qcow2: Split out guest cluster functions
[armpft.git] / block / qcow2-cluster.c
blob494cc91220da88b5c2d39feca398600be96ec1cf
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int grow_l1_table(BlockDriverState *bs, int min_size)
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 uint64_t new_l1_table_offset;
37 uint8_t data[12];
39 new_l1_size = s->l1_size;
40 if (min_size <= new_l1_size)
41 return 0;
42 while (min_size > new_l1_size) {
43 new_l1_size = (new_l1_size * 3 + 1) / 2;
45 #ifdef DEBUG_ALLOC2
46 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
47 #endif
49 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
50 new_l1_table = qemu_mallocz(new_l1_size2);
51 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
53 /* write new table (align to cluster) */
54 new_l1_table_offset = alloc_clusters(bs, new_l1_size2);
56 for(i = 0; i < s->l1_size; i++)
57 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
58 ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
59 if (ret != new_l1_size2)
60 goto fail;
61 for(i = 0; i < s->l1_size; i++)
62 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
64 /* set new table */
65 cpu_to_be32w((uint32_t*)data, new_l1_size);
66 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
67 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
68 sizeof(data)) != sizeof(data))
69 goto fail;
70 qemu_free(s->l1_table);
71 free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
72 s->l1_table_offset = new_l1_table_offset;
73 s->l1_table = new_l1_table;
74 s->l1_size = new_l1_size;
75 return 0;
76 fail:
77 qemu_free(s->l1_table);
78 return -EIO;
81 void l2_cache_reset(BlockDriverState *bs)
83 BDRVQcowState *s = bs->opaque;
85 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
86 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
87 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
90 static inline int l2_cache_new_entry(BlockDriverState *bs)
92 BDRVQcowState *s = bs->opaque;
93 uint32_t min_count;
94 int min_index, i;
96 /* find a new entry in the least used one */
97 min_index = 0;
98 min_count = 0xffffffff;
99 for(i = 0; i < L2_CACHE_SIZE; i++) {
100 if (s->l2_cache_counts[i] < min_count) {
101 min_count = s->l2_cache_counts[i];
102 min_index = i;
105 return min_index;
109 * seek_l2_table
111 * seek l2_offset in the l2_cache table
112 * if not found, return NULL,
113 * if found,
114 * increments the l2 cache hit count of the entry,
115 * if counter overflow, divide by two all counters
116 * return the pointer to the l2 cache entry
120 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
122 int i, j;
124 for(i = 0; i < L2_CACHE_SIZE; i++) {
125 if (l2_offset == s->l2_cache_offsets[i]) {
126 /* increment the hit count */
127 if (++s->l2_cache_counts[i] == 0xffffffff) {
128 for(j = 0; j < L2_CACHE_SIZE; j++) {
129 s->l2_cache_counts[j] >>= 1;
132 return s->l2_cache + (i << s->l2_bits);
135 return NULL;
139 * l2_load
141 * Loads a L2 table into memory. If the table is in the cache, the cache
142 * is used; otherwise the L2 table is loaded from the image file.
144 * Returns a pointer to the L2 table on success, or NULL if the read from
145 * the image file failed.
148 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
150 BDRVQcowState *s = bs->opaque;
151 int min_index;
152 uint64_t *l2_table;
154 /* seek if the table for the given offset is in the cache */
156 l2_table = seek_l2_table(s, l2_offset);
157 if (l2_table != NULL)
158 return l2_table;
160 /* not found: load a new entry in the least used one */
162 min_index = l2_cache_new_entry(bs);
163 l2_table = s->l2_cache + (min_index << s->l2_bits);
164 if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
165 s->l2_size * sizeof(uint64_t))
166 return NULL;
167 s->l2_cache_offsets[min_index] = l2_offset;
168 s->l2_cache_counts[min_index] = 1;
170 return l2_table;
174 * l2_allocate
176 * Allocate a new l2 entry in the file. If l1_index points to an already
177 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
178 * table) copy the contents of the old L2 table into the newly allocated one.
179 * Otherwise the new table is initialized with zeros.
183 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
185 BDRVQcowState *s = bs->opaque;
186 int min_index;
187 uint64_t old_l2_offset, tmp;
188 uint64_t *l2_table, l2_offset;
190 old_l2_offset = s->l1_table[l1_index];
192 /* allocate a new l2 entry */
194 l2_offset = alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
196 /* update the L1 entry */
198 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
200 tmp = cpu_to_be64(l2_offset | QCOW_OFLAG_COPIED);
201 if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
202 &tmp, sizeof(tmp)) != sizeof(tmp))
203 return NULL;
205 /* allocate a new entry in the l2 cache */
207 min_index = l2_cache_new_entry(bs);
208 l2_table = s->l2_cache + (min_index << s->l2_bits);
210 if (old_l2_offset == 0) {
211 /* if there was no old l2 table, clear the new table */
212 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
213 } else {
214 /* if there was an old l2 table, read it from the disk */
215 if (bdrv_pread(s->hd, old_l2_offset,
216 l2_table, s->l2_size * sizeof(uint64_t)) !=
217 s->l2_size * sizeof(uint64_t))
218 return NULL;
220 /* write the l2 table to the file */
221 if (bdrv_pwrite(s->hd, l2_offset,
222 l2_table, s->l2_size * sizeof(uint64_t)) !=
223 s->l2_size * sizeof(uint64_t))
224 return NULL;
226 /* update the l2 cache entry */
228 s->l2_cache_offsets[min_index] = l2_offset;
229 s->l2_cache_counts[min_index] = 1;
231 return l2_table;
234 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
235 uint64_t *l2_table, uint64_t start, uint64_t mask)
237 int i;
238 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
240 if (!offset)
241 return 0;
243 for (i = start; i < start + nb_clusters; i++)
244 if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
245 break;
247 return (i - start);
250 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
252 int i = 0;
254 while(nb_clusters-- && l2_table[i] == 0)
255 i++;
257 return i;
260 /* The crypt function is compatible with the linux cryptoloop
261 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
262 supported */
263 void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
264 uint8_t *out_buf, const uint8_t *in_buf,
265 int nb_sectors, int enc,
266 const AES_KEY *key)
268 union {
269 uint64_t ll[2];
270 uint8_t b[16];
271 } ivec;
272 int i;
274 for(i = 0; i < nb_sectors; i++) {
275 ivec.ll[0] = cpu_to_le64(sector_num);
276 ivec.ll[1] = 0;
277 AES_cbc_encrypt(in_buf, out_buf, 512, key,
278 ivec.b, enc);
279 sector_num++;
280 in_buf += 512;
281 out_buf += 512;
286 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
287 uint8_t *buf, int nb_sectors)
289 BDRVQcowState *s = bs->opaque;
290 int ret, index_in_cluster, n, n1;
291 uint64_t cluster_offset;
293 while (nb_sectors > 0) {
294 n = nb_sectors;
295 cluster_offset = get_cluster_offset(bs, sector_num << 9, &n);
296 index_in_cluster = sector_num & (s->cluster_sectors - 1);
297 if (!cluster_offset) {
298 if (bs->backing_hd) {
299 /* read from the base image */
300 n1 = backing_read1(bs->backing_hd, sector_num, buf, n);
301 if (n1 > 0) {
302 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
303 if (ret < 0)
304 return -1;
306 } else {
307 memset(buf, 0, 512 * n);
309 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
310 if (decompress_cluster(s, cluster_offset) < 0)
311 return -1;
312 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
313 } else {
314 ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
315 if (ret != n * 512)
316 return -1;
317 if (s->crypt_method) {
318 encrypt_sectors(s, sector_num, buf, buf, n, 0,
319 &s->aes_decrypt_key);
322 nb_sectors -= n;
323 sector_num += n;
324 buf += n * 512;
326 return 0;
329 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
330 uint64_t cluster_offset, int n_start, int n_end)
332 BDRVQcowState *s = bs->opaque;
333 int n, ret;
335 n = n_end - n_start;
336 if (n <= 0)
337 return 0;
338 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
339 if (ret < 0)
340 return ret;
341 if (s->crypt_method) {
342 encrypt_sectors(s, start_sect + n_start,
343 s->cluster_data,
344 s->cluster_data, n, 1,
345 &s->aes_encrypt_key);
347 ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
348 s->cluster_data, n);
349 if (ret < 0)
350 return ret;
351 return 0;
356 * get_cluster_offset
358 * For a given offset of the disk image, return cluster offset in
359 * qcow2 file.
361 * on entry, *num is the number of contiguous clusters we'd like to
362 * access following offset.
364 * on exit, *num is the number of contiguous clusters we can read.
366 * Return 1, if the offset is found
367 * Return 0, otherwise.
371 uint64_t get_cluster_offset(BlockDriverState *bs, uint64_t offset, int *num)
373 BDRVQcowState *s = bs->opaque;
374 int l1_index, l2_index;
375 uint64_t l2_offset, *l2_table, cluster_offset;
376 int l1_bits, c;
377 int index_in_cluster, nb_available, nb_needed, nb_clusters;
379 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
380 nb_needed = *num + index_in_cluster;
382 l1_bits = s->l2_bits + s->cluster_bits;
384 /* compute how many bytes there are between the offset and
385 * the end of the l1 entry
388 nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
390 /* compute the number of available sectors */
392 nb_available = (nb_available >> 9) + index_in_cluster;
394 if (nb_needed > nb_available) {
395 nb_needed = nb_available;
398 cluster_offset = 0;
400 /* seek the the l2 offset in the l1 table */
402 l1_index = offset >> l1_bits;
403 if (l1_index >= s->l1_size)
404 goto out;
406 l2_offset = s->l1_table[l1_index];
408 /* seek the l2 table of the given l2 offset */
410 if (!l2_offset)
411 goto out;
413 /* load the l2 table in memory */
415 l2_offset &= ~QCOW_OFLAG_COPIED;
416 l2_table = l2_load(bs, l2_offset);
417 if (l2_table == NULL)
418 return 0;
420 /* find the cluster offset for the given disk offset */
422 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
423 cluster_offset = be64_to_cpu(l2_table[l2_index]);
424 nb_clusters = size_to_clusters(s, nb_needed << 9);
426 if (!cluster_offset) {
427 /* how many empty clusters ? */
428 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
429 } else {
430 /* how many allocated clusters ? */
431 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
432 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
435 nb_available = (c * s->cluster_sectors);
436 out:
437 if (nb_available > nb_needed)
438 nb_available = nb_needed;
440 *num = nb_available - index_in_cluster;
442 return cluster_offset & ~QCOW_OFLAG_COPIED;
446 * get_cluster_table
448 * for a given disk offset, load (and allocate if needed)
449 * the l2 table.
451 * the l2 table offset in the qcow2 file and the cluster index
452 * in the l2 table are given to the caller.
456 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
457 uint64_t **new_l2_table,
458 uint64_t *new_l2_offset,
459 int *new_l2_index)
461 BDRVQcowState *s = bs->opaque;
462 int l1_index, l2_index, ret;
463 uint64_t l2_offset, *l2_table;
465 /* seek the the l2 offset in the l1 table */
467 l1_index = offset >> (s->l2_bits + s->cluster_bits);
468 if (l1_index >= s->l1_size) {
469 ret = grow_l1_table(bs, l1_index + 1);
470 if (ret < 0)
471 return 0;
473 l2_offset = s->l1_table[l1_index];
475 /* seek the l2 table of the given l2 offset */
477 if (l2_offset & QCOW_OFLAG_COPIED) {
478 /* load the l2 table in memory */
479 l2_offset &= ~QCOW_OFLAG_COPIED;
480 l2_table = l2_load(bs, l2_offset);
481 if (l2_table == NULL)
482 return 0;
483 } else {
484 if (l2_offset)
485 free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
486 l2_table = l2_allocate(bs, l1_index);
487 if (l2_table == NULL)
488 return 0;
489 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
492 /* find the cluster offset for the given disk offset */
494 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
496 *new_l2_table = l2_table;
497 *new_l2_offset = l2_offset;
498 *new_l2_index = l2_index;
500 return 1;
504 * alloc_compressed_cluster_offset
506 * For a given offset of the disk image, return cluster offset in
507 * qcow2 file.
509 * If the offset is not found, allocate a new compressed cluster.
511 * Return the cluster offset if successful,
512 * Return 0, otherwise.
516 uint64_t alloc_compressed_cluster_offset(BlockDriverState *bs,
517 uint64_t offset,
518 int compressed_size)
520 BDRVQcowState *s = bs->opaque;
521 int l2_index, ret;
522 uint64_t l2_offset, *l2_table, cluster_offset;
523 int nb_csectors;
525 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
526 if (ret == 0)
527 return 0;
529 cluster_offset = be64_to_cpu(l2_table[l2_index]);
530 if (cluster_offset & QCOW_OFLAG_COPIED)
531 return cluster_offset & ~QCOW_OFLAG_COPIED;
533 if (cluster_offset)
534 free_any_clusters(bs, cluster_offset, 1);
536 cluster_offset = alloc_bytes(bs, compressed_size);
537 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
538 (cluster_offset >> 9);
540 cluster_offset |= QCOW_OFLAG_COMPRESSED |
541 ((uint64_t)nb_csectors << s->csize_shift);
543 /* update L2 table */
545 /* compressed clusters never have the copied flag */
547 l2_table[l2_index] = cpu_to_be64(cluster_offset);
548 if (bdrv_pwrite(s->hd,
549 l2_offset + l2_index * sizeof(uint64_t),
550 l2_table + l2_index,
551 sizeof(uint64_t)) != sizeof(uint64_t))
552 return 0;
554 return cluster_offset;
557 int alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
558 QCowL2Meta *m)
560 BDRVQcowState *s = bs->opaque;
561 int i, j = 0, l2_index, ret;
562 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
564 if (m->nb_clusters == 0)
565 return 0;
567 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
569 /* copy content of unmodified sectors */
570 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
571 if (m->n_start) {
572 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
573 if (ret < 0)
574 goto err;
577 if (m->nb_available & (s->cluster_sectors - 1)) {
578 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
579 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
580 m->nb_available - end, s->cluster_sectors);
581 if (ret < 0)
582 goto err;
585 ret = -EIO;
586 /* update L2 table */
587 if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
588 goto err;
590 for (i = 0; i < m->nb_clusters; i++) {
591 /* if two concurrent writes happen to the same unallocated cluster
592 * each write allocates separate cluster and writes data concurrently.
593 * The first one to complete updates l2 table with pointer to its
594 * cluster the second one has to do RMW (which is done above by
595 * copy_sectors()), update l2 table with its cluster pointer and free
596 * old cluster. This is what this loop does */
597 if(l2_table[l2_index + i] != 0)
598 old_cluster[j++] = l2_table[l2_index + i];
600 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
601 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
604 if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t),
605 l2_table + l2_index, m->nb_clusters * sizeof(uint64_t)) !=
606 m->nb_clusters * sizeof(uint64_t))
607 goto err;
609 for (i = 0; i < j; i++)
610 free_any_clusters(bs, be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED,
613 ret = 0;
614 err:
615 qemu_free(old_cluster);
616 return ret;
620 * alloc_cluster_offset
622 * For a given offset of the disk image, return cluster offset in
623 * qcow2 file.
625 * If the offset is not found, allocate a new cluster.
627 * Return the cluster offset if successful,
628 * Return 0, otherwise.
632 uint64_t alloc_cluster_offset(BlockDriverState *bs,
633 uint64_t offset,
634 int n_start, int n_end,
635 int *num, QCowL2Meta *m)
637 BDRVQcowState *s = bs->opaque;
638 int l2_index, ret;
639 uint64_t l2_offset, *l2_table, cluster_offset;
640 int nb_clusters, i = 0;
642 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
643 if (ret == 0)
644 return 0;
646 nb_clusters = size_to_clusters(s, n_end << 9);
648 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
650 cluster_offset = be64_to_cpu(l2_table[l2_index]);
652 /* We keep all QCOW_OFLAG_COPIED clusters */
654 if (cluster_offset & QCOW_OFLAG_COPIED) {
655 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
656 &l2_table[l2_index], 0, 0);
658 cluster_offset &= ~QCOW_OFLAG_COPIED;
659 m->nb_clusters = 0;
661 goto out;
664 /* for the moment, multiple compressed clusters are not managed */
666 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
667 nb_clusters = 1;
669 /* how many available clusters ? */
671 while (i < nb_clusters) {
672 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
673 &l2_table[l2_index], i, 0);
675 if(be64_to_cpu(l2_table[l2_index + i]))
676 break;
678 i += count_contiguous_free_clusters(nb_clusters - i,
679 &l2_table[l2_index + i]);
681 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
683 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
684 (cluster_offset & QCOW_OFLAG_COMPRESSED))
685 break;
687 nb_clusters = i;
689 /* allocate a new cluster */
691 cluster_offset = alloc_clusters(bs, nb_clusters * s->cluster_size);
693 /* save info needed for meta data update */
694 m->offset = offset;
695 m->n_start = n_start;
696 m->nb_clusters = nb_clusters;
698 out:
699 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
701 *num = m->nb_available - n_start;
703 return cluster_offset;
706 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
707 const uint8_t *buf, int buf_size)
709 z_stream strm1, *strm = &strm1;
710 int ret, out_len;
712 memset(strm, 0, sizeof(*strm));
714 strm->next_in = (uint8_t *)buf;
715 strm->avail_in = buf_size;
716 strm->next_out = out_buf;
717 strm->avail_out = out_buf_size;
719 ret = inflateInit2(strm, -12);
720 if (ret != Z_OK)
721 return -1;
722 ret = inflate(strm, Z_FINISH);
723 out_len = strm->next_out - out_buf;
724 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
725 out_len != out_buf_size) {
726 inflateEnd(strm);
727 return -1;
729 inflateEnd(strm);
730 return 0;
733 int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
735 int ret, csize, nb_csectors, sector_offset;
736 uint64_t coffset;
738 coffset = cluster_offset & s->cluster_offset_mask;
739 if (s->cluster_cache_offset != coffset) {
740 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
741 sector_offset = coffset & 511;
742 csize = nb_csectors * 512 - sector_offset;
743 ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
744 if (ret < 0) {
745 return -1;
747 if (decompress_buffer(s->cluster_cache, s->cluster_size,
748 s->cluster_data + sector_offset, csize) < 0) {
749 return -1;
751 s->cluster_cache_offset = coffset;
753 return 0;