfo, &drives, next) {
1838 if (strcmp(id, dinfo->id))
1839 continue;
1840 return dinfo;
1842 return NULL;
1845 int drive_get_max_bus(BlockInterfaceType type)
1847 int max_bus;
1848 DriveInfo *dinfo;
1850 max_bus = -1;
1851 TAILQ_FOREACH(dinfo, &drives, next) {
1852 if(dinfo->type == type &&
1853 dinfo->bus > max_bus)
1854 max_bus = dinfo->bus;
1856 return max_bus;
1859 const char *drive_get_serial(BlockDriverState *bdrv)
1861 DriveInfo *dinfo;
1863 TAILQ_FOREACH(dinfo, &drives, next) {
1864 if (dinfo->bdrv == bdrv)
1865 return dinfo->serial;
1868 return "\0";
1871 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1873 DriveInfo *dinfo;
1875 TAILQ_FOREACH(dinfo, &drives, next) {
1876 if (dinfo->bdrv == bdrv)
1877 return dinfo->onerror;
1880 return BLOCK_ERR_STOP_ENOSPC;
1883 static void bdrv_format_print(void *opaque, const char *name)
1885 fprintf(stderr, " %s", name);
1888 void drive_uninit(BlockDriverState *bdrv)
1890 DriveInfo *dinfo;
1892 TAILQ_FOREACH(dinfo, &drives, next) {
1893 if (dinfo->bdrv != bdrv)
1894 continue;
1895 qemu_opts_del(dinfo->opts);
1896 TAILQ_REMOVE(&drives, dinfo, next);
1897 qemu_free(dinfo);
1898 break;
1902 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1903 int *fatal_error)
1905 const char *buf;
1906 const char *file = NULL;
1907 char devname[128];
1908 const char *serial;
1909 const char *mediastr = "";
1910 BlockInterfaceType type;
1911 enum { MEDIA_DISK, MEDIA_CDROM } media;
1912 int bus_id, unit_id;
1913 int cyls, heads, secs, translation;
1914 BlockDriver *drv = NULL;
1915 QEMUMachine *machine = opaque;
1916 int max_devs;
1917 int index;
1918 int cache;
1919 int aio = 0;
1920 int bdrv_flags, onerror;
1921 const char *devaddr;
1922 DriveInfo *dinfo;
1923 int snapshot = 0;
1925 *fatal_error = 1;
1927 translation = BIOS_ATA_TRANSLATION_AUTO;
1928 cache = 1;
1930 if (machine && machine->use_scsi) {
1931 type = IF_SCSI;
1932 max_devs = MAX_SCSI_DEVS;
1933 pstrcpy(devname, sizeof(devname), "scsi");
1934 } else {
1935 type = IF_IDE;
1936 max_devs = MAX_IDE_DEVS;
1937 pstrcpy(devname, sizeof(devname), "ide");
1939 media = MEDIA_DISK;
1941 /* extract parameters */
1942 bus_id = qemu_opt_get_number(opts, "bus", 0);
1943 unit_id = qemu_opt_get_number(opts, "unit", -1);
1944 index = qemu_opt_get_number(opts, "index", -1);
1946 cyls = qemu_opt_get_number(opts, "cyls", 0);
1947 heads = qemu_opt_get_number(opts, "heads", 0);
1948 secs = qemu_opt_get_number(opts, "secs", 0);
1950 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1952 file = qemu_opt_get(opts, "file");
1953 serial = qemu_opt_get(opts, "serial");
1955 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1956 pstrcpy(devname, sizeof(devname), buf);
1957 if (!strcmp(buf, "ide")) {
1958 type = IF_IDE;
1959 max_devs = MAX_IDE_DEVS;
1960 } else if (!strcmp(buf, "scsi")) {
1961 type = IF_SCSI;
1962 max_devs = MAX_SCSI_DEVS;
1963 } else if (!strcmp(buf, "floppy")) {
1964 type = IF_FLOPPY;
1965 max_devs = 0;
1966 } else if (!strcmp(buf, "pflash")) {
1967 type = IF_PFLASH;
1968 max_devs = 0;
1969 } else if (!strcmp(buf, "mtd")) {
1970 type = IF_MTD;
1971 max_devs = 0;
1972 } else if (!strcmp(buf, "sd")) {
1973 type = IF_SD;
1974 max_devs = 0;
1975 } else if (!strcmp(buf, "virtio")) {
1976 type = IF_VIRTIO;
1977 max_devs = 0;
1978 } else if (!strcmp(buf, "xen")) {
1979 type = IF_XEN;
1980 max_devs = 0;
1981 } else if (!strcmp(buf, "none")) {
1982 type = IF_NONE;
1983 max_devs = 0;
1984 } else {
1985 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1986 return NULL;
1990 if (cyls || heads || secs) {
1991 if (cyls < 1 || cyls > 16383) {
1992 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1993 return NULL;
1995 if (heads < 1 || heads > 16) {
1996 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1997 return NULL;
1999 if (secs < 1 || secs > 63) {
2000 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2001 return NULL;
2005 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2006 if (!cyls) {
2007 fprintf(stderr,
2008 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2009 buf);
2010 return NULL;
2012 if (!strcmp(buf, "none"))
2013 translation = BIOS_ATA_TRANSLATION_NONE;
2014 else if (!strcmp(buf, "lba"))
2015 translation = BIOS_ATA_TRANSLATION_LBA;
2016 else if (!strcmp(buf, "auto"))
2017 translation = BIOS_ATA_TRANSLATION_AUTO;
2018 else {
2019 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2020 return NULL;
2024 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2025 if (!strcmp(buf, "disk")) {
2026 media = MEDIA_DISK;
2027 } else if (!strcmp(buf, "cdrom")) {
2028 if (cyls || secs || heads) {
2029 fprintf(stderr,
2030 "qemu: '%s' invalid physical CHS format\n", buf);
2031 return NULL;
2033 media = MEDIA_CDROM;
2034 } else {
2035 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2036 return NULL;
2040 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2041 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2042 cache = 0;
2043 else if (!strcmp(buf, "writethrough"))
2044 cache = 1;
2045 else if (!strcmp(buf, "writeback"))
2046 cache = 2;
2047 else {
2048 fprintf(stderr, "qemu: invalid cache option\n");
2049 return NULL;
2053 #ifdef CONFIG_LINUX_AIO
2054 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2055 if (!strcmp(buf, "threads"))
2056 aio = 0;
2057 else if (!strcmp(buf, "native"))
2058 aio = 1;
2059 else {
2060 fprintf(stderr, "qemu: invalid aio option\n");
2061 return NULL;
2064 #endif
2066 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2067 if (strcmp(buf, "?") == 0) {
2068 fprintf(stderr, "qemu: Supported formats:");
2069 bdrv_iterate_format(bdrv_format_print, NULL);
2070 fprintf(stderr, "\n");
2071 return NULL;
2073 drv = bdrv_find_format(buf);
2074 if (!drv) {
2075 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2076 return NULL;
2080 onerror = BLOCK_ERR_STOP_ENOSPC;
2081 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2082 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2083 fprintf(stderr, "werror is no supported by this format\n");
2084 return NULL;
2086 if (!strcmp(buf, "ignore"))
2087 onerror = BLOCK_ERR_IGNORE;
2088 else if (!strcmp(buf, "enospc"))
2089 onerror = BLOCK_ERR_STOP_ENOSPC;
2090 else if (!strcmp(buf, "stop"))
2091 onerror = BLOCK_ERR_STOP_ANY;
2092 else if (!strcmp(buf, "report"))
2093 onerror = BLOCK_ERR_REPORT;
2094 else {
2095 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2096 return NULL;
2100 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2101 if (type != IF_VIRTIO) {
2102 fprintf(stderr, "addr is not supported\n");
2103 return NULL;
2107 /* compute bus and unit according index */
2109 if (index != -1) {
2110 if (bus_id != 0 || unit_id != -1) {
2111 fprintf(stderr,
2112 "qemu: index cannot be used with bus and unit\n");
2113 return NULL;
2115 if (max_devs == 0)
2117 unit_id = index;
2118 bus_id = 0;
2119 } else {
2120 unit_id = index % max_devs;
2121 bus_id = index / max_devs;
2125 /* if user doesn't specify a unit_id,
2126 * try to find the first free
2129 if (unit_id == -1) {
2130 unit_id = 0;
2131 while (drive_get(type, bus_id, unit_id) != NULL) {
2132 unit_id++;
2133 if (max_devs && unit_id >= max_devs) {
2134 unit_id -= max_devs;
2135 bus_id++;
2140 /* check unit id */
2142 if (max_devs && unit_id >= max_devs) {
2143 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2144 unit_id, max_devs - 1);
2145 return NULL;
2149 * ignore multiple definitions
2152 if (drive_get(type, bus_id, unit_id) != NULL) {
2153 *fatal_error = 0;
2154 return NULL;
2157 /* init */
2159 dinfo = qemu_mallocz(sizeof(*dinfo));
2160 if ((buf = qemu_opts_id(opts)) != NULL) {
2161 dinfo->id = qemu_strdup(buf);
2162 } else {
2163 /* no id supplied -> create one */
2164 dinfo->id = qemu_mallocz(32);
2165 if (type == IF_IDE || type == IF_SCSI)
2166 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2167 if (max_devs)
2168 snprintf(dinfo->id, 32, "%s%i%s%i",
2169 devname, bus_id, mediastr, unit_id);
2170 else
2171 snprintf(dinfo->id, 32, "%s%s%i",
2172 devname, mediastr, unit_id);
2174 dinfo->bdrv = bdrv_new(dinfo->id);
2175 dinfo->devaddr = devaddr;
2176 dinfo->type = type;
2177 dinfo->bus = bus_id;
2178 dinfo->unit = unit_id;
2179 dinfo->onerror = onerror;
2180 dinfo->opts = opts;
2181 if (serial)
2182 strncpy(dinfo->serial, serial, sizeof(serial));
2183 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2185 switch(type) {
2186 case IF_IDE:
2187 case IF_SCSI:
2188 case IF_XEN:
2189 switch(media) {
2190 case MEDIA_DISK:
2191 if (cyls != 0) {
2192 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2193 bdrv_set_translation_hint(dinfo->bdrv, translation);
2195 break;
2196 case MEDIA_CDROM:
2197 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2198 break;
2200 break;
2201 case IF_SD:
2202 /* FIXME: This isn't really a floppy, but it's a reasonable
2203 approximation. */
2204 case IF_FLOPPY:
2205 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2206 break;
2207 case IF_PFLASH:
2208 case IF_MTD:
2209 case IF_NONE:
2210 break;
2211 case IF_VIRTIO:
2212 /* add virtio block device */
2213 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2214 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2215 qemu_opt_set(opts, "drive", dinfo->id);
2216 if (devaddr)
2217 qemu_opt_set(opts, "addr", devaddr);
2218 break;
2219 case IF_COUNT:
2220 abort();
2222 if (!file) {
2223 *fatal_error = 0;
2224 return NULL;
2226 bdrv_flags = 0;
2227 if (snapshot) {
2228 bdrv_flags |= BDRV_O_SNAPSHOT;
2229 cache = 2; /* always use write-back with snapshot */
2231 if (cache == 0) /* no caching */
2232 bdrv_flags |= BDRV_O_NOCACHE;
2233 else if (cache == 2) /* write-back */
2234 bdrv_flags |= BDRV_O_CACHE_WB;
2236 if (aio == 1) {
2237 bdrv_flags |= BDRV_O_NATIVE_AIO;
2238 } else {
2239 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2242 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2243 fprintf(stderr, "qemu: could not open disk image %s\n",
2244 file);
2245 return NULL;
2248 if (bdrv_key_required(dinfo->bdrv))
2249 autostart = 0;
2250 *fatal_error = 0;
2251 return dinfo;
2254 static int drive_init_func(QemuOpts *opts, void *opaque)
2256 QEMUMachine *machine = opaque;
2257 int fatal_error = 0;
2259 if (drive_init(opts, machine, &fatal_error) == NULL) {
2260 if (fatal_error)
2261 return 1;
2263 return 0;
2266 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2268 if (NULL == qemu_opt_get(opts, "snapshot")) {
2269 qemu_opt_set(opts, "snapshot", "on");
2271 return 0;
2274 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2276 boot_set_handler = func;
2277 boot_set_opaque = opaque;
2280 int qemu_boot_set(const char *boot_devices)
2282 if (!boot_set_handler) {
2283 return -EINVAL;
2285 return boot_set_handler(boot_set_opaque, boot_devices);
2288 static int parse_bootdevices(char *devices)
2290 /* We just do some generic consistency checks */
2291 const char *p;
2292 int bitmap = 0;
2294 for (p = devices; *p != '\0'; p++) {
2295 /* Allowed boot devices are:
2296 * a-b: floppy disk drives
2297 * c-f: IDE disk drives
2298 * g-m: machine implementation dependant drives
2299 * n-p: network devices
2300 * It's up to each machine implementation to check if the given boot
2301 * devices match the actual hardware implementation and firmware
2302 * features.
2304 if (*p < 'a' || *p > 'p') {
2305 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2306 exit(1);
2308 if (bitmap & (1 << (*p - 'a'))) {
2309 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2310 exit(1);
2312 bitmap |= 1 << (*p - 'a');
2314 return bitmap;
2317 static void restore_boot_devices(void *opaque)
2319 char *standard_boot_devices = opaque;
2321 qemu_boot_set(standard_boot_devices);
2323 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2324 qemu_free(standard_boot_devices);
2327 static void numa_add(const char *optarg)
2329 char option[128];
2330 char *endptr;
2331 unsigned long long value, endvalue;
2332 int nodenr;
2334 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2335 if (!strcmp(option, "node")) {
2336 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2337 nodenr = nb_numa_nodes;
2338 } else {
2339 nodenr = strtoull(option, NULL, 10);
2342 if (get_param_value(option, 128, "mem", optarg) == 0) {
2343 node_mem[nodenr] = 0;
2344 } else {
2345 value = strtoull(option, &endptr, 0);
2346 switch (*endptr) {
2347 case 0: case 'M': case 'm':
2348 value <<= 20;
2349 break;
2350 case 'G': case 'g':
2351 value <<= 30;
2352 break;
2354 node_mem[nodenr] = value;
2356 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2357 node_cpumask[nodenr] = 0;
2358 } else {
2359 value = strtoull(option, &endptr, 10);
2360 if (value >= 64) {
2361 value = 63;
2362 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2363 } else {
2364 if (*endptr == '-') {
2365 endvalue = strtoull(endptr+1, &endptr, 10);
2366 if (endvalue >= 63) {
2367 endvalue = 62;
2368 fprintf(stderr,
2369 "only 63 CPUs in NUMA mode supported.\n");
2371 value = (1 << (endvalue + 1)) - (1 << value);
2372 } else {
2373 value = 1 << value;
2376 node_cpumask[nodenr] = value;
2378 nb_numa_nodes++;
2380 return;
2383 static void smp_parse(const char *optarg)
2385 int smp, sockets = 0, threads = 0, cores = 0;
2386 char *endptr;
2387 char option[128];
2389 smp = strtoul(optarg, &endptr, 10);
2390 if (endptr != optarg) {
2391 if (*endptr == ',') {
2392 endptr++;
2395 if (get_param_value(option, 128, "sockets", endptr) != 0)
2396 sockets = strtoull(option, NULL, 10);
2397 if (get_param_value(option, 128, "cores", endptr) != 0)
2398 cores = strtoull(option, NULL, 10);
2399 if (get_param_value(option, 128, "threads", endptr) != 0)
2400 threads = strtoull(option, NULL, 10);
2401 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2402 max_cpus = strtoull(option, NULL, 10);
2404 /* compute missing values, prefer sockets over cores over threads */
2405 if (smp == 0 || sockets == 0) {
2406 sockets = sockets > 0 ? sockets : 1;
2407 cores = cores > 0 ? cores : 1;
2408 threads = threads > 0 ? threads : 1;
2409 if (smp == 0) {
2410 smp = cores * threads * sockets;
2411 } else {
2412 sockets = smp / (cores * threads);
2414 } else {
2415 if (cores == 0) {
2416 threads = threads > 0 ? threads : 1;
2417 cores = smp / (sockets * threads);
2418 } else {
2419 if (sockets == 0) {
2420 sockets = smp / (cores * threads);
2421 } else {
2422 threads = smp / (cores * sockets);
2426 smp_cpus = smp;
2427 smp_cores = cores > 0 ? cores : 1;
2428 smp_threads = threads > 0 ? threads : 1;
2429 if (max_cpus == 0)
2430 max_cpus = smp_cpus;
2433 /***********************************************************/
2434 /* USB devices */
2436 static void usb_msd_password_cb(void *opaque, int err)
2438 USBDevice *dev = opaque;
2440 if (!err)
2441 usb_device_attach(dev);
2442 else
2443 dev->info->handle_destroy(dev);
2446 static struct {
2447 const char *name;
2448 const char *qdev;
2449 } usbdevs[] = {
2451 .name = "mouse",
2452 .qdev = "QEMU USB Mouse",
2454 .name = "tablet",
2455 .qdev = "QEMU USB Tablet",
2457 .name = "keyboard",
2458 .qdev = "QEMU USB Keyboard",
2460 .name = "wacom-tablet",
2461 .qdev = "QEMU PenPartner Tablet",
2465 static int usb_device_add(const char *devname, int is_hotplug)
2467 const char *p;
2468 USBBus *bus = usb_bus_find(-1 /* any */);
2469 USBDevice *dev = NULL;
2470 int i;
2472 if (!usb_enabled)
2473 return -1;
2475 /* simple devices which don't need extra care */
2476 for (i = 0; i < ARRAY_SIZE(usbdevs); i++) {
2477 if (strcmp(devname, usbdevs[i].name) != 0)
2478 continue;
2479 dev = usb_create_simple(bus, usbdevs[i].qdev);
2480 goto done;
2483 /* the other ones */
2484 if (strstart(devname, "host:", &p)) {
2485 dev = usb_host_device_open(p);
2486 } else if (strstart(devname, "disk:", &p)) {
2487 BlockDriverState *bs;
2489 dev = usb_msd_init(p);
2490 if (!dev)
2491 return -1;
2492 bs = usb_msd_get_bdrv(dev);
2493 if (bdrv_key_required(bs)) {
2494 autostart = 0;
2495 if (is_hotplug) {
2496 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2497 dev);
2498 return 0;
2501 } else if (strstart(devname, "serial:", &p)) {
2502 dev = usb_serial_init(p);
2503 #ifdef CONFIG_BRLAPI
2504 } else if (!strcmp(devname, "braille")) {
2505 dev = usb_baum_init();
2506 #endif
2507 } else if (strstart(devname, "net:", &p)) {
2508 int nic = nb_nics;
2510 if (net_client_init(NULL, "nic", p) < 0)
2511 return -1;
2512 nd_table[nic].model = "usb";
2513 dev = usb_net_init(&nd_table[nic]);
2514 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2515 dev = usb_bt_init(devname[2] ? hci_init(p) :
2516 bt_new_hci(qemu_find_bt_vlan(0)));
2517 } else {
2518 return -1;
2520 if (!dev)
2521 return -1;
2523 done:
2524 return 0;
2527 static int usb_device_del(const char *devname)
2529 int bus_num, addr;
2530 const char *p;
2532 if (strstart(devname, "host:", &p))
2533 return usb_host_device_close(p);
2535 if (!usb_enabled)
2536 return -1;
2538 p = strchr(devname, '.');
2539 if (!p)
2540 return -1;
2541 bus_num = strtoul(devname, NULL, 0);
2542 addr = strtoul(p + 1, NULL, 0);
2544 return usb_device_delete_addr(bus_num, addr);
2547 static int usb_parse(const char *cmdline)
2549 return usb_device_add(cmdline, 0);
2552 void do_usb_add(Monitor *mon, const QDict *qdict)
2554 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2557 void do_usb_del(Monitor *mon, const QDict *qdict)
2559 usb_device_del(qdict_get_str(qdict, "devname"));
2562 /***********************************************************/
2563 /* PCMCIA/Cardbus */
2565 static struct pcmcia_socket_entry_s {
2566 PCMCIASocket *socket;
2567 struct pcmcia_socket_entry_s *next;
2568 } *pcmcia_sockets = 0;
2570 void pcmcia_socket_register(PCMCIASocket *socket)
2572 struct pcmcia_socket_entry_s *entry;
2574 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2575 entry->socket = socket;
2576 entry->next = pcmcia_sockets;
2577 pcmcia_sockets = entry;
2580 void pcmcia_socket_unregister(PCMCIASocket *socket)
2582 struct pcmcia_socket_entry_s *entry, **ptr;
2584 ptr = &pcmcia_sockets;
2585 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2586 if (entry->socket == socket) {
2587 *ptr = entry->next;
2588 qemu_free(entry);
2592 void pcmcia_info(Monitor *mon)
2594 struct pcmcia_socket_entry_s *iter;
2596 if (!pcmcia_sockets)
2597 monitor_printf(mon, "No PCMCIA sockets\n");
2599 for (iter = pcmcia_sockets; iter; iter = iter->next)
2600 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2601 iter->socket->attached ? iter->socket->card_string :
2602 "Empty");
2605 /***********************************************************/
2606 /* register display */
2608 struct DisplayAllocator default_allocator = {
2609 defaultallocator_create_displaysurface,
2610 defaultallocator_resize_displaysurface,
2611 defaultallocator_free_displaysurface
2614 void register_displaystate(DisplayState *ds)
2616 DisplayState **s;
2617 s = &display_state;
2618 while (*s != NULL)
2619 s = &(*s)->next;
2620 ds->next = NULL;
2621 *s = ds;
2624 DisplayState *get_displaystate(void)
2626 return display_state;
2629 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2631 if(ds->allocator == &default_allocator) ds->allocator = da;
2632 return ds->allocator;
2635 /* dumb display */
2637 static void dumb_display_init(void)
2639 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2640 ds->allocator = &default_allocator;
2641 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2642 register_displaystate(ds);
2645 /***********************************************************/
2646 /* I/O handling */
2648 typedef struct IOHandlerRecord {
2649 int fd;
2650 IOCanRWHandler *fd_read_poll;
2651 IOHandler *fd_read;
2652 IOHandler *fd_write;
2653 int deleted;
2654 void *opaque;
2655 /* temporary data */
2656 struct pollfd *ufd;
2657 struct IOHandlerRecord *next;
2658 } IOHandlerRecord;
2660 static IOHandlerRecord *first_io_handler;
2662 /* XXX: fd_read_poll should be suppressed, but an API change is
2663 necessary in the character devices to suppress fd_can_read(). */
2664 int qemu_set_fd_handler2(int fd,
2665 IOCanRWHandler *fd_read_poll,
2666 IOHandler *fd_read,
2667 IOHandler *fd_write,
2668 void *opaque)
2670 IOHandlerRecord **pioh, *ioh;
2672 if (!fd_read && !fd_write) {
2673 pioh = &first_io_handler;
2674 for(;;) {
2675 ioh = *pioh;
2676 if (ioh == NULL)
2677 break;
2678 if (ioh->fd == fd) {
2679 ioh->deleted = 1;
2680 break;
2682 pioh = &ioh->next;
2684 } else {
2685 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2686 if (ioh->fd == fd)
2687 goto found;
2689 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2690 ioh->next = first_io_handler;
2691 first_io_handler = ioh;
2692 found:
2693 ioh->fd = fd;
2694 ioh->fd_read_poll = fd_read_poll;
2695 ioh->fd_read = fd_read;
2696 ioh->fd_write = fd_write;
2697 ioh->opaque = opaque;
2698 ioh->deleted = 0;
2700 return 0;
2703 int qemu_set_fd_handler(int fd,
2704 IOHandler *fd_read,
2705 IOHandler *fd_write,
2706 void *opaque)
2708 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2711 #ifdef _WIN32
2712 /***********************************************************/
2713 /* Polling handling */
2715 typedef struct PollingEntry {
2716 PollingFunc *func;
2717 void *opaque;
2718 struct PollingEntry *next;
2719 } PollingEntry;
2721 static PollingEntry *first_polling_entry;
2723 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2725 PollingEntry **ppe, *pe;
2726 pe = qemu_mallocz(sizeof(PollingEntry));
2727 pe->func = func;
2728 pe->opaque = opaque;
2729 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2730 *ppe = pe;
2731 return 0;
2734 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2736 PollingEntry **ppe, *pe;
2737 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2738 pe = *ppe;
2739 if (pe->func == func && pe->opaque == opaque) {
2740 *ppe = pe->next;
2741 qemu_free(pe);
2742 break;
2747 /***********************************************************/
2748 /* Wait objects support */
2749 typedef struct WaitObjects {
2750 int num;
2751 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2752 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2753 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2754 } WaitObjects;
2756 static WaitObjects wait_objects = {0};
2758 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2760 WaitObjects *w = &wait_objects;
2762 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2763 return -1;
2764 w->events[w->num] = handle;
2765 w->func[w->num] = func;
2766 w->opaque[w->num] = opaque;
2767 w->num++;
2768 return 0;
2771 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2773 int i, found;
2774 WaitObjects *w = &wait_objects;
2776 found = 0;
2777 for (i = 0; i < w->num; i++) {
2778 if (w->events[i] == handle)
2779 found = 1;
2780 if (found) {
2781 w->events[i] = w->events[i + 1];
2782 w->func[i] = w->func[i + 1];
2783 w->opaque[i] = w->opaque[i + 1];
2786 if (found)
2787 w->num--;
2789 #endif
2791 /***********************************************************/
2792 /* ram save/restore */
2794 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2795 #define RAM_SAVE_FLAG_COMPRESS 0x02
2796 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2797 #define RAM_SAVE_FLAG_PAGE 0x08
2798 #define RAM_SAVE_FLAG_EOS 0x10
2800 static int is_dup_page(uint8_t *page, uint8_t ch)
2802 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2803 uint32_t *array = (uint32_t *)page;
2804 int i;
2806 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2807 if (array[i] != val)
2808 return 0;
2811 return 1;
2814 static int ram_save_block(QEMUFile *f)
2816 static ram_addr_t current_addr = 0;
2817 ram_addr_t saved_addr = current_addr;
2818 ram_addr_t addr = 0;
2819 int found = 0;
2821 while (addr < last_ram_offset) {
2822 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2823 uint8_t *p;
2825 cpu_physical_memory_reset_dirty(current_addr,
2826 current_addr + TARGET_PAGE_SIZE,
2827 MIGRATION_DIRTY_FLAG);
2829 p = qemu_get_ram_ptr(current_addr);
2831 if (is_dup_page(p, *p)) {
2832 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2833 qemu_put_byte(f, *p);
2834 } else {
2835 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2836 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2839 found = 1;
2840 break;
2842 addr += TARGET_PAGE_SIZE;
2843 current_addr = (saved_addr + addr) % last_ram_offset;
2846 return found;
2849 static uint64_t bytes_transferred = 0;
2851 static ram_addr_t ram_save_remaining(void)
2853 ram_addr_t addr;
2854 ram_addr_t count = 0;
2856 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2857 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2858 count++;
2861 return count;
2864 uint64_t ram_bytes_remaining(void)
2866 return ram_save_remaining() * TARGET_PAGE_SIZE;
2869 uint64_t ram_bytes_transferred(void)
2871 return bytes_transferred;
2874 uint64_t ram_bytes_total(void)
2876 return last_ram_offset;
2879 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2881 ram_addr_t addr;
2882 uint64_t bytes_transferred_last;
2883 double bwidth = 0;
2884 uint64_t expected_time = 0;
2886 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2887 qemu_file_set_error(f);
2888 return 0;
2891 if (stage == 1) {
2892 /* Make sure all dirty bits are set */
2893 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2894 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2895 cpu_physical_memory_set_dirty(addr);
2898 /* Enable dirty memory tracking */
2899 cpu_physical_memory_set_dirty_tracking(1);
2901 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2904 bytes_transferred_last = bytes_transferred;
2905 bwidth = get_clock();
2907 while (!qemu_file_rate_limit(f)) {
2908 int ret;
2910 ret = ram_save_block(f);
2911 bytes_transferred += ret * TARGET_PAGE_SIZE;
2912 if (ret == 0) /* no more blocks */
2913 break;
2916 bwidth = get_clock() - bwidth;
2917 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2919 /* if we haven't transferred anything this round, force expected_time to a
2920 * a very high value, but without crashing */
2921 if (bwidth == 0)
2922 bwidth = 0.000001;
2924 /* try transferring iterative blocks of memory */
2926 if (stage == 3) {
2928 /* flush all remaining blocks regardless of rate limiting */
2929 while (ram_save_block(f) != 0) {
2930 bytes_transferred += TARGET_PAGE_SIZE;
2932 cpu_physical_memory_set_dirty_tracking(0);
2935 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2937 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2939 return (stage == 2) && (expected_time <= migrate_max_downtime());
2942 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2944 ram_addr_t addr;
2945 int flags;
2947 if (version_id != 3)
2948 return -EINVAL;
2950 do {
2951 addr = qemu_get_be64(f);
2953 flags = addr & ~TARGET_PAGE_MASK;
2954 addr &= TARGET_PAGE_MASK;
2956 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2957 if (addr != last_ram_offset)
2958 return -EINVAL;
2961 if (flags & RAM_SAVE_FLAG_COMPRESS) {
2962 uint8_t ch = qemu_get_byte(f);
2963 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
2964 #ifndef _WIN32
2965 if (ch == 0 &&
2966 (!kvm_enabled() || kvm_has_sync_mmu())) {
2967 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
2969 #endif
2970 } else if (flags & RAM_SAVE_FLAG_PAGE)
2971 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
2972 } while (!(flags & RAM_SAVE_FLAG_EOS));
2974 return 0;
2977 void qemu_service_io(void)
2979 qemu_notify_event();
2982 /***********************************************************/
2983 /* bottom halves (can be seen as timers which expire ASAP) */
2985 struct QEMUBH {
2986 QEMUBHFunc *cb;
2987 void *opaque;
2988 int scheduled;
2989 int idle;
2990 int deleted;
2991 QEMUBH *next;
2994 static QEMUBH *first_bh = NULL;
2996 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
2998 QEMUBH *bh;
2999 bh = qemu_mallocz(sizeof(QEMUBH));
3000 bh->cb = cb;
3001 bh->opaque = opaque;
3002 bh->next = first_bh;
3003 first_bh = bh;
3004 return bh;
3007 int qemu_bh_poll(void)
3009 QEMUBH *bh, **bhp;
3010 int ret;
3012 ret = 0;
3013 for (bh = first_bh; bh; bh = bh->next) {
3014 if (!bh->deleted && bh->scheduled) {
3015 bh->scheduled = 0;
3016 if (!bh->idle)
3017 ret = 1;
3018 bh->idle = 0;
3019 bh->cb(bh->opaque);
3023 /* remove deleted bhs */
3024 bhp = &first_bh;
3025 while (*bhp) {
3026 bh = *bhp;
3027 if (bh->deleted) {
3028 *bhp = bh->next;
3029 qemu_free(bh);
3030 } else
3031 bhp = &bh->next;
3034 return ret;
3037 void qemu_bh_schedule_idle(QEMUBH *bh)
3039 if (bh->scheduled)
3040 return;
3041 bh->scheduled = 1;
3042 bh->idle = 1;
3045 void qemu_bh_schedule(QEMUBH *bh)
3047 if (bh->scheduled)
3048 return;
3049 bh->scheduled = 1;
3050 bh->idle = 0;
3051 /* stop the currently executing CPU to execute the BH ASAP */
3052 qemu_notify_event();
3055 void qemu_bh_cancel(QEMUBH *bh)
3057 bh->scheduled = 0;
3060 void qemu_bh_delete(QEMUBH *bh)
3062 bh->scheduled = 0;
3063 bh->deleted = 1;
3066 static void qemu_bh_update_timeout(int *timeout)
3068 QEMUBH *bh;
3070 for (bh = first_bh; bh; bh = bh->next) {
3071 if (!bh->deleted && bh->scheduled) {
3072 if (bh->idle) {
3073 /* idle bottom halves will be polled at least
3074 * every 10ms */
3075 *timeout = MIN(10, *timeout);
3076 } else {
3077 /* non-idle bottom halves will be executed
3078 * immediately */
3079 *timeout = 0;
3080 break;
3086 /***********************************************************/
3087 /* machine registration */
3089 static QEMUMachine *first_machine = NULL;
3090 QEMUMachine *current_machine = NULL;
3092 int qemu_register_machine(QEMUMachine *m)
3094 QEMUMachine **pm;
3095 pm = &first_machine;
3096 while (*pm != NULL)
3097 pm = &(*pm)->next;
3098 m->next = NULL;
3099 *pm = m;
3100 return 0;
3103 static QEMUMachine *find_machine(const char *name)
3105 QEMUMachine *m;
3107 for(m = first_machine; m != NULL; m = m->next) {
3108 if (!strcmp(m->name, name))
3109 return m;
3110 if (m->alias && !strcmp(m->alias, name))
3111 return m;
3113 return NULL;
3116 static QEMUMachine *find_default_machine(void)
3118 QEMUMachine *m;
3120 for(m = first_machine; m != NULL; m = m->next) {
3121 if (m->is_default) {
3122 return m;
3125 return NULL;
3128 /***********************************************************/
3129 /* main execution loop */
3131 static void gui_update(void *opaque)
3133 uint64_t interval = GUI_REFRESH_INTERVAL;
3134 DisplayState *ds = opaque;
3135 DisplayChangeListener *dcl = ds->listeners;
3137 dpy_refresh(ds);
3139 while (dcl != NULL) {
3140 if (dcl->gui_timer_interval &&
3141 dcl->gui_timer_interval < interval)
3142 interval = dcl->gui_timer_interval;
3143 dcl = dcl->next;
3145 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3148 static void nographic_update(void *opaque)
3150 uint64_t interval = GUI_REFRESH_INTERVAL;
3152 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3155 struct vm_change_state_entry {
3156 VMChangeStateHandler *cb;
3157 void *opaque;
3158 LIST_ENTRY (vm_change_state_entry) entries;
3161 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3163 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3164 void *opaque)
3166 VMChangeStateEntry *e;
3168 e = qemu_mallocz(sizeof (*e));
3170 e->cb = cb;
3171 e->opaque = opaque;
3172 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3173 return e;
3176 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3178 LIST_REMOVE (e, entries);
3179 qemu_free (e);
3182 static void vm_state_notify(int running, int reason)
3184 VMChangeStateEntry *e;
3186 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3187 e->cb(e->opaque, running, reason);
3191 static void resume_all_vcpus(void);
3192 static void pause_all_vcpus(void);
3194 void vm_start(void)
3196 if (!vm_running) {
3197 cpu_enable_ticks();
3198 vm_running = 1;
3199 vm_state_notify(1, 0);
3200 qemu_rearm_alarm_timer(alarm_timer);
3201 resume_all_vcpus();
3205 /* reset/shutdown handler */
3207 typedef struct QEMUResetEntry {
3208 TAILQ_ENTRY(QEMUResetEntry) entry;
3209 QEMUResetHandler *func;
3210 void *opaque;
3211 } QEMUResetEntry;
3213 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3214 TAILQ_HEAD_INITIALIZER(reset_handlers);
3215 static int reset_requested;
3216 static int shutdown_requested;
3217 static int powerdown_requested;
3218 static int debug_requested;
3219 static int vmstop_requested;
3221 int qemu_shutdown_requested(void)
3223 int r = shutdown_requested;
3224 shutdown_requested = 0;
3225 return r;
3228 int qemu_reset_requested(void)
3230 int r = reset_requested;
3231 reset_requested = 0;
3232 return r;
3235 int qemu_powerdown_requested(void)
3237 int r = powerdown_requested;
3238 powerdown_requested = 0;
3239 return r;
3242 static int qemu_debug_requested(void)
3244 int r = debug_requested;
3245 debug_requested = 0;
3246 return r;
3249 static int qemu_vmstop_requested(void)
3251 int r = vmstop_requested;
3252 vmstop_requested = 0;
3253 return r;
3256 static void do_vm_stop(int reason)
3258 if (vm_running) {
3259 cpu_disable_ticks();
3260 vm_running = 0;
3261 pause_all_vcpus();
3262 vm_state_notify(0, reason);
3266 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3268 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3270 re->func = func;
3271 re->opaque = opaque;
3272 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3275 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3277 QEMUResetEntry *re;
3279 TAILQ_FOREACH(re, &reset_handlers, entry) {
3280 if (re->func == func && re->opaque == opaque) {
3281 TAILQ_REMOVE(&reset_handlers, re, entry);
3282 qemu_free(re);
3283 return;
3288 void qemu_system_reset(void)
3290 QEMUResetEntry *re, *nre;
3292 /* reset all devices */
3293 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3294 re->func(re->opaque);
3298 void qemu_system_reset_request(void)
3300 if (no_reboot) {
3301 shutdown_requested = 1;
3302 } else {
3303 reset_requested = 1;
3305 qemu_notify_event();
3308 void qemu_system_shutdown_request(void)
3310 shutdown_requested = 1;
3311 qemu_notify_event();
3314 void qemu_system_powerdown_request(void)
3316 powerdown_requested = 1;
3317 qemu_notify_event();
3320 #ifdef CONFIG_IOTHREAD
3321 static void qemu_system_vmstop_request(int reason)
3323 vmstop_requested = reason;
3324 qemu_notify_event();
3326 #endif
3328 #ifndef _WIN32
3329 static int io_thread_fd = -1;
3331 static void qemu_event_increment(void)
3333 static const char byte = 0;
3335 if (io_thread_fd == -1)
3336 return;
3338 write(io_thread_fd, &byte, sizeof(byte));
3341 static void qemu_event_read(void *opaque)
3343 int fd = (unsigned long)opaque;
3344 ssize_t len;
3346 /* Drain the notify pipe */
3347 do {
3348 char buffer[512];
3349 len = read(fd, buffer, sizeof(buffer));
3350 } while ((len == -1 && errno == EINTR) || len > 0);
3353 static int qemu_event_init(void)
3355 int err;
3356 int fds[2];
3358 err = pipe(fds);
3359 if (err == -1)
3360 return -errno;
3362 err = fcntl_setfl(fds[0], O_NONBLOCK);
3363 if (err < 0)
3364 goto fail;
3366 err = fcntl_setfl(fds[1], O_NONBLOCK);
3367 if (err < 0)
3368 goto fail;
3370 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3371 (void *)(unsigned long)fds[0]);
3373 io_thread_fd = fds[1];
3374 return 0;
3376 fail:
3377 close(fds[0]);
3378 close(fds[1]);
3379 return err;
3381 #else
3382 HANDLE qemu_event_handle;
3384 static void dummy_event_handler(void *opaque)
3388 static int qemu_event_init(void)
3390 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3391 if (!qemu_event_handle) {
3392 perror("Failed CreateEvent");
3393 return -1;
3395 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3396 return 0;
3399 static void qemu_event_increment(void)
3401 SetEvent(qemu_event_handle);
3403 #endif
3405 static int cpu_can_run(CPUState *env)
3407 if (env->stop)
3408 return 0;
3409 if (env->stopped)
3410 return 0;
3411 return 1;
3414 #ifndef CONFIG_IOTHREAD
3415 static int qemu_init_main_loop(void)
3417 return qemu_event_init();
3420 void qemu_init_vcpu(void *_env)
3422 CPUState *env = _env;
3424 if (kvm_enabled())
3425 kvm_init_vcpu(env);
3426 env->nr_cores = smp_cores;
3427 env->nr_threads = smp_threads;
3428 return;
3431 int qemu_cpu_self(void *env)
3433 return 1;
3436 static void resume_all_vcpus(void)
3440 static void pause_all_vcpus(void)
3444 void qemu_cpu_kick(void *env)
3446 return;
3449 void qemu_notify_event(void)
3451 CPUState *env = cpu_single_env;
3453 if (env) {
3454 cpu_exit(env);
3458 #define qemu_mutex_lock_iothread() do { } while (0)
3459 #define qemu_mutex_unlock_iothread() do { } while (0)
3461 void vm_stop(int reason)
3463 do_vm_stop(reason);
3466 #else /* CONFIG_IOTHREAD */
3468 #include "qemu-thread.h"
3470 QemuMutex qemu_global_mutex;
3471 static QemuMutex qemu_fair_mutex;
3473 static QemuThread io_thread;
3475 static QemuThread *tcg_cpu_thread;
3476 static QemuCond *tcg_halt_cond;
3478 static int qemu_system_ready;
3479 /* cpu creation */
3480 static QemuCond qemu_cpu_cond;
3481 /* system init */
3482 static QemuCond qemu_system_cond;
3483 static QemuCond qemu_pause_cond;
3485 static void block_io_signals(void);
3486 static void unblock_io_signals(void);
3487 static int tcg_has_work(void);
3489 static int qemu_init_main_loop(void)
3491 int ret;
3493 ret = qemu_event_init();
3494 if (ret)
3495 return ret;
3497 qemu_cond_init(&qemu_pause_cond);
3498 qemu_mutex_init(&qemu_fair_mutex);
3499 qemu_mutex_init(&qemu_global_mutex);
3500 qemu_mutex_lock(&qemu_global_mutex);
3502 unblock_io_signals();
3503 qemu_thread_self(&io_thread);
3505 return 0;
3508 static void qemu_wait_io_event(CPUState *env)
3510 while (!tcg_has_work())
3511 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3513 qemu_mutex_unlock(&qemu_global_mutex);
3516 * Users of qemu_global_mutex can be starved, having no chance
3517 * to acquire it since this path will get to it first.
3518 * So use another lock to provide fairness.
3520 qemu_mutex_lock(&qemu_fair_mutex);
3521 qemu_mutex_unlock(&qemu_fair_mutex);
3523 qemu_mutex_lock(&qemu_global_mutex);
3524 if (env->stop) {
3525 env->stop = 0;
3526 env->stopped = 1;
3527 qemu_cond_signal(&qemu_pause_cond);
3531 static int qemu_cpu_exec(CPUState *env);
3533 static void *kvm_cpu_thread_fn(void *arg)
3535 CPUState *env = arg;
3537 block_io_signals();
3538 qemu_thread_self(env->thread);
3539 if (kvm_enabled())
3540 kvm_init_vcpu(env);
3542 /* signal CPU creation */
3543 qemu_mutex_lock(&qemu_global_mutex);
3544 env->created = 1;
3545 qemu_cond_signal(&qemu_cpu_cond);
3547 /* and wait for machine initialization */
3548 while (!qemu_system_ready)
3549 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3551 while (1) {
3552 if (cpu_can_run(env))
3553 qemu_cpu_exec(env);
3554 qemu_wait_io_event(env);
3557 return NULL;
3560 static void tcg_cpu_exec(void);
3562 static void *tcg_cpu_thread_fn(void *arg)
3564 CPUState *env = arg;
3566 block_io_signals();
3567 qemu_thread_self(env->thread);
3569 /* signal CPU creation */
3570 qemu_mutex_lock(&qemu_global_mutex);
3571 for (env = first_cpu; env != NULL; env = env->next_cpu)
3572 env->created = 1;
3573 qemu_cond_signal(&qemu_cpu_cond);
3575 /* and wait for machine initialization */
3576 while (!qemu_system_ready)
3577 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3579 while (1) {
3580 tcg_cpu_exec();
3581 qemu_wait_io_event(cur_cpu);
3584 return NULL;
3587 void qemu_cpu_kick(void *_env)
3589 CPUState *env = _env;
3590 qemu_cond_broadcast(env->halt_cond);
3591 if (kvm_enabled())
3592 qemu_thread_signal(env->thread, SIGUSR1);
3595 int qemu_cpu_self(void *env)
3597 return (cpu_single_env != NULL);
3600 static void cpu_signal(int sig)
3602 if (cpu_single_env)
3603 cpu_exit(cpu_single_env);
3606 static void block_io_signals(void)
3608 sigset_t set;
3609 struct sigaction sigact;
3611 sigemptyset(&set);
3612 sigaddset(&set, SIGUSR2);
3613 sigaddset(&set, SIGIO);
3614 sigaddset(&set, SIGALRM);
3615 pthread_sigmask(SIG_BLOCK, &set, NULL);
3617 sigemptyset(&set);
3618 sigaddset(&set, SIGUSR1);
3619 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3621 memset(&sigact, 0, sizeof(sigact));
3622 sigact.sa_handler = cpu_signal;
3623 sigaction(SIGUSR1, &sigact, NULL);
3626 static void unblock_io_signals(void)
3628 sigset_t set;
3630 sigemptyset(&set);
3631 sigaddset(&set, SIGUSR2);
3632 sigaddset(&set, SIGIO);
3633 sigaddset(&set, SIGALRM);
3634 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3636 sigemptyset(&set);
3637 sigaddset(&set, SIGUSR1);
3638 pthread_sigmask(SIG_BLOCK, &set, NULL);
3641 static void qemu_signal_lock(unsigned int msecs)
3643 qemu_mutex_lock(&qemu_fair_mutex);
3645 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3646 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3647 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3648 break;
3650 qemu_mutex_unlock(&qemu_fair_mutex);
3653 static void qemu_mutex_lock_iothread(void)
3655 if (kvm_enabled()) {
3656 qemu_mutex_lock(&qemu_fair_mutex);
3657 qemu_mutex_lock(&qemu_global_mutex);
3658 qemu_mutex_unlock(&qemu_fair_mutex);
3659 } else
3660 qemu_signal_lock(100);
3663 static void qemu_mutex_unlock_iothread(void)
3665 qemu_mutex_unlock(&qemu_global_mutex);
3668 static int all_vcpus_paused(void)
3670 CPUState *penv = first_cpu;
3672 while (penv) {
3673 if (!penv->stopped)
3674 return 0;
3675 penv = (CPUState *)penv->next_cpu;
3678 return 1;
3681 static void pause_all_vcpus(void)
3683 CPUState *penv = first_cpu;
3685 while (penv) {
3686 penv->stop = 1;
3687 qemu_thread_signal(penv->thread, SIGUSR1);
3688 qemu_cpu_kick(penv);
3689 penv = (CPUState *)penv->next_cpu;
3692 while (!all_vcpus_paused()) {
3693 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3694 penv = first_cpu;
3695 while (penv) {
3696 qemu_thread_signal(penv->thread, SIGUSR1);
3697 penv = (CPUState *)penv->next_cpu;
3702 static void resume_all_vcpus(void)
3704 CPUState *penv = first_cpu;
3706 while (penv) {
3707 penv->stop = 0;
3708 penv->stopped = 0;
3709 qemu_thread_signal(penv->thread, SIGUSR1);
3710 qemu_cpu_kick(penv);
3711 penv = (CPUState *)penv->next_cpu;
3715 static void tcg_init_vcpu(void *_env)
3717 CPUState *env = _env;
3718 /* share a single thread for all cpus with TCG */
3719 if (!tcg_cpu_thread) {
3720 env->thread = qemu_mallocz(sizeof(QemuThread));
3721 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3722 qemu_cond_init(env->halt_cond);
3723 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3724 while (env->created == 0)
3725 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3726 tcg_cpu_thread = env->thread;
3727 tcg_halt_cond = env->halt_cond;
3728 } else {
3729 env->thread = tcg_cpu_thread;
3730 env->halt_cond = tcg_halt_cond;
3734 static void kvm_start_vcpu(CPUState *env)
3736 env->thread = qemu_mallocz(sizeof(QemuThread));
3737 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3738 qemu_cond_init(env->halt_cond);
3739 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3740 while (env->created == 0)
3741 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3744 void qemu_init_vcpu(void *_env)
3746 CPUState *env = _env;
3748 if (kvm_enabled())
3749 kvm_start_vcpu(env);
3750 else
3751 tcg_init_vcpu(env);
3752 env->nr_cores = smp_cores;
3753 env->nr_threads = smp_threads;
3756 void qemu_notify_event(void)
3758 qemu_event_increment();
3761 void vm_stop(int reason)
3763 QemuThread me;
3764 qemu_thread_self(&me);
3766 if (!qemu_thread_equal(&me, &io_thread)) {
3767 qemu_system_vmstop_request(reason);
3769 * FIXME: should not return to device code in case
3770 * vm_stop() has been requested.
3772 if (cpu_single_env) {
3773 cpu_exit(cpu_single_env);
3774 cpu_single_env->stop = 1;
3776 return;
3778 do_vm_stop(reason);
3781 #endif
3784 #ifdef _WIN32
3785 static void host_main_loop_wait(int *timeout)
3787 int ret, ret2, i;
3788 PollingEntry *pe;
3791 /* XXX: need to suppress polling by better using win32 events */
3792 ret = 0;
3793 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3794 ret |= pe->func(pe->opaque);
3796 if (ret == 0) {
3797 int err;
3798 WaitObjects *w = &wait_objects;
3800 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3801 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3802 if (w->func[ret - WAIT_OBJECT_0])
3803 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3805 /* Check for additional signaled events */
3806 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3808 /* Check if event is signaled */
3809 ret2 = WaitForSingleObject(w->events[i], 0);
3810 if(ret2 == WAIT_OBJECT_0) {
3811 if (w->func[i])
3812 w->func[i](w->opaque[i]);
3813 } else if (ret2 == WAIT_TIMEOUT) {
3814 } else {
3815 err = GetLastError();
3816 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3819 } else if (ret == WAIT_TIMEOUT) {
3820 } else {
3821 err = GetLastError();
3822 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3826 *timeout = 0;
3828 #else
3829 static void host_main_loop_wait(int *timeout)
3832 #endif
3834 void main_loop_wait(int timeout)
3836 IOHandlerRecord *ioh;
3837 fd_set rfds, wfds, xfds;
3838 int ret, nfds;
3839 struct timeval tv;
3841 qemu_bh_update_timeout(&timeout);
3843 host_main_loop_wait(&timeout);
3845 /* poll any events */
3846 /* XXX: separate device handlers from system ones */
3847 nfds = -1;
3848 FD_ZERO(&rfds);
3849 FD_ZERO(&wfds);
3850 FD_ZERO(&xfds);
3851 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3852 if (ioh->deleted)
3853 continue;
3854 if (ioh->fd_read &&
3855 (!ioh->fd_read_poll ||
3856 ioh->fd_read_poll(ioh->opaque) != 0)) {
3857 FD_SET(ioh->fd, &rfds);
3858 if (ioh->fd > nfds)
3859 nfds = ioh->fd;
3861 if (ioh->fd_write) {
3862 FD_SET(ioh->fd, &wfds);
3863 if (ioh->fd > nfds)
3864 nfds = ioh->fd;
3868 tv.tv_sec = timeout / 1000;
3869 tv.tv_usec = (timeout % 1000) * 1000;
3871 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3873 qemu_mutex_unlock_iothread();
3874 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3875 qemu_mutex_lock_iothread();
3876 if (ret > 0) {
3877 IOHandlerRecord **pioh;
3879 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3880 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3881 ioh->fd_read(ioh->opaque);
3883 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3884 ioh->fd_write(ioh->opaque);
3888 /* remove deleted IO handlers */
3889 pioh = &first_io_handler;
3890 while (*pioh) {
3891 ioh = *pioh;
3892 if (ioh->deleted) {
3893 *pioh = ioh->next;
3894 qemu_free(ioh);
3895 } else
3896 pioh = &ioh->next;
3900 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3902 /* rearm timer, if not periodic */
3903 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3904 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3905 qemu_rearm_alarm_timer(alarm_timer);
3908 /* vm time timers */
3909 if (vm_running) {
3910 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3911 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3912 qemu_get_clock(vm_clock));
3915 /* real time timers */
3916 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3917 qemu_get_clock(rt_clock));
3919 /* Check bottom-halves last in case any of the earlier events triggered
3920 them. */
3921 qemu_bh_poll();
3925 static int qemu_cpu_exec(CPUState *env)
3927 int ret;
3928 #ifdef CONFIG_PROFILER
3929 int64_t ti;
3930 #endif
3932 #ifdef CONFIG_PROFILER
3933 ti = profile_getclock();
3934 #endif
3935 if (use_icount) {
3936 int64_t count;
3937 int decr;
3938 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3939 env->icount_decr.u16.low = 0;
3940 env->icount_extra = 0;
3941 count = qemu_next_deadline();
3942 count = (count + (1 << icount_time_shift) - 1)
3943 >> icount_time_shift;
3944 qemu_icount += count;
3945 decr = (count > 0xffff) ? 0xffff : count;
3946 count -= decr;
3947 env->icount_decr.u16.low = decr;
3948 env->icount_extra = count;
3950 ret = cpu_exec(env);
3951 #ifdef CONFIG_PROFILER
3952 qemu_time += profile_getclock() - ti;
3953 #endif
3954 if (use_icount) {
3955 /* Fold pending instructions back into the
3956 instruction counter, and clear the interrupt flag. */
3957 qemu_icount -= (env->icount_decr.u16.low
3958 + env->icount_extra);
3959 env->icount_decr.u32 = 0;
3960 env->icount_extra = 0;
3962 return ret;
3965 static void tcg_cpu_exec(void)
3967 int ret = 0;
3969 if (next_cpu == NULL)
3970 next_cpu = first_cpu;
3971 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3972 CPUState *env = cur_cpu = next_cpu;
3974 if (!vm_running)
3975 break;
3976 if (timer_alarm_pending) {
3977 timer_alarm_pending = 0;
3978 break;
3980 if (cpu_can_run(env))
3981 ret = qemu_cpu_exec(env);
3982 if (ret == EXCP_DEBUG) {
3983 gdb_set_stop_cpu(env);
3984 debug_requested = 1;
3985 break;
3990 static int cpu_has_work(CPUState *env)
3992 if (env->stop)
3993 return 1;
3994 if (env->stopped)
3995 return 0;
3996 if (!env->halted)
3997 return 1;
3998 if (qemu_cpu_has_work(env))
3999 return 1;
4000 return 0;
4003 static int tcg_has_work(void)
4005 CPUState *env;
4007 for (env = first_cpu; env != NULL; env = env->next_cpu)
4008 if (cpu_has_work(env))
4009 return 1;
4010 return 0;
4013 static int qemu_calculate_timeout(void)
4015 #ifndef CONFIG_IOTHREAD
4016 int timeout;
4018 if (!vm_running)
4019 timeout = 5000;
4020 else if (tcg_has_work())
4021 timeout = 0;
4022 else if (!use_icount)
4023 timeout = 5000;
4024 else {
4025 /* XXX: use timeout computed from timers */
4026 int64_t add;
4027 int64_t delta;
4028 /* Advance virtual time to the next event. */
4029 if (use_icount == 1) {
4030 /* When not using an adaptive execution frequency
4031 we tend to get badly out of sync with real time,
4032 so just delay for a reasonable amount of time. */
4033 delta = 0;
4034 } else {
4035 delta = cpu_get_icount() - cpu_get_clock();
4037 if (delta > 0) {
4038 /* If virtual time is ahead of real time then just
4039 wait for IO. */
4040 timeout = (delta / 1000000) + 1;
4041 } else {
4042 /* Wait for either IO to occur or the next
4043 timer event. */
4044 add = qemu_next_deadline();
4045 /* We advance the timer before checking for IO.
4046 Limit the amount we advance so that early IO
4047 activity won't get the guest too far ahead. */
4048 if (add > 10000000)
4049 add = 10000000;
4050 delta += add;
4051 add = (add + (1 << icount_time_shift) - 1)
4052 >> icount_time_shift;
4053 qemu_icount += add;
4054 timeout = delta / 1000000;
4055 if (timeout < 0)
4056 timeout = 0;
4060 return timeout;
4061 #else /* CONFIG_IOTHREAD */
4062 return 1000;
4063 #endif
4066 static int vm_can_run(void)
4068 if (powerdown_requested)
4069 return 0;
4070 if (reset_requested)
4071 return 0;
4072 if (shutdown_requested)
4073 return 0;
4074 if (debug_requested)
4075 return 0;
4076 return 1;
4079 qemu_irq qemu_system_powerdown;
4081 static void main_loop(void)
4083 int r;
4085 #ifdef CONFIG_IOTHREAD
4086 qemu_system_ready = 1;
4087 qemu_cond_broadcast(&qemu_system_cond);
4088 #endif
4090 for (;;) {
4091 do {
4092 #ifdef CONFIG_PROFILER
4093 int64_t ti;
4094 #endif
4095 #ifndef CONFIG_IOTHREAD
4096 tcg_cpu_exec();
4097 #endif
4098 #ifdef CONFIG_PROFILER
4099 ti = profile_getclock();
4100 #endif
4101 main_loop_wait(qemu_calculate_timeout());
4102 #ifdef CONFIG_PROFILER
4103 dev_time += profile_getclock() - ti;
4104 #endif
4105 } while (vm_can_run());
4107 if (qemu_debug_requested())
4108 vm_stop(EXCP_DEBUG);
4109 if (qemu_shutdown_requested()) {
4110 if (no_shutdown) {
4111 vm_stop(0);
4112 no_shutdown = 0;
4113 } else
4114 break;
4116 if (qemu_reset_requested()) {
4117 pause_all_vcpus();
4118 qemu_system_reset();
4119 resume_all_vcpus();
4121 if (qemu_powerdown_requested()) {
4122 qemu_irq_raise(qemu_system_powerdown);
4124 if ((r = qemu_vmstop_requested()))
4125 vm_stop(r);
4127 pause_all_vcpus();
4130 static void version(void)
4132 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4135 static void help(int exitcode)
4137 version();
4138 printf("usage: %s [options] [disk_image]\n"
4139 "\n"
4140 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4141 "\n"
4142 #define DEF(option, opt_arg, opt_enum, opt_help) \
4143 opt_help
4144 #define DEFHEADING(text) stringify(text) "\n"
4145 #include "qemu-options.h"
4146 #undef DEF
4147 #undef DEFHEADING
4148 #undef GEN_DOCS
4149 "\n"
4150 "During emulation, the following keys are useful:\n"
4151 "ctrl-alt-f toggle full screen\n"
4152 "ctrl-alt-n switch to virtual console 'n'\n"
4153 "ctrl-alt toggle mouse and keyboard grab\n"
4154 "\n"
4155 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4157 "qemu",
4158 DEFAULT_RAM_SIZE,
4159 #ifndef _WIN32
4160 DEFAULT_NETWORK_SCRIPT,
4161 DEFAULT_NETWORK_DOWN_SCRIPT,
4162 #endif
4163 DEFAULT_GDBSTUB_PORT,
4164 "/tmp/qemu.log");
4165 exit(exitcode);
4168 #define HAS_ARG 0x0001
4170 enum {
4171 #define DEF(option, opt_arg, opt_enum, opt_help) \
4172 opt_enum,
4173 #define DEFHEADING(text)
4174 #include "qemu-options.h"
4175 #undef DEF
4176 #undef DEFHEADING
4177 #undef GEN_DOCS
4180 typedef struct QEMUOption {
4181 const char *name;
4182 int flags;
4183 int index;
4184 } QEMUOption;
4186 static const QEMUOption qemu_options[] = {
4187 { "h", 0, QEMU_OPTION_h },
4188 #define DEF(option, opt_arg, opt_enum, opt_help) \
4189 { option, opt_arg, opt_enum },
4190 #define DEFHEADING(text)
4191 #include "qemu-options.h"
4192 #undef DEF
4193 #undef DEFHEADING
4194 #undef GEN_DOCS
4195 { NULL },
4198 #ifdef HAS_AUDIO
4199 struct soundhw soundhw[] = {
4200 #ifdef HAS_AUDIO_CHOICE
4201 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4203 "pcspk",
4204 "PC speaker",
4207 { .init_isa = pcspk_audio_init }
4209 #endif
4211 #ifdef CONFIG_SB16
4213 "sb16",
4214 "Creative Sound Blaster 16",
4217 { .init_isa = SB16_init }
4219 #endif
4221 #ifdef CONFIG_CS4231A
4223 "cs4231a",
4224 "CS4231A",
4227 { .init_isa = cs4231a_init }
4229 #endif
4231 #ifdef CONFIG_ADLIB
4233 "adlib",
4234 #ifdef HAS_YMF262
4235 "Yamaha YMF262 (OPL3)",
4236 #else
4237 "Yamaha YM3812 (OPL2)",
4238 #endif
4241 { .init_isa = Adlib_init }
4243 #endif
4245 #ifdef CONFIG_GUS
4247 "gus",
4248 "Gravis Ultrasound GF1",
4251 { .init_isa = GUS_init }
4253 #endif
4255 #ifdef CONFIG_AC97
4257 "ac97",
4258 "Intel 82801AA AC97 Audio",
4261 { .init_pci = ac97_init }
4263 #endif
4265 #ifdef CONFIG_ES1370
4267 "es1370",
4268 "ENSONIQ AudioPCI ES1370",
4271 { .init_pci = es1370_init }
4273 #endif
4275 #endif /* HAS_AUDIO_CHOICE */
4277 { NULL, NULL, 0, 0, { NULL } }
4280 static void select_soundhw (const char *optarg)
4282 struct soundhw *c;
4284 if (*optarg == '?') {
4285 show_valid_cards:
4287 printf ("Valid sound card names (comma separated):\n");
4288 for (c = soundhw; c->name; ++c) {
4289 printf ("%-11s %s\n", c->name, c->descr);
4291 printf ("\n-soundhw all will enable all of the above\n");
4292 exit (*optarg != '?');
4294 else {
4295 size_t l;
4296 const char *p;
4297 char *e;
4298 int bad_card = 0;
4300 if (!strcmp (optarg, "all")) {
4301 for (c = soundhw; c->name; ++c) {
4302 c->enabled = 1;
4304 return;
4307 p = optarg;
4308 while (*p) {
4309 e = strchr (p, ',');
4310 l = !e ? strlen (p) : (size_t) (e - p);
4312 for (c = soundhw; c->name; ++c) {
4313 if (!strncmp (c->name, p, l) && !c->name[l]) {
4314 c->enabled = 1;
4315 break;
4319 if (!c->name) {
4320 if (l > 80) {
4321 fprintf (stderr,
4322 "Unknown sound card name (too big to show)\n");
4324 else {
4325 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4326 (int) l, p);
4328 bad_card = 1;
4330 p += l + (e != NULL);
4333 if (bad_card)
4334 goto show_valid_cards;
4337 #endif
4339 static void select_vgahw (const char *p)
4341 const char *opts;
4343 vga_interface_type = VGA_NONE;
4344 if (strstart(p, "std", &opts)) {
4345 vga_interface_type = VGA_STD;
4346 } else if (strstart(p, "cirrus", &opts)) {
4347 vga_interface_type = VGA_CIRRUS;
4348 } else if (strstart(p, "vmware", &opts)) {
4349 vga_interface_type = VGA_VMWARE;
4350 } else if (strstart(p, "xenfb", &opts)) {
4351 vga_interface_type = VGA_XENFB;
4352 } else if (!strstart(p, "none", &opts)) {
4353 invalid_vga:
4354 fprintf(stderr, "Unknown vga type: %s\n", p);
4355 exit(1);
4357 while (*opts) {
4358 const char *nextopt;
4360 if (strstart(opts, ",retrace=", &nextopt)) {
4361 opts = nextopt;
4362 if (strstart(opts, "dumb", &nextopt))
4363 vga_retrace_method = VGA_RETRACE_DUMB;
4364 else if (strstart(opts, "precise", &nextopt))
4365 vga_retrace_method = VGA_RETRACE_PRECISE;
4366 else goto invalid_vga;
4367 } else goto invalid_vga;
4368 opts = nextopt;
4372 #ifdef TARGET_I386
4373 static int balloon_parse(const char *arg)
4375 QemuOpts *opts;
4377 if (strcmp(arg, "none") == 0) {
4378 return 0;
4381 if (!strncmp(arg, "virtio", 6)) {
4382 if (arg[6] == ',') {
4383 /* have params -> parse them */
4384 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4385 if (!opts)
4386 return -1;
4387 } else {
4388 /* create empty opts */
4389 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4391 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4392 return 0;
4395 return -1;
4397 #endif
4399 #ifdef _WIN32
4400 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4402 exit(STATUS_CONTROL_C_EXIT);
4403 return TRUE;
4405 #endif
4407 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4409 int ret;
4411 if(strlen(str) != 36)
4412 return -1;
4414 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4415 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4416 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4418 if(ret != 16)
4419 return -1;
4421 #ifdef TARGET_I386
4422 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4423 #endif
4425 return 0;
4428 #define MAX_NET_CLIENTS 32
4430 #ifndef _WIN32
4432 static void termsig_handler(int signal)
4434 qemu_system_shutdown_request();
4437 static void sigchld_handler(int signal)
4439 waitpid(-1, NULL, WNOHANG);
4442 static void sighandler_setup(void)
4444 struct sigaction act;
4446 memset(&act, 0, sizeof(act));
4447 act.sa_handler = termsig_handler;
4448 sigaction(SIGINT, &act, NULL);
4449 sigaction(SIGHUP, &act, NULL);
4450 sigaction(SIGTERM, &act, NULL);
4452 act.sa_handler = sigchld_handler;
4453 act.sa_flags = SA_NOCLDSTOP;
4454 sigaction(SIGCHLD, &act, NULL);
4457 #endif
4459 #ifdef _WIN32
4460 /* Look for support files in the same directory as the executable. */
4461 static char *find_datadir(const char *argv0)
4463 char *p;
4464 char buf[MAX_PATH];
4465 DWORD len;
4467 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4468 if (len == 0) {
4469 return NULL;
4472 buf[len] = 0;
4473 p = buf + len - 1;
4474 while (p != buf && *p != '\\')
4475 p--;
4476 *p = 0;
4477 if (access(buf, R_OK) == 0) {
4478 return qemu_strdup(buf);
4480 return NULL;
4482 #else /* !_WIN32 */
4484 /* Find a likely location for support files using the location of the binary.
4485 For installed binaries this will be "$bindir/../share/qemu". When
4486 running from the build tree this will be "$bindir/../pc-bios". */
4487 #define SHARE_SUFFIX "/share/qemu"
4488 #define BUILD_SUFFIX "/pc-bios"
4489 static char *find_datadir(const char *argv0)
4491 char *dir;
4492 char *p = NULL;
4493 char *res;
4494 char buf[PATH_MAX];
4495 size_t max_len;
4497 #if defined(__linux__)
4499 int len;
4500 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4501 if (len > 0) {
4502 buf[len] = 0;
4503 p = buf;
4506 #elif defined(__FreeBSD__)
4508 int len;
4509 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4510 if (len > 0) {
4511 buf[len] = 0;
4512 p = buf;
4515 #endif
4516 /* If we don't have any way of figuring out the actual executable
4517 location then try argv[0]. */
4518 if (!p) {
4519 p = realpath(argv0, buf);
4520 if (!p) {
4521 return NULL;
4524 dir = dirname(p);
4525 dir = dirname(dir);
4527 max_len = strlen(dir) +
4528 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4529 res = qemu_mallocz(max_len);
4530 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4531 if (access(res, R_OK)) {
4532 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4533 if (access(res, R_OK)) {
4534 qemu_free(res);
4535 res = NULL;
4539 return res;
4541 #undef SHARE_SUFFIX
4542 #undef BUILD_SUFFIX
4543 #endif
4545 char *qemu_find_file(int type, const char *name)
4547 int len;
4548 const char *subdir;
4549 char *buf;
4551 /* If name contains path separators then try it as a straight path. */
4552 if ((strchr(name, '/') || strchr(name, '\\'))
4553 && access(name, R_OK) == 0) {
4554 return qemu_strdup(name);
4556 switch (type) {
4557 case QEMU_FILE_TYPE_BIOS:
4558 subdir = "";
4559 break;
4560 case QEMU_FILE_TYPE_KEYMAP:
4561 subdir = "keymaps/";
4562 break;
4563 default:
4564 abort();
4566 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4567 buf = qemu_mallocz(len);
4568 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4569 if (access(buf, R_OK)) {
4570 qemu_free(buf);
4571 return NULL;
4573 return buf;
4576 static int device_init_func(QemuOpts *opts, void *opaque)
4578 DeviceState *dev;
4580 dev = qdev_device_add(opts);
4581 if (!dev)
4582 return -1;
4583 return 0;
4586 struct device_config {
4587 enum {
4588 DEV_USB, /* -usbdevice */
4589 DEV_BT, /* -bt */
4590 } type;
4591 const char *cmdline;
4592 TAILQ_ENTRY(device_config) next;
4594 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4596 static void add_device_config(int type, const char *cmdline)
4598 struct device_config *conf;
4600 conf = qemu_mallocz(sizeof(*conf));
4601 conf->type = type;
4602 conf->cmdline = cmdline;
4603 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4606 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4608 struct device_config *conf;
4609 int rc;
4611 TAILQ_FOREACH(conf, &device_configs, next) {
4612 if (conf->type != type)
4613 continue;
4614 rc = func(conf->cmdline);
4615 if (0 != rc)
4616 return rc;
4618 return 0;
4621 int main(int argc, char **argv, char **envp)
4623 const char *gdbstub_dev = NULL;
4624 uint32_t boot_devices_bitmap = 0;
4625 int i;
4626 int snapshot, linux_boot, net_boot;
4627 const char *initrd_filename;
4628 const char *kernel_filename, *kernel_cmdline;
4629 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4630 DisplayState *ds;
4631 DisplayChangeListener *dcl;
4632 int cyls, heads, secs, translation;
4633 const char *net_clients[MAX_NET_CLIENTS];
4634 int nb_net_clients;
4635 QemuOpts *hda_opts = NULL, *opts;
4636 int optind;
4637 const char *r, *optarg;
4638 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4639 const char *monitor_devices[MAX_MONITOR_DEVICES];
4640 int monitor_device_index;
4641 const char *serial_devices[MAX_SERIAL_PORTS];
4642 int serial_device_index;
4643 const char *parallel_devices[MAX_PARALLEL_PORTS];
4644 int parallel_device_index;
4645 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4646 int virtio_console_index;
4647 const char *loadvm = NULL;
4648 QEMUMachine *machine;
4649 const char *cpu_model;
4650 #ifndef _WIN32
4651 int fds[2];
4652 #endif
4653 int tb_size;
4654 const char *pid_file = NULL;
4655 const char *incoming = NULL;
4656 #ifndef _WIN32
4657 int fd = 0;
4658 struct passwd *pwd = NULL;
4659 const char *chroot_dir = NULL;
4660 const char *run_as = NULL;
4661 #endif
4662 CPUState *env;
4663 int show_vnc_port = 0;
4665 qemu_errors_to_file(stderr);
4666 qemu_cache_utils_init(envp);
4668 LIST_INIT (&vm_change_state_head);
4669 #ifndef _WIN32
4671 struct sigaction act;
4672 sigfillset(&act.sa_mask);
4673 act.sa_flags = 0;
4674 act.sa_handler = SIG_IGN;
4675 sigaction(SIGPIPE, &act, NULL);
4677 #else
4678 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4679 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4680 QEMU to run on a single CPU */
4682 HANDLE h;
4683 DWORD mask, smask;
4684 int i;
4685 h = GetCurrentProcess();
4686 if (GetProcessAffinityMask(h, &mask, &smask)) {
4687 for(i = 0; i < 32; i++) {
4688 if (mask & (1 << i))
4689 break;
4691 if (i != 32) {
4692 mask = 1 << i;
4693 SetProcessAffinityMask(h, mask);
4697 #endif
4699 module_call_init(MODULE_INIT_MACHINE);
4700 machine = find_default_machine();
4701 cpu_model = NULL;
4702 initrd_filename = NULL;
4703 ram_size = 0;
4704 snapshot = 0;
4705 kernel_filename = NULL;
4706 kernel_cmdline = "";
4707 cyls = heads = secs = 0;
4708 translation = BIOS_ATA_TRANSLATION_AUTO;
4710 serial_devices[0] = "vc:80Cx24C";
4711 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4712 serial_devices[i] = NULL;
4713 serial_device_index = 0;
4715 parallel_devices[0] = "vc:80Cx24C";
4716 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4717 parallel_devices[i] = NULL;
4718 parallel_device_index = 0;
4720 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4721 virtio_consoles[i] = NULL;
4722 virtio_console_index = 0;
4724 monitor_devices[0] = "vc:80Cx24C";
4725 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4726 monitor_devices[i] = NULL;
4728 monitor_device_index = 0;
4730 for (i = 0; i < MAX_NODES; i++) {
4731 node_mem[i] = 0;
4732 node_cpumask[i] = 0;
4735 nb_net_clients = 0;
4736 nb_numa_nodes = 0;
4737 nb_nics = 0;
4739 tb_size = 0;
4740 autostart= 1;
4742 optind = 1;
4743 for(;;) {
4744 if (optind >= argc)
4745 break;
4746 r = argv[optind];
4747 if (r[0] != '-') {
4748 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4749 } else {
4750 const QEMUOption *popt;
4752 optind++;
4753 /* Treat --foo the same as -foo. */
4754 if (r[1] == '-')
4755 r++;
4756 popt = qemu_options;
4757 for(;;) {
4758 if (!popt->name) {
4759 fprintf(stderr, "%s: invalid option -- '%s'\n",
4760 argv[0], r);
4761 exit(1);
4763 if (!strcmp(popt->name, r + 1))
4764 break;
4765 popt++;
4767 if (popt->flags & HAS_ARG) {
4768 if (optind >= argc) {
4769 fprintf(stderr, "%s: option '%s' requires an argument\n",
4770 argv[0], r);
4771 exit(1);
4773 optarg = argv[optind++];
4774 } else {
4775 optarg = NULL;
4778 switch(popt->index) {
4779 case QEMU_OPTION_M:
4780 machine = find_machine(optarg);
4781 if (!machine) {
4782 QEMUMachine *m;
4783 printf("Supported machines are:\n");
4784 for(m = first_machine; m != NULL; m = m->next) {
4785 if (m->alias)
4786 printf("%-10s %s (alias of %s)\n",
4787 m->alias, m->desc, m->name);
4788 printf("%-10s %s%s\n",
4789 m->name, m->desc,
4790 m->is_default ? " (default)" : "");
4792 exit(*optarg != '?');
4794 break;
4795 case QEMU_OPTION_cpu:
4796 /* hw initialization will check this */
4797 if (*optarg == '?') {
4798 /* XXX: implement xxx_cpu_list for targets that still miss it */
4799 #if defined(cpu_list)
4800 cpu_list(stdout, &fprintf);
4801 #endif
4802 exit(0);
4803 } else {
4804 cpu_model = optarg;
4806 break;
4807 case QEMU_OPTION_initrd:
4808 initrd_filename = optarg;
4809 break;
4810 case QEMU_OPTION_hda:
4811 if (cyls == 0)
4812 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4813 else
4814 hda_opts = drive_add(optarg, HD_ALIAS
4815 ",cyls=%d,heads=%d,secs=%d%s",
4816 0, cyls, heads, secs,
4817 translation == BIOS_ATA_TRANSLATION_LBA ?
4818 ",trans=lba" :
4819 translation == BIOS_ATA_TRANSLATION_NONE ?
4820 ",trans=none" : "");
4821 break;
4822 case QEMU_OPTION_hdb:
4823 case QEMU_OPTION_hdc:
4824 case QEMU_OPTION_hdd:
4825 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4826 break;
4827 case QEMU_OPTION_drive:
4828 drive_add(NULL, "%s", optarg);
4829 break;
4830 case QEMU_OPTION_set:
4831 if (qemu_set_option(optarg) != 0)
4832 exit(1);
4833 break;
4834 case QEMU_OPTION_mtdblock:
4835 drive_add(optarg, MTD_ALIAS);
4836 break;
4837 case QEMU_OPTION_sd:
4838 drive_add(optarg, SD_ALIAS);
4839 break;
4840 case QEMU_OPTION_pflash:
4841 drive_add(optarg, PFLASH_ALIAS);
4842 break;
4843 case QEMU_OPTION_snapshot:
4844 snapshot = 1;
4845 break;
4846 case QEMU_OPTION_hdachs:
4848 const char *p;
4849 p = optarg;
4850 cyls = strtol(p, (char **)&p, 0);
4851 if (cyls < 1 || cyls > 16383)
4852 goto chs_fail;
4853 if (*p != ',')
4854 goto chs_fail;
4855 p++;
4856 heads = strtol(p, (char **)&p, 0);
4857 if (heads < 1 || heads > 16)
4858 goto chs_fail;
4859 if (*p != ',')
4860 goto chs_fail;
4861 p++;
4862 secs = strtol(p, (char **)&p, 0);
4863 if (secs < 1 || secs > 63)
4864 goto chs_fail;
4865 if (*p == ',') {
4866 p++;
4867 if (!strcmp(p, "none"))
4868 translation = BIOS_ATA_TRANSLATION_NONE;
4869 else if (!strcmp(p, "lba"))
4870 translation = BIOS_ATA_TRANSLATION_LBA;
4871 else if (!strcmp(p, "auto"))
4872 translation = BIOS_ATA_TRANSLATION_AUTO;
4873 else
4874 goto chs_fail;
4875 } else if (*p != '\0') {
4876 chs_fail:
4877 fprintf(stderr, "qemu: invalid physical CHS format\n");
4878 exit(1);
4880 if (hda_opts != NULL) {
4881 char num[16];
4882 snprintf(num, sizeof(num), "%d", cyls);
4883 qemu_opt_set(hda_opts, "cyls", num);
4884 snprintf(num, sizeof(num), "%d", heads);
4885 qemu_opt_set(hda_opts, "heads", num);
4886 snprintf(num, sizeof(num), "%d", secs);
4887 qemu_opt_set(hda_opts, "secs", num);
4888 if (translation == BIOS_ATA_TRANSLATION_LBA)
4889 qemu_opt_set(hda_opts, "trans", "lba");
4890 if (translation == BIOS_ATA_TRANSLATION_NONE)
4891 qemu_opt_set(hda_opts, "trans", "none");
4894 break;
4895 case QEMU_OPTION_numa:
4896 if (nb_numa_nodes >= MAX_NODES) {
4897 fprintf(stderr, "qemu: too many NUMA nodes\n");
4898 exit(1);
4900 numa_add(optarg);
4901 break;
4902 case QEMU_OPTION_nographic:
4903 display_type = DT_NOGRAPHIC;
4904 break;
4905 #ifdef CONFIG_CURSES
4906 case QEMU_OPTION_curses:
4907 display_type = DT_CURSES;
4908 break;
4909 #endif
4910 case QEMU_OPTION_portrait:
4911 graphic_rotate = 1;
4912 break;
4913 case QEMU_OPTION_kernel:
4914 kernel_filename = optarg;
4915 break;
4916 case QEMU_OPTION_append:
4917 kernel_cmdline = optarg;
4918 break;
4919 case QEMU_OPTION_cdrom:
4920 drive_add(optarg, CDROM_ALIAS);
4921 break;
4922 case QEMU_OPTION_boot:
4924 static const char * const params[] = {
4925 "order", "once", "menu", NULL
4927 char buf[sizeof(boot_devices)];
4928 char *standard_boot_devices;
4929 int legacy = 0;
4931 if (!strchr(optarg, '=')) {
4932 legacy = 1;
4933 pstrcpy(buf, sizeof(buf), optarg);
4934 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4935 fprintf(stderr,
4936 "qemu: unknown boot parameter '%s' in '%s'\n",
4937 buf, optarg);
4938 exit(1);
4941 if (legacy ||
4942 get_param_value(buf, sizeof(buf), "order", optarg)) {
4943 boot_devices_bitmap = parse_bootdevices(buf);
4944 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4946 if (!legacy) {
4947 if (get_param_value(buf, sizeof(buf),
4948 "once", optarg)) {
4949 boot_devices_bitmap |= parse_bootdevices(buf);
4950 standard_boot_devices = qemu_strdup(boot_devices);
4951 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4952 qemu_register_reset(restore_boot_devices,
4953 standard_boot_devices);
4955 if (get_param_value(buf, sizeof(buf),
4956 "menu", optarg)) {
4957 if (!strcmp(buf, "on")) {
4958 boot_menu = 1;
4959 } else if (!strcmp(buf, "off")) {
4960 boot_menu = 0;
4961 } else {
4962 fprintf(stderr,
4963 "qemu: invalid option value '%s'\n",
4964 buf);
4965 exit(1);
4970 break;
4971 case QEMU_OPTION_fda:
4972 case QEMU_OPTION_fdb:
4973 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4974 break;
4975 #ifdef TARGET_I386
4976 case QEMU_OPTION_no_fd_bootchk:
4977 fd_bootchk = 0;
4978 break;
4979 #endif
4980 case QEMU_OPTION_net:
4981 if (nb_net_clients >= MAX_NET_CLIENTS) {
4982 fprintf(stderr, "qemu: too many network clients\n");
4983 exit(1);
4985 net_clients[nb_net_clients] = optarg;
4986 nb_net_clients++;
4987 break;
4988 #ifdef CONFIG_SLIRP
4989 case QEMU_OPTION_tftp:
4990 legacy_tftp_prefix = optarg;
4991 break;
4992 case QEMU_OPTION_bootp:
4993 legacy_bootp_filename = optarg;
4994 break;
4995 #ifndef _WIN32
4996 case QEMU_OPTION_smb:
4997 net_slirp_smb(optarg);
4998 break;
4999 #endif
5000 case QEMU_OPTION_redir:
5001 net_slirp_redir(optarg);
5002 break;
5003 #endif
5004 case QEMU_OPTION_bt:
5005 add_device_config(DEV_BT, optarg);
5006 break;
5007 #ifdef HAS_AUDIO
5008 case QEMU_OPTION_audio_help:
5009 AUD_help ();
5010 exit (0);
5011 break;
5012 case QEMU_OPTION_soundhw:
5013 select_soundhw (optarg);
5014 break;
5015 #endif
5016 case QEMU_OPTION_h:
5017 help(0);
5018 break;
5019 case QEMU_OPTION_version:
5020 version();
5021 exit(0);
5022 break;
5023 case QEMU_OPTION_m: {
5024 uint64_t value;
5025 char *ptr;
5027 value = strtoul(optarg, &ptr, 10);
5028 switch (*ptr) {
5029 case 0: case 'M': case 'm':
5030 value <<= 20;
5031 break;
5032 case 'G': case 'g':
5033 value <<= 30;
5034 break;
5035 default:
5036 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5037 exit(1);
5040 /* On 32-bit hosts, QEMU is limited by virtual address space */
5041 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5042 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5043 exit(1);
5045 if (value != (uint64_t)(ram_addr_t)value) {
5046 fprintf(stderr, "qemu: ram size too large\n");
5047 exit(1);
5049 ram_size = value;
5050 break;
5052 case QEMU_OPTION_d:
5054 int mask;
5055 const CPULogItem *item;
5057 mask = cpu_str_to_log_mask(optarg);
5058 if (!mask) {
5059 printf("Log items (comma separated):\n");
5060 for(item = cpu_log_items; item->mask != 0; item++) {
5061 printf("%-10s %s\n", item->name, item->help);
5063 exit(1);
5065 cpu_set_log(mask);
5067 break;
5068 case QEMU_OPTION_s:
5069 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5070 break;
5071 case QEMU_OPTION_gdb:
5072 gdbstub_dev = optarg;
5073 break;
5074 case QEMU_OPTION_L:
5075 data_dir = optarg;
5076 break;
5077 case QEMU_OPTION_bios:
5078 bios_name = optarg;
5079 break;
5080 case QEMU_OPTION_singlestep:
5081 singlestep = 1;
5082 break;
5083 case QEMU_OPTION_S:
5084 autostart = 0;
5085 break;
5086 #ifndef _WIN32
5087 case QEMU_OPTION_k:
5088 keyboard_layout = optarg;
5089 break;
5090 #endif
5091 case QEMU_OPTION_localtime:
5092 rtc_utc = 0;
5093 break;
5094 case QEMU_OPTION_vga:
5095 select_vgahw (optarg);
5096 break;
5097 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5098 case QEMU_OPTION_g:
5100 const char *p;
5101 int w, h, depth;
5102 p = optarg;
5103 w = strtol(p, (char **)&p, 10);
5104 if (w <= 0) {
5105 graphic_error:
5106 fprintf(stderr, "qemu: invalid resolution or depth\n");
5107 exit(1);
5109 if (*p != 'x')
5110 goto graphic_error;
5111 p++;
5112 h = strtol(p, (char **)&p, 10);
5113 if (h <= 0)
5114 goto graphic_error;
5115 if (*p == 'x') {
5116 p++;
5117 depth = strtol(p, (char **)&p, 10);
5118 if (depth != 8 && depth != 15 && depth != 16 &&
5119 depth != 24 && depth != 32)
5120 goto graphic_error;
5121 } else if (*p == '\0') {
5122 depth = graphic_depth;
5123 } else {
5124 goto graphic_error;
5127 graphic_width = w;
5128 graphic_height = h;
5129 graphic_depth = depth;
5131 break;
5132 #endif
5133 case QEMU_OPTION_echr:
5135 char *r;
5136 term_escape_char = strtol(optarg, &r, 0);
5137 if (r == optarg)
5138 printf("Bad argument to echr\n");
5139 break;
5141 case QEMU_OPTION_monitor:
5142 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5143 fprintf(stderr, "qemu: too many monitor devices\n");
5144 exit(1);
5146 monitor_devices[monitor_device_index] = optarg;
5147 monitor_device_index++;
5148 break;
5149 case QEMU_OPTION_chardev:
5150 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5151 if (!opts) {
5152 fprintf(stderr, "parse error: %s\n", optarg);
5153 exit(1);
5155 if (NULL == qemu_chr_open_opts(opts, NULL)) {
5156 exit(1);
5158 break;
5159 case QEMU_OPTION_serial:
5160 if (serial_device_index >= MAX_SERIAL_PORTS) {
5161 fprintf(stderr, "qemu: too many serial ports\n");
5162 exit(1);
5164 serial_devices[serial_device_index] = optarg;
5165 serial_device_index++;
5166 break;
5167 case QEMU_OPTION_watchdog:
5168 if (watchdog) {
5169 fprintf(stderr,
5170 "qemu: only one watchdog option may be given\n");
5171 return 1;
5173 watchdog = optarg;
5174 break;
5175 case QEMU_OPTION_watchdog_action:
5176 if (select_watchdog_action(optarg) == -1) {
5177 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5178 exit(1);
5180 break;
5181 case QEMU_OPTION_virtiocon:
5182 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5183 fprintf(stderr, "qemu: too many virtio consoles\n");
5184 exit(1);
5186 virtio_consoles[virtio_console_index] = optarg;
5187 virtio_console_index++;
5188 break;
5189 case QEMU_OPTION_parallel:
5190 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5191 fprintf(stderr, "qemu: too many parallel ports\n");
5192 exit(1);
5194 parallel_devices[parallel_device_index] = optarg;
5195 parallel_device_index++;
5196 break;
5197 case QEMU_OPTION_loadvm:
5198 loadvm = optarg;
5199 break;
5200 case QEMU_OPTION_full_screen:
5201 full_screen = 1;
5202 break;
5203 #ifdef CONFIG_SDL
5204 case QEMU_OPTION_no_frame:
5205 no_frame = 1;
5206 break;
5207 case QEMU_OPTION_alt_grab:
5208 alt_grab = 1;
5209 break;
5210 case QEMU_OPTION_no_quit:
5211 no_quit = 1;
5212 break;
5213 case QEMU_OPTION_sdl:
5214 display_type = DT_SDL;
5215 break;
5216 #endif
5217 case QEMU_OPTION_pidfile:
5218 pid_file = optarg;
5219 break;
5220 #ifdef TARGET_I386
5221 case QEMU_OPTION_win2k_hack:
5222 win2k_install_hack = 1;
5223 break;
5224 case QEMU_OPTION_rtc_td_hack:
5225 rtc_td_hack = 1;
5226 break;
5227 case QEMU_OPTION_acpitable:
5228 if(acpi_table_add(optarg) < 0) {
5229 fprintf(stderr, "Wrong acpi table provided\n");
5230 exit(1);
5232 break;
5233 case QEMU_OPTION_smbios:
5234 if(smbios_entry_add(optarg) < 0) {
5235 fprintf(stderr, "Wrong smbios provided\n");
5236 exit(1);
5238 break;
5239 #endif
5240 #ifdef CONFIG_KVM
5241 case QEMU_OPTION_enable_kvm:
5242 kvm_allowed = 1;
5243 break;
5244 #endif
5245 case QEMU_OPTION_usb:
5246 usb_enabled = 1;
5247 break;
5248 case QEMU_OPTION_usbdevice:
5249 usb_enabled = 1;
5250 add_device_config(DEV_USB, optarg);
5251 break;
5252 case QEMU_OPTION_device:
5253 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5254 if (!opts) {
5255 fprintf(stderr, "parse error: %s\n", optarg);
5256 exit(1);
5258 break;
5259 case QEMU_OPTION_smp:
5260 smp_parse(optarg);
5261 if (smp_cpus < 1) {
5262 fprintf(stderr, "Invalid number of CPUs\n");
5263 exit(1);
5265 if (max_cpus < smp_cpus) {
5266 fprintf(stderr, "maxcpus must be equal to or greater than "
5267 "smp\n");
5268 exit(1);
5270 if (max_cpus > 255) {
5271 fprintf(stderr, "Unsupported number of maxcpus\n");
5272 exit(1);
5274 break;
5275 case QEMU_OPTION_vnc:
5276 display_type = DT_VNC;
5277 vnc_display = optarg;
5278 break;
5279 #ifdef TARGET_I386
5280 case QEMU_OPTION_no_acpi:
5281 acpi_enabled = 0;
5282 break;
5283 case QEMU_OPTION_no_hpet:
5284 no_hpet = 1;
5285 break;
5286 case QEMU_OPTION_balloon:
5287 if (balloon_parse(optarg) < 0) {
5288 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5289 exit(1);
5291 break;
5292 #endif
5293 case QEMU_OPTION_no_reboot:
5294 no_reboot = 1;
5295 break;
5296 case QEMU_OPTION_no_shutdown:
5297 no_shutdown = 1;
5298 break;
5299 case QEMU_OPTION_show_cursor:
5300 cursor_hide = 0;
5301 break;
5302 case QEMU_OPTION_uuid:
5303 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5304 fprintf(stderr, "Fail to parse UUID string."
5305 " Wrong format.\n");
5306 exit(1);
5308 break;
5309 #ifndef _WIN32
5310 case QEMU_OPTION_daemonize:
5311 daemonize = 1;
5312 break;
5313 #endif
5314 case QEMU_OPTION_option_rom:
5315 if (nb_option_roms >= MAX_OPTION_ROMS) {
5316 fprintf(stderr, "Too many option ROMs\n");
5317 exit(1);
5319 option_rom[nb_option_roms] = optarg;
5320 nb_option_roms++;
5321 break;
5322 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5323 case QEMU_OPTION_semihosting:
5324 semihosting_enabled = 1;
5325 break;
5326 #endif
5327 case QEMU_OPTION_name:
5328 qemu_name = qemu_strdup(optarg);
5330 char *p = strchr(qemu_name, ',');
5331 if (p != NULL) {
5332 *p++ = 0;
5333 if (strncmp(p, "process=", 8)) {
5334 fprintf(stderr, "Unknown subargument %s to -name", p);
5335 exit(1);
5337 p += 8;
5338 set_proc_name(p);
5341 break;
5342 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5343 case QEMU_OPTION_prom_env:
5344 if (nb_prom_envs >= MAX_PROM_ENVS) {
5345 fprintf(stderr, "Too many prom variables\n");
5346 exit(1);
5348 prom_envs[nb_prom_envs] = optarg;
5349 nb_prom_envs++;
5350 break;
5351 #endif
5352 #ifdef TARGET_ARM
5353 case QEMU_OPTION_old_param:
5354 old_param = 1;
5355 break;
5356 #endif
5357 case QEMU_OPTION_clock:
5358 configure_alarms(optarg);
5359 break;
5360 case QEMU_OPTION_startdate:
5362 struct tm tm;
5363 time_t rtc_start_date;
5364 if (!strcmp(optarg, "now")) {
5365 rtc_date_offset = -1;
5366 } else {
5367 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5368 &tm.tm_year,
5369 &tm.tm_mon,
5370 &tm.tm_mday,
5371 &tm.tm_hour,
5372 &tm.tm_min,
5373 &tm.tm_sec) == 6) {
5374 /* OK */
5375 } else if (sscanf(optarg, "%d-%d-%d",
5376 &tm.tm_year,
5377 &tm.tm_mon,
5378 &tm.tm_mday) == 3) {
5379 tm.tm_hour = 0;
5380 tm.tm_min = 0;
5381 tm.tm_sec = 0;
5382 } else {
5383 goto date_fail;
5385 tm.tm_year -= 1900;
5386 tm.tm_mon--;
5387 rtc_start_date = mktimegm(&tm);
5388 if (rtc_start_date == -1) {
5389 date_fail:
5390 fprintf(stderr, "Invalid date format. Valid format are:\n"
5391 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5392 exit(1);
5394 rtc_date_offset = time(NULL) - rtc_start_date;
5397 break;
5398 case QEMU_OPTION_tb_size:
5399 tb_size = strtol(optarg, NULL, 0);
5400 if (tb_size < 0)
5401 tb_size = 0;
5402 break;
5403 case QEMU_OPTION_icount:
5404 use_icount = 1;
5405 if (strcmp(optarg, "auto") == 0) {
5406 icount_time_shift = -1;
5407 } else {
5408 icount_time_shift = strtol(optarg, NULL, 0);
5410 break;
5411 case QEMU_OPTION_incoming:
5412 incoming = optarg;
5413 break;
5414 #ifndef _WIN32
5415 case QEMU_OPTION_chroot:
5416 chroot_dir = optarg;
5417 break;
5418 case QEMU_OPTION_runas:
5419 run_as = optarg;
5420 break;
5421 #endif
5422 #ifdef CONFIG_XEN
5423 case QEMU_OPTION_xen_domid:
5424 xen_domid = atoi(optarg);
5425 break;
5426 case QEMU_OPTION_xen_create:
5427 xen_mode = XEN_CREATE;
5428 break;
5429 case QEMU_OPTION_xen_attach:
5430 xen_mode = XEN_ATTACH;
5431 break;
5432 #endif
5437 if (kvm_enabled()) {
5438 int ret;
5440 ret = kvm_init(smp_cpus);
5441 if (ret < 0) {
5442 fprintf(stderr, "failed to initialize KVM\n");
5443 exit(1);
5447 /* If no data_dir is specified then try to find it relative to the
5448 executable path. */
5449 if (!data_dir) {
5450 data_dir = find_datadir(argv[0]);
5452 /* If all else fails use the install patch specified when building. */
5453 if (!data_dir) {
5454 data_dir = CONFIG_QEMU_SHAREDIR;
5458 * Default to max_cpus = smp_cpus, in case the user doesn't
5459 * specify a max_cpus value.
5461 if (!max_cpus)
5462 max_cpus = smp_cpus;
5464 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5465 if (smp_cpus > machine->max_cpus) {
5466 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5467 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5468 machine->max_cpus);
5469 exit(1);
5472 if (display_type == DT_NOGRAPHIC) {
5473 if (serial_device_index == 0)
5474 serial_devices[0] = "stdio";
5475 if (parallel_device_index == 0)
5476 parallel_devices[0] = "null";
5477 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5478 monitor_devices[0] = "stdio";
5482 #ifndef _WIN32
5483 if (daemonize) {
5484 pid_t pid;
5486 if (pipe(fds) == -1)
5487 exit(1);
5489 pid = fork();
5490 if (pid > 0) {
5491 uint8_t status;
5492 ssize_t len;
5494 close(fds[1]);
5496 again:
5497 len = read(fds[0], &status, 1);
5498 if (len == -1 && (errno == EINTR))
5499 goto again;
5501 if (len != 1)
5502 exit(1);
5503 else if (status == 1) {
5504 fprintf(stderr, "Could not acquire pidfile\n");
5505 exit(1);
5506 } else
5507 exit(0);
5508 } else if (pid < 0)
5509 exit(1);
5511 setsid();
5513 pid = fork();
5514 if (pid > 0)
5515 exit(0);
5516 else if (pid < 0)
5517 exit(1);
5519 umask(027);
5521 signal(SIGTSTP, SIG_IGN);
5522 signal(SIGTTOU, SIG_IGN);
5523 signal(SIGTTIN, SIG_IGN);
5526 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5527 if (daemonize) {
5528 uint8_t status = 1;
5529 write(fds[1], &status, 1);
5530 } else
5531 fprintf(stderr, "Could not acquire pid file\n");
5532 exit(1);
5534 #endif
5536 if (qemu_init_main_loop()) {
5537 fprintf(stderr, "qemu_init_main_loop failed\n");
5538 exit(1);
5540 linux_boot = (kernel_filename != NULL);
5542 if (!linux_boot && *kernel_cmdline != '\0') {
5543 fprintf(stderr, "-append only allowed with -kernel option\n");
5544 exit(1);
5547 if (!linux_boot && initrd_filename != NULL) {
5548 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5549 exit(1);
5552 #ifndef _WIN32
5553 /* Win32 doesn't support line-buffering and requires size >= 2 */
5554 setvbuf(stdout, NULL, _IOLBF, 0);
5555 #endif
5557 init_timers();
5558 if (init_timer_alarm() < 0) {
5559 fprintf(stderr, "could not initialize alarm timer\n");
5560 exit(1);
5562 if (use_icount && icount_time_shift < 0) {
5563 use_icount = 2;
5564 /* 125MIPS seems a reasonable initial guess at the guest speed.
5565 It will be corrected fairly quickly anyway. */
5566 icount_time_shift = 3;
5567 init_icount_adjust();
5570 #ifdef _WIN32
5571 socket_init();
5572 #endif
5574 /* init network clients */
5575 if (nb_net_clients == 0) {
5576 /* if no clients, we use a default config */
5577 net_clients[nb_net_clients++] = "nic";
5578 #ifdef CONFIG_SLIRP
5579 net_clients[nb_net_clients++] = "user";
5580 #endif
5583 for(i = 0;i < nb_net_clients; i++) {
5584 if (net_client_parse(net_clients[i]) < 0)
5585 exit(1);
5588 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5589 net_set_boot_mask(net_boot);
5591 net_client_check();
5593 /* init the bluetooth world */
5594 if (foreach_device_config(DEV_BT, bt_parse))
5595 exit(1);
5597 /* init the memory */
5598 if (ram_size == 0)
5599 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5601 /* init the dynamic translator */
5602 cpu_exec_init_all(tb_size * 1024 * 1024);
5604 bdrv_init();
5606 /* we always create the cdrom drive, even if no disk is there */
5607 drive_add(NULL, CDROM_ALIAS);
5609 /* we always create at least one floppy */
5610 drive_add(NULL, FD_ALIAS, 0);
5612 /* we always create one sd slot, even if no card is in it */
5613 drive_add(NULL, SD_ALIAS);
5615 /* open the virtual block devices */
5616 if (snapshot)
5617 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5618 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5619 exit(1);
5621 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5622 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5624 /* Maintain compatibility with multiple stdio monitors */
5625 if (!strcmp(monitor_devices[0],"stdio")) {
5626 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5627 const char *devname = serial_devices[i];
5628 if (devname && !strcmp(devname,"mon:stdio")) {
5629 monitor_devices[0] = NULL;
5630 break;
5631 } else if (devname && !strcmp(devname,"stdio")) {
5632 monitor_devices[0] = NULL;
5633 serial_devices[i] = "mon:stdio";
5634 break;
5639 if (nb_numa_nodes > 0) {
5640 int i;
5642 if (nb_numa_nodes > smp_cpus) {
5643 nb_numa_nodes = smp_cpus;
5646 /* If no memory size if given for any node, assume the default case
5647 * and distribute the available memory equally across all nodes
5649 for (i = 0; i < nb_numa_nodes; i++) {
5650 if (node_mem[i] != 0)
5651 break;
5653 if (i == nb_numa_nodes) {
5654 uint64_t usedmem = 0;
5656 /* On Linux, the each node's border has to be 8MB aligned,
5657 * the final node gets the rest.
5659 for (i = 0; i < nb_numa_nodes - 1; i++) {
5660 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5661 usedmem += node_mem[i];
5663 node_mem[i] = ram_size - usedmem;
5666 for (i = 0; i < nb_numa_nodes; i++) {
5667 if (node_cpumask[i] != 0)
5668 break;
5670 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5671 * must cope with this anyway, because there are BIOSes out there in
5672 * real machines which also use this scheme.
5674 if (i == nb_numa_nodes) {
5675 for (i = 0; i < smp_cpus; i++) {
5676 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5681 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5682 const char *devname = monitor_devices[i];
5683 if (devname && strcmp(devname, "none")) {
5684 char label[32];
5685 if (i == 0) {
5686 snprintf(label, sizeof(label), "monitor");
5687 } else {
5688 snprintf(label, sizeof(label), "monitor%d", i);
5690 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5691 if (!monitor_hds[i]) {
5692 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5693 devname);
5694 exit(1);
5699 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5700 const char *devname = serial_devices[i];
5701 if (devname && strcmp(devname, "none")) {
5702 char label[32];
5703 snprintf(label, sizeof(label), "serial%d", i);
5704 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5705 if (!serial_hds[i]) {
5706 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5707 devname);
5708 exit(1);
5713 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5714 const char *devname = parallel_devices[i];
5715 if (devname && strcmp(devname, "none")) {
5716 char label[32];
5717 snprintf(label, sizeof(label), "parallel%d", i);
5718 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5719 if (!parallel_hds[i]) {
5720 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5721 devname);
5722 exit(1);
5727 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5728 const char *devname = virtio_consoles[i];
5729 if (devname && strcmp(devname, "none")) {
5730 char label[32];
5731 snprintf(label, sizeof(label), "virtcon%d", i);
5732 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5733 if (!virtcon_hds[i]) {
5734 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5735 devname);
5736 exit(1);
5741 module_call_init(MODULE_INIT_DEVICE);
5743 if (watchdog) {
5744 i = select_watchdog(watchdog);
5745 if (i > 0)
5746 exit (i == 1 ? 1 : 0);
5749 if (machine->compat_props) {
5750 qdev_prop_register_compat(machine->compat_props);
5752 machine->init(ram_size, boot_devices,
5753 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5756 #ifndef _WIN32
5757 /* must be after terminal init, SDL library changes signal handlers */
5758 sighandler_setup();
5759 #endif
5761 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5762 for (i = 0; i < nb_numa_nodes; i++) {
5763 if (node_cpumask[i] & (1 << env->cpu_index)) {
5764 env->numa_node = i;
5769 current_machine = machine;
5771 /* init USB devices */
5772 if (usb_enabled) {
5773 foreach_device_config(DEV_USB, usb_parse);
5776 /* init generic devices */
5777 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5778 exit(1);
5780 if (!display_state)
5781 dumb_display_init();
5782 /* just use the first displaystate for the moment */
5783 ds = display_state;
5785 if (display_type == DT_DEFAULT) {
5786 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5787 display_type = DT_SDL;
5788 #else
5789 display_type = DT_VNC;
5790 vnc_display = "localhost:0,to=99";
5791 show_vnc_port = 1;
5792 #endif
5796 switch (display_type) {
5797 case DT_NOGRAPHIC:
5798 break;
5799 #if defined(CONFIG_CURSES)
5800 case DT_CURSES:
5801 curses_display_init(ds, full_screen);
5802 break;
5803 #endif
5804 #if defined(CONFIG_SDL)
5805 case DT_SDL:
5806 sdl_display_init(ds, full_screen, no_frame);
5807 break;
5808 #elif defined(CONFIG_COCOA)
5809 case DT_SDL:
5810 cocoa_display_init(ds, full_screen);
5811 break;
5812 #endif
5813 case DT_VNC:
5814 vnc_display_init(ds);
5815 if (vnc_display_open(ds, vnc_display) < 0)
5816 exit(1);
5818 if (show_vnc_port) {
5819 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5821 break;
5822 default:
5823 break;
5825 dpy_resize(ds);
5827 dcl = ds->listeners;
5828 while (dcl != NULL) {
5829 if (dcl->dpy_refresh != NULL) {
5830 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5831 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5833 dcl = dcl->next;
5836 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5837 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5838 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5841 text_consoles_set_display(display_state);
5842 qemu_chr_initial_reset();
5844 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5845 if (monitor_devices[i] && monitor_hds[i]) {
5846 monitor_init(monitor_hds[i],
5847 MONITOR_USE_READLINE |
5848 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5852 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5853 const char *devname = serial_devices[i];
5854 if (devname && strcmp(devname, "none")) {
5855 if (strstart(devname, "vc", 0))
5856 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5860 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5861 const char *devname = parallel_devices[i];
5862 if (devname && strcmp(devname, "none")) {
5863 if (strstart(devname, "vc", 0))
5864 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5868 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5869 const char *devname = virtio_consoles[i];
5870 if (virtcon_hds[i] && devname) {
5871 if (strstart(devname, "vc", 0))
5872 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5876 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5877 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5878 gdbstub_dev);
5879 exit(1);
5882 if (loadvm) {
5883 if (load_vmstate(cur_mon, loadvm) < 0) {
5884 autostart = 0;
5888 if (incoming) {
5889 qemu_start_incoming_migration(incoming);
5890 } else if (autostart) {
5891 vm_start();
5894 #ifndef _WIN32
5895 if (daemonize) {
5896 uint8_t status = 0;
5897 ssize_t len;
5899 again1:
5900 len = write(fds[1], &status, 1);
5901 if (len == -1 && (errno == EINTR))
5902 goto again1;
5904 if (len != 1)
5905 exit(1);
5907 chdir("/");
5908 TFR(fd = open("/dev/null", O_RDWR));
5909 if (fd == -1)
5910 exit(1);
5913 if (run_as) {
5914 pwd = getpwnam(run_as);
5915 if (!pwd) {
5916 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5917 exit(1);
5921 if (chroot_dir) {
5922 if (chroot(chroot_dir) < 0) {
5923 fprintf(stderr, "chroot failed\n");
5924 exit(1);
5926 chdir("/");
5929 if (run_as) {
5930 if (setgid(pwd->pw_gid) < 0) {
5931 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5932 exit(1);
5934 if (setuid(pwd->pw_uid) < 0) {
5935 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5936 exit(1);
5938 if (setuid(0) != -1) {
5939 fprintf(stderr, "Dropping privileges failed\n");
5940 exit(1);
5944 if (daemonize) {
5945 dup2(fd, 0);
5946 dup2(fd, 1);
5947 dup2(fd, 2);
5949 close(fd);
5951 #endif
5953 main_loop();
5954 quit_timers();
5955 net_cleanup();
5957 return 0;